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ul. Narutowicza 11/12, Gdańsk , Poland
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Abstract: Accurate identification of stochastic systems with fast-varying parameters is a
challenging task which cannot be accomplished using model-free estimation methods, such
as weighted least squares, which assume only that system coefficients can be regarded as
locally constant. The current state-of-the-art solutions are based on the assumption that system
parameters can be locally approximated by a linear combination of appropriately chosen basis
functions. The paper shows that tracking performance of the resulting local basis function
estimation algorithms can be further improved by means of regularization. The method is
illustrated by an important recent application – identification of fast time-varying acoustic
channels used in underwater communication.
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1. INTRODUCTION

Many nonstationary communication channels (terrestrial,
underwater) can be well approximated by a time-varying
finite impulse response (FIR) model of the form, Tsatsanis
& Giannakis [1996], Stojanovic & Preisig [2009]

y(t) =
n∑

j=1

θ∗j (t)u(t− j + 1) + e(t)

= θH(t)ϕ(t) + e(t) (1)

where t = . . . ,−1, 0, 1, . . . denotes discrete (normalized)
time, y(t) denotes the received complex-valued signal,
ϕ(t) = [u(t), . . . , u(t − n + 1)]T denotes regression vector
made up of past values of the complex-valued transmitted
signal, θ(t) = [θ1(t), . . . , θn(t)]T denotes the vector of
time-varying channel impulse response coefficients, and
{e(t)} denotes white noise independent of {u(t)} and
{θ(t)}. The symbol ∗ denotes complex conjugate and H
– complex conjugate transpose (Hermitian transpose).

The application, studied recently, which particularly well
fits the technique developed in this paper, is adaptive
self-interference cancellation in full-duplex (FD) underwa-
ter acoustic (UWA) communication systems, Shen et al.
[2020a], Shen et al. [2020b]. FD UWA systems, designed
to maximize the limited capacity of acoustic links, simul-
taneously transmit and receive data in the same frequency
band. Due to the close spacing of the transmit and receive

? This work was partially supported by the National Science Cen-
ter under the agreement UMO-2018/29/B/ST7/00325. Computer
simulations were carried out at the Academic Computer Centre in
Gdańsk.

antennas, the far-end signal is strongly contaminated by
the so-called self-interference (SI) introduced by the near-
end transmitter. Self-interference is a multipath propaga-
tion effect caused, among others, by multiple reflections of
the emitted signal from the water surface and/or the bot-
tom. The model of the received signal is given by (1), where
{u(t)} denotes the near-end (known) signal and {e(t)}
is a mixture of the far-end signal and the channel noise
(ambient and/or site-specific). Note that in this case our
goal is extraction of the signal {e(t)} from {y(t)}, which
can be easily done provided that channel parameters are
known. Adaptive (on-line) identification of the channel is
needed due to its time variability – the effect caused by the
transmitter/receiver motion and/or by inherent changes
in the propagation medium. An interesting feature of this
application is that it allows one to work with a decision
delay, which means that estimation of channel parameters
can be based not only on past signal samples but also on a
certain number of “future” (with respect to the moment of
interest) ones. Hence, channel identification can be carried
out using noncausal estimation algorithms with improved
tracking capabilities, such as the ones described in this
paper.

When channel coefficients vary slowly with time, their
estimation can be carried out using the localized ver-
sions of the least squares approach, such as exponentially
weighted least squares or sliding window least squares,
Söderström & Stoica [1988]. The corresponding estima-
tion algorithms are not based on any explicit model of
parameter variation – it is only assumed that system
parameters can be regarded as “locally constant”. In the
case of rapidly fading channels such a simple estimation
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strategy fails because the achievable estimation accuracy
is not sufficient to guarantee satisfactory operation of the
underlying communication system, Shen et al. [2020a].
Fast parameter changes can be tracked successfully using
basis expansion methods. In this approach each parameter
trajectory is locally approximated by a linear combina-
tion of known functions of time, called basis functions.
The resulting local basis function (LBF) estimation al-
gorithms, Niedźwiecki & Cio lek [2019], have very good
parameter tracking capabilities and have already proven
their supremacy over the classical weighted least squares
solutions in UWA applications, Shen et al. [2020a]. LBF al-
gorithms are computationally demanding, especially when
the number of estimation coefficients is large. In the paper
Niedźwiecki, Cio lek & Gańcza [2020a], which is a follow-
up to Niedźwiecki & Cio lek [2019], it was shown that the
computational structure of LBF estimators can be signif-
icantly simplified without compromising their accuracy.
Such a solution is possible owing to the recently proposed
preestimation technique, which converts the problem of
identification of a time-varying FIR system into the prob-
lem of smoothing of the appropriately generated preesti-
mates of system parameters. The current paper shows that
the performance of fast LBF algorithms can be further
improved using regularization.

