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Abstract. The problem of off-line identification of a nonstationary au-
toregressive process with a time-varying order and a time-varying degree
of nonstationarity is considered and solved using the parallel estimation
approach. The proposed parallel estimation scheme is made up of several
bidirectional (noncausal) exponentially weighted lattice algorithms with
different estimation memory and order settings. It is shown that opti-
mization of both settings can be carried out by means of minimization
of the locally evaluated accumulated forward/backward prediction error
statistic.
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1 Introduction

Autoregressive analysis is a popular modeling tool, used to solve practical prob-
lems in many different areas, such as biomedicine [1]–[3], geophysics [4]–[6],
telecommunications [7]–[8] etc. When the analyzed processes are nonstation-
ary, identification of their autoregressive models can be carried out using local
estimation techniques, such as the well-known sliding-window or exponentially
weighted least squares (EWLS) approaches. Local estimation algorithms are of-
ten called finite-memory since they relay on the limited (or effectively limited)
number of signal samples. Owing to this property they are capable of tracking
the time-varying signal parameters.

Two important decisions that must be taken when identifying the time-
varying autoregressive model are the choice of the number of estimated autore-
gressive coefficients, i.e., the model order, and selection of the size of the local
analysis interval, i.e., the estimation memory. Both decisions may have impor-
tant quantitative (estimation accuracy) and qualitative (estimation adequacy)
implications.

� This work was partially supported by the National Science Center under the agree-
ment UMO-2015/17/B/ST7/03772. Calculations were carried out at the Academic
Computer Centre in Gdańsk.
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In this paper we will focus on noncausal estimation techniques, which can
be applied when the analyzed signal is prerecorded and can be analyzed off-
line. Noncausality means that at any given time instant t the local parameter
estimates can be based on both “past” observations (collected prior to t) and “fu-
ture” observations (collected after t). When applied to identification of nonsta-
tionary processes, noncausal estimators can significantly reduce the estimation
bias (due to elimination of the so-called estimation delay, typical of all causal
algorithms [9]).

In the proposed approach, which is a nontrivial modification of the method
described in [10], noncausal estimates are obtained by combining results yielded
by the exponentially weighted least squares lattice/ladder algorithms [11] run-
ning forward and backward in time, respectively. The problem of model order
and estimation memory adaptation is solved using the parallel estimation ap-
proach. In this approach several competing algorithms, with different order and
memory settings, are operated simultaneously and compared according to their
locally assessed predictive abilities.

The proposed technique is computationally attractive and yields time-varying
models with guaranteed uniform stability property which is important is such
applications as parametric spectrum estimation.

2 Nonstationary autoregressive processes

Suppose that the analyzed discrete-time signal {y(t)}, t = . . . ,−1, 0, 1, . . ., can
be described or at least approximated by the following time-varying autoregres-
sive (AR) model

y(t) =
n∑

i=1

ai,n(t)y(t− i) + en(t) = ϕT
n (t)αn(t) + en(t)

var[en(t)] = ρn(t)

(1)

where ϕn(t) = [y(t − 1), . . . , y(t − n)]T denotes regression vector, αn(t) =
[a1,n(t), . . . , an,n(t)]

T denotes the vector of autoregressive coefficients, and {en(t)}
denotes white noise with a time-dependent variance ρn(t). In the sequel we will
assume that the entire history of the signal {y(t), t = 1, . . . , T0} is available,
along with the “boundary” conditions {y(1− i), y(T0 + i), i = 1, . . . , N}, where
N denotes the maximum model order that will be considered.

When the driving noise variance ρn(t) is bounded, αn(t) is a “sampled”
version of a sufficiently smooth continuous time parameter trajectory, and at
all time instants t all zeros of the characteristic polynomial A[z,αn(t)] = 1 −∑n

i=1 ai,n(t)z
−i are uniformly bounded away from the unit circle in the com-

plex plane, the process (1) is uniformly exponentially stable [12]. According to
the theory developed by Dahlhaus [13], under the conditions specified above
{y(t)} belongs to the class of locally stationary processes with uniquely defined
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instantaneous spectral density function given by

Sn(ω, t) =
ρn(t)

|A[ejω,αn(t)]|2 (2)

where j =
√−1 and ω ∈ (−π, π] denotes the normalized angular frequency.

