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IEEE 802.11 LAN CAPACITY: INCENTIVES AND INCENTIVE LEARNING 

For an ad hoc IEEE 802.11 WLAN we investigate how backoff attacks (configuring minimum and maximum CSMA/CA 
contention windows in pursuit of a larger-than-fair bandwidth share) affect a proposed capacity-fairness index CFI. If the 
backoff mechanism is mandatory, the CSMA/CA game that arises has a unique Nash equilibrium. In the more realistic 
opposite case there is no single compelling outcome; we envisage that a station then calculates backoff attack incentives to 
predict imminent play. We link CFI to the network size, "power awareness," a station's perception of the other stations' 
susceptibility to incentives, and the way of learning how the other stations perceive the other stations' susceptibility to 
incentives. We demonstrate that if the stations are few and "power aware," cooperative behavior emerges quite frequently. 

1. INTRODUCTION

Estimated limits of network performance become the more realistic, the richer is the assumed 
network model; most existing estimates account for PHY-layer bandwidth, MAC and transport 
protocol overhead, DATA frame size, number of network stations, station mobility, and channel 
characteristics. In the context of an ad hoc IEEE 802.11 WLAN [8] we bring into the picture the 
stations' noncooperative behavior in the form of a backoff attack. Each station n is free to select an 
arbitrary CSMA/CA configuration wn = <wn,min, wn,max> (the minimum and maximum contention 
windows). This may lead to a larger-than-fair long-term bandwidth share [2, 5]. Perpetrators of 
backoff attacks cannot be detected, since an ad hoc WLAN station remains virtually anonymous to 
non-recipients. We propose a capacity-fairness index (CFI), a synthetic performance measure equal 
to the product of the total goodput (bandwidth utilization) and the Jain index of the stations' 
bandwidth shares. CFI favors cooperative station behavior and compensates for the contention 
overhead such behavior entails. To calculate CFI we reflect the dynamics of CSMA/CA at 
saturation using a Monte Carlo-oriented Markovian model; this alleviates the "decoupling 
approximation" of analytical models [4, 11, 14] and allows arbitrary CSMA/CA configuration 
profiles (w1,…,wN). Our approach therefore consists in taking the functional dependence of IEEE 
802.11 performance metrics on wn as an empirical fact rather than deriving it from some analytical 
model. 

We next define CFI for the case where each station pursues a maximum payoff (bandwidth 
share) in a noncooperative N-player CSMA/CA game [1, 5, 11, 12, 15]. It can be shown that if the 
greedy <1, 1> configuration is excluded (the backoff mechanism is mandatory) then the game has a 
unique Nash equilibrium (NE) [7]. Otherwise, one disincentive to configure <1, 1> is a certain 
"power awareness" i.e., fear of another station also configuring <1, 1>, for all the transmission 
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power is then spent on frame collisions. This we reflect as a nonpositive "penalty bandwidth share." 
With payoffs so modified, the CSMA/CA game has multiple Nash equilibria. In the absence of a 
compelling unique NE one needs to calculate the chances of particular CSMA/CA configuration 
profiles. We propose a simple calculus of backoff attack incentives, a form of seeking a best reply 
to the beliefs as to the other stations' imminent play. We link CFI to the network size, the stations' 
"power awareness," a station's perception of the other stations' susceptibility to incentives, and a 
station's way of learning how the other stations perceive the other stations' susceptibility to 
incentives. In particular, we demonstrate via Monte Carlo simulation that for small enough 
networks and "power aware" enough stations, cooperative behavior may ultimately emerge. 
Although the focus in this paper is on IEEE 802.11, the presented approach can easily be extended 
to other existing or future contention MAC protocols. 

In Sec. 2 we outline the network model and Monte Carlo-oriented Markovian approximation 
of saturated CSMA/CA. Sec. 3 discusses how the Prisoners' Dilemma payoff structure is altered by 
bringing the greedy configuration into the picture and describes the proposed method of calculating 
incentives. In Sec. 4 we introduce the noncooperative CFI and noncooperative learning CFI to 
predict the effect of conscious (incentive-driven) backoff attacks upon the network performance. 
Sec. 5 concludes the paper. 

 

2. NETWORK MODEL AND CFI 
  

For an ad hoc IEEE 802.11 WLAN with N stations using basic access CSMA/CA, assume: 
(A1) a single-hop network topology and error-free channel, (A2) saturation load (each station is 
always ready to transmit a long DATA frame), and (A3) fixed-length DATA frames. Assumption 
(A1) serves to factor out inefficiency due to transmission errors and hidden stations; error freedom 
also invalidates selfish selection of the data rate [15]. Assumption (A2) is motivated by our concern 
about noncooperative behavior (under light or moderate load it is pointless, as each station mostly 
gets the required bandwidth); moreover, the total goodput (bandwidth utilization) is then close to 
the network capacity. Assumption (A3) simplifies the calculation of the stations' bandwidth shares, 
owing to a fixed duration of a DATA frame collision. It can easily be relaxed [4]. 