2. PREESTIMATION

Preestimation is a technique introduced in Niedźwiecki
& K laput [2002] and further developed in Niedźwiecki,
Cio lek & Gańcza [2020a], Niedźwiecki, Gańcza & Cio lek
[2020b]. Preestimates are raw parameter estimates, un-
biased but with a very large variability. For this reason,
to obtain reliable parameter estimates providing satisfac-
tory bias-variance trade-off, preestimates must be further
postfiltered. As shown in Niedźwiecki, Cio lek & Gańcza
[2020a], preestimates can be obtained by “inverse filter-
ing” of short-memory exponentially weighted least squares
(EWLS) estimates. In the current paper, taking advantage
of the fact that the input sequence is white (which is
typical of all wireless communication systems), we will ap-
ply a computationally simpler solution which incorporates
gradient least mean squares (LMS) estimates obtained
from

θ̂LMS(t) = θ̂LMS(t− 1) +
µ

σ2
u

ϕ(t)ε∗(t)

ε(t) = y(t)−
[
θ̂LMS(t− 1)

]H
ϕ(t)

(2)

where µ > 0 denotes a small stepsize parameter. The value
of µ should be sufficiently small to guarantee boundedness

of the parameter tracking error θ̂LMS(t) − θ(t). Analysis
carried out in the time-invariant case and i.i.d. Gaussian
regressors shows that to guarantee stability of the LMS
algorithm in the mean square sense, the value of µ should
be smaller than 2/(n+ 1).

The preestimates, further denoted by θ̃(t), can be defined
as follows

θ̃(t) =
θ̂LMS(t)− λθ̂LMS(t− 1)

1− λ
(3)

where λ = 1− µ.

It is easy to check that

θ̃(t)− θ(t) =

[
In −

ϕ(t)ϕH(t)

σ2
u

] [
θ̂LMS(t− 1)− θ(t)

]
+

1

σ2
u

ϕ(t)e∗(t) = z1(t) + z2(t). (4)

Since {e(t)} is a zero-mean white noise, independent of
{ϕ(t)}, it holds that E[z2(t)] = 0. Furthermore, since
in the case considered E[ϕ(t)ϕH(t)] = σ2

uIn, using the
averaging theory, Guo & Ljung [1995], one can show that
E[z1(t)] ∼= 0 (exact equality holds when {ϕ(t)} is an i.i.d.

sequence). Hence, E[θ̃(t)] ∼= θ(t), which means that the

preestimate θ̃(t) is approximately unbiased and can be
written down as

θ̃(t) ∼= θ(t) + z(t) (5)

where z(t) denotes a zero-mean noise with large covariance
matrix. Using (5) the problem of identification of the
time-varying system (1) can be reformulated as a problem
of “denoising” the sequence of parameter preestimates
obtained from (3).

3. FAST LOCAL BASIS FUNCTION ESTIMATORS

As a starting point for our further considerations we will
use the postfiltering technique based on the local basis
function (LBF) approximation. In the LBF approach,
which is an extension of Savitzky-Golay filtering, Schafer
[2011], the analyzed signal is approximated, in the sliding
analysis window T (t) = [t−k, t+k] of width K = 2k+1, by
a linear combination of known linearly independent func-
tions of time f1(i), . . . , fm(i), i ∈ Ik = [−k, k], called basis
functions. Typical choices of basis functions are powers of
time (local Taylor expansion) or harmonic functions (local
Fourier expansion). In the case considered we will assume
that each coefficient of the estimated impulse response can
be expressed in the form

θj(t+ i) = fT(i)αj(t), i ∈ Ik
j = 1, . . . , n

(6)

where f(i) = [f1(i), . . . , fm(i)]T. Note that the hypermodel
(6) can be expressed in a more compact form

θ(t+ i) = F(i)α(t), i ∈ Ik (7)

where

F(i) = In ⊗ fT(i), α(t) = [αT
1 (t), . . . ,αT

n (t)]T (8)

and ⊗ denotes the Kronecker product of the respective
vectors and/or matrices.