3 Equivalent parametrizations of a stationary
autoregressive process

It is known that a zero-mean stationary AR process characterized by the set Pn =
{ρn, a1,n, . . . , an,n} (further referred to as direct parametrization) can be equiv-
alently specified in terms of autocorrelation coefficients Rn = {r0, r1, . . . , rn}
where ri = E[y(t)y(t− i)] (autocorrelation parametrization), or in terms of par-
tial autocorrelation coefficients Qn = {r0, q1, . . . , qn} where qi is the normalized
autocorrelation between y(t) and y(t − i) with the linear dependence on the
intermediate variables y(s), t− i < s < t removed (lattice parametrization).

All three parametrizations are equivalent, i.e., given any of them, one can
determine the remaining two using invertible mappings

Pn = F [Rn], Rn = F−1[Pn]

Rn = G[Qn], Qn = G−1[Rn]

Qn = H[Pn], Pn = H−1[Qn].

Description of these mappings can be found e.g. in [14].

4 Causal lattice algorithm

The exponentially weighted least squares normalized lattice/ladder algorithm
proposed by Lee, Morf and Friedlander [11], further referred to as EWLMF
algorithm, is a time- and order-recursive estimation procedure known of its low
computational cost and numerical robustness. The EWLMF algorithm is a lattice
approximation of the EWLS algorithm. The EWLS algorithm, equipped with the
forgetting constant λk, 0 < λk < 1, provides a direct signal parametrization

P̂n|k(t) = {ρ̂n|k(t), â1,n|k(t), . . . , ân,n|k(t)}
where

α̂n|k(t) = [â1,n|k(t), . . . , ân,n|k(t)]T

= argmin
αn

t−1∑
i=0

λi
k[y(t− i)−ϕT

n (t− i)αn]
2

(3)

ρ̂n|k(t) =
1

Lk(t)

t−1∑
i=0

λi
k[y(t− i)−ϕT

n (t− i)α̂n|k(t)]2 (4)
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and Lk(t) =
∑t−1

i=0 λ
i
k denotes the effective width of the applied exponential

window. The explicit solution of (3) can be obtained in the form

α̂n|k(t) = R̂−1
n|k(t)r̂n|k(t), ρ̂n|k(t) = r̂0|k(t)− r̂Tn|k(t)α̂n|k(t) (5)

where

R̂n|k(t) =
1

Lk(t)

t−1∑
i=0

λi
kϕn(t− i)ϕT

n (t− i)

r̂n|k(t) =
1

Lk(t)

t−1∑
i=0

λi
ky(t− i)ϕn(t− i)

r̂0|k(t) =
1

Lk(t)

t−1∑
i=0

λi
ky

2(t− i) = r̃0|k(t).

The EWLMF algorithm estimates the normalized partial autocorrelation coeffi-
cients directly from the data, yielding the lattice signal parametrization

Q̃n|k(t) = {r̃0|k(t), q̃1|k(t), . . . , q̃n|k(t)}
The estimates q̃1|k(t), . . . , q̃n|k(t) are usually called reflection coefficients. Due
to appropriate normalization, the estimates provided by the EWLMF algorithm
obey the condition

|q̃i|k(t)| < 1, ∀t, i = 1, . . . , n (6)

which guarantees that the corresponding AR models are at all times stable.
Denote by

P̃n|k(t) = H−1[Q̃n|k(t)] = {ρ̃n|k(t), ã1,n|k(t), . . . , ãn,n|k(t)}
the direct parametrization that is an equivalent of the lattice parametrization
yielded by the EWLMF algorithm. Since the EWLS algorithm does not guar-
antee model stability, it is clear that P̂n|k(t) �= P̃n|k(t). We note, however, that

both parametrizations become identical if the matrix R̂n|k(t) and the vector
r̂n|k(t) appearing in (5) are replaced with

R̃n|k(t) =

⎡
⎢⎣

r̃0|k(t) r̃n−1|k(t)
...