The dynamics of CSMA/CA at saturation load lead to a simple Monte Carlo simulation-
oriented Markovian model. The contention window and backoff counter constitute station n state at 
the kth instant immediately following a backoff slot or termination of a DATA frame transmission: 
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where ∏ ≠− = nm

k
m

k
n BCBC  and U(j) is a random integer from {0,…,j − 1}. The Markov chain 

version of the strong law of large numbers states that the ergodic probability of a given state is 
almost surely the Cesaro limit of the current visit count at that state [6]. That limit can be 
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approximated by pursuing the evolution of k
nS , leading to statistically credible estimates of the 

form  
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Station n success rate (per busy backoff slot) is sn = tn⋅(1 – cn)/T. Following the standard renewal 
process argument, station n's bandwidth share (goodput of successful DATA frames normalized to 
the PHY-layer bandwidth) can be expressed as [4]: 
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where τ(⋅) is the duration of a specified frame transmission or time interval. Note that in existing 
IEEE 802.11 parameter settings, τDATA+DIFS > τslot [4]. 

A proposed measure that reflects both the total goodput (bandwidth utilization) and fairness is 
the capacity-fairness index (CFI), equal to the product of  Σnbn and the Jain index of bandwidth 
shares [9]: 
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CFI favors cooperative behavior in that a single station monopolizing the bandwidth with no 
contention overhead typically produces a smaller CFI than N stations sharing the bandwidth equally 
and so incurring a significant contention overhead. 

 

3. BACKOFF ATTACK INCENTIVES 
  

Let us complement the network model with two more assumptions: (A4) wmin and wmax are 
user configurable, and (A5) a station remains anonymous to non-recipients in that, based on a set of 
on the medium, a non-recipient cannot reliably detect that any two sensed frames have a common 
sender. Assumption (A4) sets the scene for backoff attacks and assumption (A5) ensures impunity 
for their perpetrators, since it renders backoff attacks undetectable by means of statistical traffic 
analysis. 

With each station n free to select its wn configuration, a noncooperative N-player CSMA/CA 
game arises in which the bandwidth shares (3) are payoffs. A likely outcome with rational players is 
a Nash equilibrium (NE) [7, 10], a configuration profile where each station has selected a best reply 
to the other stations' configuration profile, hence no station wants to deviate unilaterally. 

If the greedy configuration <1, 1> is ruled out (i.e., the backoff mechanism is mandatory) 
then one can prove that there is no use playing less selfishly than ws = <2, 2>. Consequently, the 
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configuration profile all-ws = (ws,…,ws) is a unique NE [11]. One thus envisages a scenario where x 
stations out of N are selfish and configure ws (have the capability and desire to tamper with wn), and 
N − x are honest and stick to a standard-prescribed wh. Let the respective bandwidth shares be 
denoted by bs(N, x) and bh(N, x).  

Table 1 presents bh(N, x) and bs(N, x) for 54 Mb/s IEEE 802.11a with wh = <16, 1024> and 
1500-byte DATA frames. We see that bh(N, 0) > 0 for not too large N (e.g., bh(N, 50) ≈ 0.9%) and 
bh(N, x) ≈ 0 for x > 0 and any N. Note that bs(N, x + 1) > bh(N, x) i.e., a station always benefits by 
switching from honest to selfish. Yet bs(N, x) decrease in x with bs(N, x) < bh(N, 0) for large enough 
x; in particular, bs(N, N) < bh(N, 0). Similar conclusions hold for any existing IEEE 802.11 setting. 
Such a payoff structure fits the description of an N-player Prisoners' Dilemma [16]. 

 
 bh(N, x) and bs(N, x), % of PHY bandwidth 
x N = 10 N = 20 N = 50 
0 5.3  2.5  0.9  
1 0 68.0 0 67.4 0 65.7 
2 0 18.3 0 18.3 0 18.1 
3 0 11.2 0 11.2 0 11.1 
4 0 7.6 0 7.6 0 7.6 
5 0 5.7 0 5.7 0 5.7 

10  2.3 0 2.3 0 2.3 
20    1.0  1.0 
50      0.3 

 
Table 1. Bandwidth shares from Monte Carlo model 

(95% confidence intervals are within 1% of sample averages) 
 