Denote by w(i), i ∈ Ik, w(0) = 1, a symmetric, non-
negative, bell-shaped window which will be used to put
more emphasis on data gathered at instants close to t. For
convenience, but without any loss of generality, we will as-
sume that the adopted basis functions are w-orthonormal,

namely
∑k

i=−k w(i)f(i)fT(i) = Im. Orthonormalization of
any set of basis functions can be carried out sequentially
using the well-known Gram-Schmidt procedure.

Fast local basis function (fLBF) estimates of θ(t) were
defined in Niedźwiecki, Cio lek & Gańcza [2020a] in the
form

α̂fLBF(t) = arg min
α

k∑
i=−k

w(i)||θ̃(t+ i)− F(i)α||2

θ̂fLBF(t) = F0α̂
fLBF(t)

(9)
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where F0 = F(0) = In ⊗ fT0 , f0 = f(0). The term “fast”
refers to the fact that under typical operating conditions
fLBF estimators yield results almost indistinguishable
from those provided by the, computationally much more
involved, LBF estimators (generalized Savitzky-Golay al-
gorithms) proposed in Niedźwiecki & Cio lek [2019].

Using the identity (A⊗B)(C⊗D) = (AC)⊗ (BD) which
holds true for Kronecker products, one obtains

k∑
i=−k

w(i)FT(i)F(i) = In ⊗

[
k∑

i=−k

w(i)f(i)fT(i)

]
= Imn

(10)

leading to

α̂fLBF(t) =

k∑
i=−k

w(i)FT(i)θ̃(t+ i)

=

k∑
i=−k

w(i)[θ̃(t+ i)⊗ f(i)] (11)

and finally

θ̂fLBF(t) =

k∑
i=−k

h(i)θ̃(t+ i) (12)

where
h(i) = w(i)fT0 f(i), i ∈ Ik (13)

is the impulse response of the postprocessing FIR filter.

Note that from the computational viewpoint the formula
(12) is very simple. Additionally, for some choices of the
basis and window functions the fLBF estimates can be
expressed in a time-recursive form, Niedźwiecki, Cio lek &
Gańcza [2020a].

4. REGULARIZED FAST LBF ESTIMATORS

Regularization is a technique which was originally intro-
duced to solve ill-conditioned inverse problems. As shown
later, regularization also allows one to improve the bias-
variance trade-off of the applied estimation schemes, and
hence – to increase their accuracy, Ljung & Chen [2013].
The idea is to add to the minimized cost function a term,
often referred to as a regularizer, which reduces the norm
of the solution. In agreement with this principle, we will
introduce the L2 regularizer of the form

||θ(t)||2R = θH(t)Rθ(t) = αH(t)FT
0 RF0α(t) (14)

where R = DHD > 0 denotes the n × n positive definite
regularization matrix. Note that such a regularization
penalizes the norm of θ(t), the estimation of which is a
real purpose of channel identification, and only indirectly
penalizes the norm of the vector of hyperparameters α(t),
which is not of our primary interest. The fast regularized
LBF estimators (fRLBF) will be defined in the form

α̂fRLBF(t|R) =

= arg min
α

{ k∑
i=−k

w(i)||θ̃(t+ i)− F(i)α||2 + ||α||2FT
0 RF0

}
θ̂fRLBF(t|R) = F0α̂

fRLBF(t|R) (15)

It can be shown that (see Appendix 1)

θ̂fRLBF(t|R) = [In + fT0 f0R]−1θ̂fLBF(t) (16)