. . .
...

r̃n−1|k(t) r̃0|k(t)

⎤
⎥⎦ , r̃n|k(t) =

[
r̃1|k(t) . . . r̃n|k(t)

]T

where

R̃n|k(t) = {r̃0|k(t), r̃1|k(t), . . . , r̃n|k(t)} = G[Q̃n|k(t)]

denotes an autocorrelation parametrization equivalent to Q̃n|k(t). Therefore, the
parametrization P̃n|k(t) can be regarded as a stable approximation of P̂n|k(t).
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5 Noncausal lattice algorithm

To obtain noncausal estimator of ρn(t) and αn(t) we will combine results yielded
by two lattice algorithms – the forward-time (−) EWLMF algorithm equipped
with a forgetting constant λk− , providing the estimates

Q̃−n|k(t) = {r̃0|k−(t), q̃1|k−(t), . . . , q̃n|k−(t)}

and the backward-time (+) EWLMF algorithm equipped with a forgetting con-
stant λk+ providing the estimates

Q̃+
n|k(t) = {r̃0|k+(t), q̃1|k+(t), . . . , q̃n|k+(t)}.

We will not assume that the forward and backward time EWLMF algorithms
are equipped with the same forgetting constants. Setting k− �= k+, one can
fuse long-memory forward time estimation results with short-memory backward
time ones or vice versa. Such asymmetric variants may be useful in the presence
of abrupt parameter changes. Let π = {k−, k+}, T−(t) = {1, . . . , t − 1} and
T+(t) = {1, . . . , T0 − t}. The combined estimate can be obtained using a three-
step procedure.

First, one can determine the autocorrelation parametrizations corresponding
to Q̂−n|k(t− 1) and Q̂+

n|k(t+ 1)

R̃±n|k(t± 1) = G[Q̃±n|k(t± 1)] = {r̃0|k±(t± 1), r̃1|k±(t± 1), . . . , r̃n|k±(t± 1)}

Since parametrizations Q̃−n|k(t − 1) and Q̃+
n|k(t + 1) are stable, the covariance

matrices made up of the estimates {r̃i|k−(t), i = 0, . . . , n} and {r̃i|k+(t), i =
0, . . . , n} must be positive definite [14]. Second, the two-sided autocorrelation
parametrization

R̃n|π(t) = {r̃0|π(t), r̃1|π(t), . . . , r̃n|π(t)}

can be obtained using the formula

r̃i|π(t) = μ−(t)r̃i|k−(t− 1) + μ+(t)r̃i|k+(t+ 1), i = 0, . . . , n (7)

where μ±(t) = L±k±(t±1)/Lπ(t), Lπ(t) = L−k−(t−1)+L+
k+(t+1) and L±k±(t±1) =∑

i∈T±(t) λ
i−1
k± . Note that since the sequence {r̃i|π(t), i = 0, . . . , n} is a convex

combination of {r̃i|k−(t − 1), i = 0, . . . , n} and {r̃i|k+(t + 1), i = 0, . . . , n}, the
parametrization R̃n|π(t) is at all times stable. Finally, based on R̃n|π(t), one can
obtain the direct parametrization

P̃n|π(t) = F [R̃n|π(t)] = {ρ̃n|π(t), ã1,n|π(t), . . . , ãn,n|π(t)}

The doubly exponentially weighted Lee-Morf-Friedlander (E2WLMF) algorithm
described above differs from the one proposed in [10] in one important aspect –

Proceedings ITISE 2018. Granada, 19-21 September, 2018. 745

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl
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unlike [10] the obtained parameter estimates do not depend (in a deterministic
sense) on the “central” sample y(t).