Suppose now that wg = <1, 1> i.e., disengaging the backoff scheme, is allowed. A station that 

is the only one to configure wg cuts off the other stations regardless of their configurations and so 
incurs no contention overhead; hence, it enjoys the highest possible bandwidth share bG = 
τDATA_payload/τDIFS+DATA+SIFS+ACK. (For a 54 Mb/s IEEE 802.11a, bG = 69.5%.) However, selecting 
any configuration in the presence of another station configuring wg yields a zero bandwidth share. It 
is therefore reasonable to confine feasible configurations to wg, ws, and wh (some stations play 
greedy, some play as selfish as possible without cutting off all the other stations, and the rest are 
honest). Let ) , ,(s yxNb′ , ) , ,(g yxNb′ , and ) , ,(h yxNb′  be a selfish, greedy, and honest payoff if x, 
y, and N − x − y stations configure ws, wg, and wh, respectively. Besides the received bandwidth 
these payoffs should reflect the fact that greedy stations cut each other off from the medium, while 
spending considerable transmission power on DATA frame collisions. Let a greedy (though "power 
aware") station in this case perceive a "penalty bandwidth share" bC ≤ 0. Assume that "power 
awareness" does not reflect upon selfish or honest stations (which either receive nonzero bandwidth 
shares or are cut off and so spend no power on frame transmission). The stations' payoffs now are: 
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Is a station compelled to configure wg, as it is to configure ws if wg is ruled out? There are 

reasons to believe the configuration profile all-wg = (wg,…,wg) is likely but not compelling. First, 
stations engaged in multiparty communication may not wish to cut off the other parties. Second, 
one may argue against all-wg on game-theoretic grounds. If bC < 0 then any configuration profile 
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with y = 1 is a NE; indeed, wg is the best reply to any configuration profile that does not contain wg, 
and the worst reply to any configuration profile that does. If bC = 0 then not only all-wg, but also 
any configuration profile with y > 0 is a NE. Thus the game is no longer a Prisoners' Dilemma. We 
predict particular CSMA/CA configuration profiles by calculating backoff attack incentives. 

A backoff attack incentive can be evaluated on the assumption that a station considering 
selfish or greedy play in near future knows all the payoffs ) , ,(s yxNb′ , ) , ,(g yxNb′ , and 

) , ,(h yxNb′  for the present N. These it can obtain offline from the Monte Carlo model. Note that 
although assumption (A5) precludes exact knowledge of N, it can be estimated based on 
observation of bh(N, 0, 0) whenever all the stations play honest. 

Definition 1: A selfish or greedy backoff attack incentive is measured as the ratio of the 
payoff that a station considers likely upon switching from wh to ws or wg, respectively, and the 
honest payoff )0 ,0 ,(h Nb′ . 

Depending on what a station "considers likely," Definition 1 may translate into various 
numerical values. The simplest selfish and greedy incentive measures are: 

 
),0 ,1 ,(ˆ   ˆ)1 ,0 ,(ˆ s0,sGg0,g NbIbNbI ′==′=  (6) 

 
where the hats symbolize normalization with respect to )0 ,0 ,(h Nb′ . One could term the above 
approach naïve, or 0-order sophisticated, as it neglects similar calculations being done by the other 
stations (hence, assumes that they will stay at wh). 

To depart from the naïve approach, a station must form a model of how the other stations' 
play is susceptible to the calculated incentives, and how the predicted play of the other stations is 
reflected in the calculated incentives. The former leads to the concept of a susceptibility map, 
whereas the latter relies on Definition 1, with "likely" defined in terms of statistical expectation. 

A susceptibility map 32 1] [0,: →Φ +R  returns for any pair (Is, Ig) of selfish and greedy 
incentive measures the probabilities pg, ps, and ph of, respectively, switching to wg and ws, and 
staying at wh by any other station, with the constraint pg + ps + ph = 1. Φ should be continuous and 
agree with the following intuitions: 

 
pg increases in Ig and is insensitive to Is, 

 ps increases in Is, 
ph decreases in both Is and Ig , 

(7) 

 
The insensitivity of pg to Is is motivated by the greedy payoff being insensitive to the number of 
selfish (as well as honest) stations. 

Although the susceptibility map may vary from station to station, it is natural for a station to 
form a rough estimate of incentive measures assuming that the other stations' susceptibility maps 
are the same as its own. Both backoff attack incentive measures can then be calculated as the 
expected payoffs b' normalized with respect to )0 ,0 ,(h Nb′  (therefore appearing with hats): 
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where (pg, ps, ph) = Φ(Is,0, Ig,0). This approach can be termed 1-order sophisticated, as it does 
account for the other stations also calculating incentive measures, though neglects their use of Φ. 