We will use this formula to optimize the regularization
matrix when some prior knowledge about statistical prop-

erties of {θ(t)} is available. In the sequel we will as-
sume that Z = cov[z(t)] = σ2

zIn (which approximately
holds true if the input sequence {u(t)} is white) and that
{θ(t)} is a wide sense stationary process with known (or
preestimated) correlation matrix E[θ(t)θH(t)] = Q > 0.
Additionally, we will assume that the process {θ(t)} is
independent of {u(t)}.
We will derive the formula for the mean square parameter
estimation error matrix in the case where the parameter
trajectory obeys the model (7). Note that under (7) it
holds that

k∑
i=−k

h(i)θ(t+ i) =

k∑
i=−k

w(i)fT0 f(i)[In ⊗ fT(i)]α(t)

=

{
In ⊗

[
fT0

k∑
i=−k

w(i)f(i)fT(i)

]}
α(t)

= [In ⊗ fT0 ]α(t) = F0α(t) = θ(t) (17)

leading to [cf. (5)]

θ̂fLBF(t) = θ(t) +

k∑
i=−k

h(i)z(t+ i) (18)

and

θ̂fRLBF(t|R) = [In + fT0 f0R]−1θ(t)

+ [In + fT0 f0R]−1
k∑

i=−k

h(i)z(t+ i). (19)

Let R̃ = fT0 f0R. Since

[In + R̃]−1θ(t)− θ(t) = −[In + R̃]−1R̃θ(t)

and all matrices involved are Hermitian, one finally obtains

MSE(R̃)

= E

{[
θ̂fRLBF(t|R)− θ(t)

] [
θ̂fRLBF(t|R)− θ(t)

]H}
= [In + R̃]−1[R̃QR̃ + ηIn][In + R̃]−1

= η[In + R̃]−1[R̃Q̃R̃ + In][In + R̃]−1 (20)

where η = σ2
z/Nk, Q̃ = Q/η and Nk = [

∑k
i=−k h

2(i)]−1

denotes the equivalent width of the analysis window T (t),

different from its effective width Lk =
∑k

i=−k w(i) – see
Niedźwiecki [2000]. The expectation in (20) is carried out
over {z(t)} and {θ(t)}.
It can be shown that for any nonnegative definite matrix

R̃ it holds that (see Theorem 1 in Chen, Ohlsson & Ljung
[2012])

MSE(R̃) ≥ MSE(Q̃−1) (21)

which means that the optimal choice of R̃ is given by

R̃opt = Q̃−1, i.e.,

Ropt =
σ2
z

NkfT0 f0
Q−1 . (22)

So far we have been assuming that the variance σ2
z is

constant and known. When channel noise intensity varies
with time, σ2

z can be replaced in (22) with its local estimate

σ̂2
z(t) =

1

nLk

k∑
i=−k

w(i)||ẑ(t, i)||2 (23)
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where ẑ(t, i) = θ̃(t + i) − F(i)α̂fLBF(t). After straightfor-
ward calculations incorporating (10) and (11), one gets

σ̂2
z(t) =

1

nLk

[
k∑

i=−k

w(i)||θ̃(t+ i)||2 − ||α̂fLBF(t)||2
]
.

5. ENHANCED IDENTIFICATION PROCEDURE

Since the LMS estimates, as all causal ones, are biased
(the bias increases with decreasing µ and is primarily
due to the estimation delay effect, Niedźwiecki [2000]),
when the number of estimated parameters is large, the
preestimation error (4) is dominated by its first compo-
nent z1(t). Similarly as in Niedźwiecki, Gańcza & Cio lek
[2020b], this problem can be circumvented by replacing

the preestimates θ̃(t) with their enhanced version

θ†(t) = θ̂fRLBF(t) +
µ

σ2
u

ϕ(t)
[
y(t)− [θ̂fRLBF(t)]Hϕ(t)

]∗
.

(24)

Note that in this case the preestimation error can be
expressed in the form

θ†(t)− θ(t) =

[
In −

ϕ(t)ϕH(t)

σ2
u

] [
θ̂fRLBF(t)− θ(t)

]
+

1

σ2
u

ϕ(t)e∗(t) = z′1(t) + z2(t). (25)

Since the estimation error of fRLBF estimates (noncausal)
is much smaller than that of LMS estimates (causal), the
z1 component of the preestimation error (25) is much
smaller than the analogous component z′1 in (3), while
the z2 components are identical. Once the enhanced prees-
timates are evaluated according to (24), they can be
smoothed using the same procedure which was described
in Section 4. Such a two-stage procedure provides usually
a noticeable improvement of the estimation accuracy, es-
pecially for lower values of SNR.