Similarly as in the case of the EWLMF estimate, one can show that the
E2WLMF estimate α̃n|π(t) = [ã1,n|π(t), . . . , ãn,n|π(t)]T can be regarded as a
“stable approximation” of the estimate obtained using the noncausal doubly
exponentially weighted least squares (E2WLS) algorithm

α̂n|π(t) = [â1,n|π(t), . . . , ân,n|π(t)]T

= argmin
αn

[ t−1∑
i=1

λi−1
k− {y(t− i)− [ϕ−n (t− i)]Tαn}2

+

T0−t∑
i=1

λi−1
k+ {y(t+ i)− [ϕ+

n (t+ i)]Tαn}2
]

where ϕ±n (t) = [y(t± 1), . . . , y(t± n)]T. Actually, note that

α̂n|π(t) =
[
μ−(t)R̂−n|k−(t− 1) + μ+(t)R̂

+
n|k+(t+ 1)

]−1

×
[
μ−(t)r̂−n|k−(t− 1) + μ+(t)r̂

+
n|k+(t+ 1)

]
(8)

where

R̂±n|k±(t± 1) =
1

L±k±(t± 1)

∑
i∈T±(t)

λi−1
k± ϕ±n (t± i)[ϕ±n (t± i)]T

r̂±n|k±(t± 1) =
1

L±k±(t± 1)

∑
i∈T±(t)

λi−1
k± y(t± i)ϕ±n (t± i).

Similarly, since α̃n|π(t) must obey Yule-Walker equations defined in terms of
{r̃i|π(t), i = 0, . . . , n} [14], it holds that

α̃n|π(t) =
[
μ−(t)R̃−n|k−(t− 1) + μ+(t)R̃

+
n|k+(t+ 1)

]−1

×
[
μ−(t)r̃−n|k−(t− 1) + μ+(t)r̃

+
n|k+(t+ 1)

]

where

R̃n|k±(t± 1) =

⎡
⎢⎣

r̃0|k±(t± 1) r̃n−1|k±(t± 1)
...

. . .
...

r̃n−1|k±(t± 1) r̃0|k±(t± 1)

⎤
⎥⎦

r̃n|k±(t± 1) =
[
r̃1|k±(t± 1) . . . r̃n|k±(t± 1)

]T
.

Hence, the estimates α̂n|π(t) and α̃n|π(t) coincide if the quantities R̂±n|k±(t± 1)

and r̂±n|k±(t±1) are replaced in (8) with R̃±n|k±(t±1) and r̃±n|k±(t±1), respectively.
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6 Model order and estimation memory adaptation

Based on P̃n|π(t), the parametric estimate of the instantaneous spectral density
function Sn(ω, t) can be obtained in the form

S̃n|π(t) =
ρ̃n|π(t)

|A[ejω, α̃n|π(t)]|2 (9)

where α̃n|π(t) = [ã1,n|π(t), . . . , ãn,n|π(t)]T.
Selection of the order n of the autoregressive model, and the choice of for-

getting factors λk± plays an important role in parametric spectral analysis. If
the order is underestimated some important features of the resonant structure
of {y(t)} may be not revealed, while when it is overestimated some nonexistent
resonances may be indicated. In both cases one may arrive at false qualitative
conclusions. The optimal choice of λk− and λk+ , i.e., the one that trades off the
bias and variance components of the mean squared parameter estimation error,
depends on the rate of parameter variation – forgetting factors should be smaller
(which corresponds to shorter memory) when process parameters are subject to
fast changes, and larger (which corresponds to longer memory) when parameters
vary slowly with time.

Our solution to the order/memory optimization problem will be based on
parallel estimation. Consider several E2WLMF algorithms with different order
and memory settings, running in parallel. Denote by N = {1, . . . , N} the set of
all model orders that will be considered, and by Π the set of all considered pairs
π = {k−, k+}. The data-adaptive version of (9) can be expressed in the form

S̃n̂(t)|π̂(t)(t) =
ρ̃n̂(t)|π̂(t)(t)

|A[ejω, α̃n̂(t)|π̂(t)(t)]|2 (10)

where

{n̂(t), π̂(t)} = {n̂(t), k̂−(t), k̂+(t)} = arg min
n∈N
k∈K

Jn|π(t)

and Jn|π(t) denotes the local decision statistic.
The proposed selection criterion takes advantage of the fact that, unlike the

estimates considered in [10], the estimates α̃n|π(t) are not functions of y(t) and
therefore they can be used to compute unbiased forward and backward prediction
errors

ε±n|π(t) = y(t)− [ϕ±n (t± 1)]Tα̃n|π(t).

Consequently, one can adopt for Jn|π(t) the following prediction error (PE)
statistic

Jn|π(t) =
M∑

i=−M

[ε−n|π(t− i)]2 +
M∑

i=−M

[ε+n|π(t+ i)]2 (11)

where M ∈ [20, 50] is the parameter that controls the size of the local decision
window [t−M, t+M ] centered around t.
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7 Computational complexity

Denote by Kπ ≤ K(K + 1)/2 the number of considered forward-backward pairs
π = (k−, k+). For the assumed maximum model order N the per sample compu-
tational load (the number of multiply-add operations) of the proposed parallel
estimation scheme is pretty low and is approximately equal to

l(N) = 2KA(N) + 2KB(N) +KπC(N)

where A(N) = 30N denotes the load of the ELMF algorithm (given that the
Newton-Raphcon method is used to evaluate square roots), B(N) = 2N + N2

denotes the load of the G transform (computation of autocorrelation coefficients
based on reflection coefficients), and C(N) = 2 + 4N + N2 is the load of the
F transform (computation of autoregressive coefficients based on autocorrela-
tion coefficients). Note that the first stage of processing is the computationally
cheapest one and that the only quantities that have to be memorized during the
forward/backward sweep of the EWLMF algorithms are the forward/backward
reflection coefficients.

8 Simulation results

To verify the proposed order and estimation memory selection rule, a nonsta-
tionary variable-order autoregressive process was generated. Process generation
was based on 4 time-invariant AR anchor models M1, M2, M3 and M4, of orders
2, 4, 6 and 8, respectively. The characteristic polynomial Ai(z) of the model Mi

had i pairs of complex-conjugate zeros, given by z±k = 0.995e±jkπ/5, k = 1, . . . , i.
The generated signal {y(t), t = 1, . . . , T0} had stationary periods, during which
it was governed by anchor models, and nonstationary periods, when the gen-
erating model was obtained by morphing one anchor model into another one.
Transition from Mi−1 to Mi was realized by moving, with a constant speed, the
i-th pair of complex-conjugate zeros from their initial zero positions towards the
unit circle – see Fig. 1. The simulation scenario is symbolically depicted in Fig. 1.
Note that according to this scenario the order of the generating model gradually
increased from 2 to 8.

The adopted value of T0 was equal to 5000 and the breakpoints, marked
with bullets in Fig. 1, had the following time coordinates: t1 = 1000, t2 =
1500, t3 = 2500, t4 = 3000, t5 = 4000, t6 = 4500. The parallel estimation
scheme was made up of 4 E2WLMF algorithms combining results yielded by
K = 3 forward/backward EWLMF trackers equipped with forgetting constants
λ1 = 0.95, λ2 = 0.99 and λ3 = 0.995. The 4 combinations of forward/backward
forgetting constants were: (0.99, 0.99), (0.995, 0.995), (0.995, 0.95) and (0.95,
0.995), which corresponds to π1 = (2, 2), π2 = (3, 3), π3 = (3, 1) and π4 = (1, 3),
respectively. The parameter M which determines the width of the local decision
window was set to 50.

Two measures of fit were used to evaluate identification results: the mean
squared parameter tracking error and the Itakura-Saito spectral distortion mea-
sure (see Table 1), both averaged over t ∈ [1, T0] and 100 independent realizations
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