6. ADAPTIVE REGULARIZATION

In order to use the optimal regularization formula (22), one
needs to know the correlation profile of the process {θ(t)}.
When the UWA system is fixed in the position, such a
statistic can be determined experimentally by averaging
identification results obtained in many trials. However,
even in this simple case, the correlation matrix Q =
E[θ(t)θH(t)] is likely to depend on environmental factors
such as the water temperature and weather conditions.
Transmitter/receiver motion makes the picture even more
complicated, Stojanovic & Preisig [2009]. Therefore, to
make the system more robust, at each time instant t the
cancellation unit may be allowed to choose the best fitting
variant amongst a certain number of the available corre-
lation profiles. As a selection rule, one can use the leave-
one-out cross-validation approach. In this framework, the
degree of fit of the model is defined as the local sum of
squared unbiased interpolation errors (deleted residuals)

ε0(t|R) = y(t)− [θ̂fRLBF
0 (t|R)]Hϕ(t) (26)

where θ̂fRLBF
0 (t|R) denotes the holey estimate of θ(t), ob-

tained by excluding from the estimation process, governed

by (15), the “central” measurement θ̃(t)

α̂fRLBF
0 (t|R) =

= arg min
α

{ k∑
i=−k
i6=0

w(i)||θ̃(t+ i)− F(i)α||2 + ||α||2FT
0 RF0

}

θ̂fRLBF
0 (t|R) = F0α̂

fRLBF
0 (t|R) (27)

Since R is a positive definite matrix, it can be expressed in
the form R = VΛnVH, where Λn = diag{λ1, . . . , λn} is a
diagonal matrix made up of the eigenvalues of R, and V,
VHV = VVH = In, is an orthonormal matrix made up of
its normalized eigenvectors. Using this decomposition, one
can show that (see Appendix 2)

θ̂fRLBF
0 (t|R) = VΓnVH[θ̂fLBF(t|R)− fT0 f0θ̃(t)] (28)

where

Γn = diag

{
1

1 + (λ1 − 1)fT0 f0
, . . . ,

1

1 + (λn − 1)fT0 f0

}
.

(29)

According to (28), the holey fRLBF estimates can be easily
obtained by postprocessing the fLBF estimates.

Consider now the case where several fRLBF algorithms,
equipped with different regularization matrices R ∈ R =
{R1, . . . ,RM}, are run simultaneously yielding interpola-
tion errors ε0(t|Ri), i = 1, . . . ,M . Selection of the best-
fitting value of R can be made using the following cross-
validation decision rule

Ropt(t) = arg min
R∈R

L∑
i=−L

|ε0(t+ i|R)|2 (30)

where L determines the size of the local decision window.
The same decision rule can be used to select m and k.

7. COMPUTER SIMULATIONS

Simulation was carried out for the model of the self-
interference channel of the full-duplex UWA system, de-
cribed in Shen et al. [2020a]. Following Shen et al. [2020a],
it was assumed that all complex-valued analog signals are
sampled at the rate of 1 kHz, and that the bandwidth of
channel coefficient variation is 1 Hz, which can be regarded
as fast changes in the UWA case. The channel was modeled
as a 50-tap FIR filter with complex-valued coefficients
that vary independently of each other. The time-varying
impulse response coefficients were generated by lowpass
filtering of discrete time circular (with independent real
and imaginary components) white Gaussian noise with the
variance chosen according to

var[θj(t)] = ζj−1, j = 1, . . . , 50

which reflects the decaying power delay profile caused by
the spreading and absorption loss. The value of ζ was set
to 0.69 so that the ratio between the variance of the first
arrivals (j = 1) and that of the latest arrivals (j = 50) was
equal to 80 dB, Shen et al. [2020a]. Typical trajectories of
system parameters are shown in Fig. 1.

The generated input signal was circular white binary
u(t) = ±1 ± j and the measurement noise was circular
white Gaussian with variance σ2

e equal to 0.0065, 0.065
and 0.65, which corresponds to the input signal-to-noise
ratio
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Fig. 1. Typical trajectories of system parameters (red
lines) and their preestimates (black lines) obtained for
SNR=20 dB. Top figure – LMS-based preestimates,
bottom figure – enhanced preestimates.

SNR =
E[|θH(t)ϕ(t)|2]

σ2
e

=
σ2
u

σ2
e

50∑
j=1

var[θj(t)]

equal to 30 dB, 20 dB and 10 dB, respectively.

The estimation design parameters were set to k = 100,
w(i) ≡ 1 (rectangular window), m = 3 (Legendre basis),
and µ = 0.03. Based on the available prior knowledge of
the estimated impulse response (exponentially decaying
and spatially uncorrelated), the regularization matrix was
adopted in the form (note that in our case NkfT0 f0 = 1)

R(t) = σ̂2
z(t) diag{1, γ−1, γ−2, . . . , γ−49}.

Three hypothetical values of γ were considered: 0.5, 0.7
and 0.9, none of which was equal to ζ. Optimization was
carried out numerically using (30) by searching, at each
time instant t, for the best value of γ ∈ {0.5, 0.7, 0.9}.
Performance was evaluated in terms of the self-interference
cancellation factor (SICF) proposed in Shen et al. [2020a]

SICF =

∑
t |θH(t)ϕ(t)|2∑

t |[θ(t)− θ̂(t)]Hϕ(t)|2
(31)

and in terms of the following normalized root mean
squared error measure of fit used in Ljung & Chen [2013]

FIT(t) = 100

1−

[∑50
j=1 |θj(t)− θ̂j(t)|2∑50
j=1 |θj(t)− θ̄(t)|2

]1/2 (32)

Table 1. FIT[%]/SICF[dB] scores obtained for
3 signal-to-noise ratios for the algorithms de-

scribed in the text.

Alg. \SNR 30 dB 20 dB 10 dB

LBF 96.0/32.2 87.2/22.2 59.7/12.2
fLBF 80.4/15.8 75.1/13.9 46.0/ 7.6

fRLBF1 80.8/15.2 78.3/14.1 66.5/10.2
fRLBF2 88.5/19.4 85.9/17.8 73.8/12.6
fRLBF3 82.1/16.6 77.7/14.9 58.3/ 9.6

A 87.0/18.4 83.8/16.6 69.3/11.3

fRLBF+
1 89.6/20.4 87.3/18.7 76.3/13.4

fRLBF+
2 89.8/20.7 87.4/18.9 75.8/13.4

fRLBF+
3 89.7/20.8 87.2/18.9 75.3/13.4

A+ 89.7/20.7 87.2/18.9 75.6/13.4

where θ̄(t) = 1
50

∑50
j=1 θj(t). The maximum value of

FIT(t), equal to 100, corresponds to the perfect match
between the true and estimated impulse response. The
final scores, further referred to as FIT (%) and SICF (dB),
were obtained by combined time averaging (10000 time
steps) and ensemble averaging (20 realizations of scaling
coefficients) of the instantaneous/realization-constrained
measures. To enable the LMS algorithm reach its steady
state behavior, data generation was started 1000 time
instants prior to t = 1 and was continued for 1000 time
instants after t = Ts, where Ts = 10000 denotes simulation
time.

Table 1 compares results obtained for the LBF algorithm,
fLBF algorithm, three fRLBF algorithms operating on
regular preestimates, with fixed values of γ: fRLBF1 (γ =
0.5), fRLBF2 (γ = 0.7) and fRLBF3 (γ = 0.9), three
fRLBF algorithms operating on enhanced preestimates,
with fixed values of γ: fRLBF+

1 (γ = 0.5), fRLBF+
2

(γ = 0.7) and fRLBF+
3 (γ = 0.9), and two algorithms

with adaptive scheduling of γ (A, A+) with L set to 30.

According to the results summarized in Table 1, regular-
ization improves channel identification results (in spite of
the discrepancy between the true value of γ and the as-
sumed one). Furthermore, adaptive scheduling of γ yields
performance comparable with that given by the best algo-
rithms incorporated in the parallel estimation scheme.

8. CONCLUSION

A new method of identification of time-varying linear
systems, based on the concepts of preestimation and
regularization, was proposed and applied to identification
of underwater acoustic channels. The new approach allows
one to achieve considerable performance gains at very
moderate computational costs.
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APPENDIX 1 [derivation of (16)]

Denote by B = DF0 = D ⊗ fT0 the n ×mn matrix. It is
easy to show that

α̂fRLBF(t|R) = [Imn + BHB]−1α̂fLBF(t)

where α̂fLBF(t) is given by (11). Using the Woodbury
matrix identity, Söderström & Stoica [1988]

(A + BCD)−1 = A−1 −A−1B[C−1 + DA−1B]−1DA−1

(assuming that all inverses exist), one obtains

[Imn + BHB]−1 = Imn −BH[In + BBH]−1B

Note that

BBH = (D⊗ fT0 )(DH ⊗ f0) = fT0 f0DDH.

Hence

[Imn + BHB]−1

= Imn − [DH ⊗ f0][In + fT0 f0DDH]−1[D⊗ fT0 ]

= Imn −
{
DH[In + fT0 f0DDH]−1D

}
⊗ [f0f

T
0 ].

Observe that

[In + fT0 f0D
HD]−1

= In − fT0 f0D
H[In + fT0 f0DDH]−1D

Combining the last two results, and noting that DHD =
R, one arrives at

[Imn + BHB]−1 = Imn − In ⊗
[

f0f
T
0

fT0 f0

]
+ [In + fT0 f0R]−1 ⊗

[
f0f

T
0

fT0 f0

]
(33)

and

α̂fRLBF(t|R) = α̂fLBF(t)− θ̂fLBF(t)⊗
[

f0
fT0 f0

]
+
{

[In + fT0 f0R]−1θ̂fLBF(t)
}
⊗
[

f0
fT0 f0

]
.

leading to

θ̂fRLBF(t|R) = (In ⊗ fT0 )α̂fRLBF(t|R)

= [In + fT0 f0R]−1θ̂fLBF(t)

which is nothing but (16).

APPENDIX 2 [derivation of (28)]

Note that the estimate θ̂fRLBF
0 (t|R) can be expressed in

the form

θ̂fRLBF
0 (t|R) = F0[S− FT

0 F0]−1[α̂fLBF(t)− F0θ̃(t)] (34)

where S = Imn + BHB.

Using the Woodbury identity, one arrives at

[S− FT
0 F0]−1 = S−1 + S−1FT

0 [In − F0S
−1FT

0 ]−1F0S
−1

According to (16), it holds that

F0S
−1α̂fLBF(t) = α̂fRLBF(t|R) = G−1θ̂fLBF(t)

where G = [In + fT0 f0R]. Furthermore, using (34), one
obtains

F0S
−1FT

0 = (In ⊗ fT0 )(In ⊗ f0)

− (In ⊗ fT0 )

(
In ⊗

[
f0f

T
0

fT0 f0

])
(In ⊗ f0)

+ (In ⊗ fT0 )

(
G−1 ⊗

[
f0f

T
0

fT0 f0

])
(In ⊗ f0) = fT0 f0G

−1

where the second transition follows from the fact that
the first two terms cancel out. Combining the last three
relationships, one arrives at

F0[S− FT
0 F0]−1α̂fLBF(t) =

G−1
{

In + fT0 f0[In − fT0 f0G
−1]−1G−1

}
θ̂fLBF(t).

Note that

G−1 = V diag

{
1

1 + λ1fT0 f0
, . . . ,

1 + λnfT0 f0

}
VH

In a similar way, one can show that

[In − fT0 f0G
−1]−1

= V diag

{
1 + λ1f

T
0 f0

1 + (λ1 − 1)fT0 f0
, . . . ,

1 + λnfT0 f0
1 + (λn − 1)fT0 f0

}
VH

Exploiting the fact that VHV = In, one arrives at

F0[S− FT
0 F0]−1α̂fLBF(t) = VΓnVHθ̂fLBF(t)

where Γn is given by (29). Similarly, one can show that

F0[S− FT
0 F0]−1F0θ̃(t) = fT0 f0VΓnVHθ̃(t)

Finally, combining (34) with the last two relationships, one
obtains (28).
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