One can imagine sophistication of higher orders, considering that (8) has the form (Is,1, Ig,1) = 
F(N, (Is,0, Ig,0)). Upon applying (8), a station substitutes the calculated incentive measures Is,1 and 
Ig,1 for Is,0 and Ig,0, and re-applies (8) to account for the other stations using Φ, then repeats these 
steps to account for the other stations accounting for the other stations using Φ etc. Hence, it 
recursively applies (8) i.e., takes, (Is,k, Ig,k) = F(N, (Is,k–1, Ig,k–1)). In game-theoretic terms, 
continuation of the above steps ad infinitum implies that Φ is taken to be common knowledge [7]. 
Depending on Φ and the payoff values, the sequence ((Is,0, Ig,0), (Is,1, Ig,1), …) may or may not 
converge. However, if it does converge, the limiting (Is,∞, Ig,∞) solves: 

 
(Is,∞, Ig,∞) = F(N, (Is,∞, Ig,∞)). (9) 

 
We propose to take the solution of the fixpoint-type equation (9) as the ∞-order sophisticated 

incentive measures regardless of whether the convergence occurs. The following proposition 
(where, as noted above, condition (ii) is satisfied in existing IEEE 802.11 settings) states that (9) 
does admit a solution, which is unique.  

Proposition: Let (i) Φ agree with the intuitions (7), and (ii) bs(N, x) decrease in x for all N. 
Then (9) has a unique solution ),( ,g,s

oo II ∞∞  regardless of N and bC. 
Proof: We offer semi-formal arguments to avoid uninformative rigor. The right-hand side of the 
first equation in (9) is continuous and decreases in Is,∞. To see the latter, it is convenient to regard 
the binomial coefficients at the )1 ,(ŝ +xNb  as weights summing up to (ps + ph)N−1 = (1 − pg)N−1. This 
sum being insensitive to Is,∞, and the weights themselves growing relatively faster with Is,∞ for 
larger x, one can represent the right-hand side for a smaller and a larger Is,∞ in the form of convex 
linear combinations, namely ∑ +⋅

x x xNbv )1 ,(ŝ  and ∑ +⋅⋅
x xx xNbv )1 ,(ŝξ  respectively, where νx, ξx ≥ 

0, Σxνx = Σxνx⋅ξx = 1, and ξx increases in x. That is, the contribution of the )1,(ˆs +xNb  with larger x 
increases in Is,∞, thus decreasing the whole expression. Consequently, given an Ig,∞ we get a unique 
solution for Is,∞ i.e., a well-defined implicit function Is,∞ = f1(Ig,∞). The right-hand side of the second 
equation in (9) decreases in pg, therefore in Ig,∞, while being insensitive to Is,∞. The implicit function 
it defines, Ig,∞ = f2(Is,∞), is thus constant. One concludes that the (continuous) curves along which 
the two sides of each equation balance will intersect exactly once when projected onto the (Is,∞, Ig,∞) 
plane.  � 
 

An example of a feasible susceptibility map Φ is: 
 

).(1  ),( )(  ),( ,s,gh,g,s,gs,gg ∞∞∞∞∞∞ +−=−+== IIpIIIpIp ϕϕϕϕ  (10) 
 
Here, the susceptibility function ϕ: R+ → [0, 1] measures a station's willingness to switch from wh 
to ws or wg, given Is and Ig.It is continuous and nondecreasing, and by convention, ϕ(0) = 0 and 
ϕ(∞) = 1. Note that (10) therefore agrees with (7). 

Other common-sense properties of (10) are: 
 

• ps = 0 if Is,∞ is small enough and ps = ϕ (Is,∞) if Ig,∞ is small enough (analogous property holds 
for pg), 

• ps + pg → 1 if Is,∞ → ∞ and Ig,∞ → ∞ (i.e., ph then tends to zero), and 
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• ps = pg if Is,∞ = Ig,∞. 

 

3. NONCOOPERATIVE CAPACITY-FAIRNESS INDICES 
  

By (4), CFI = N⋅bh(N, 0) for cooperative behavior; denote this value by c-CFI. At saturation 
load and in the absence of selfish or greedy stations, c-CFI approximates the WLAN capacity. On 
the other hand, if the CSMA/CA game is played, we use the probabilities of configuring wg, ws, and 
wh, determined by ∞-order incentives. 

Definition 2: The noncooperative CFI is the expected value of (4) with respect to the 
probabilities (10) calculated from (9) for ∞-order incentives: 
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(recall that if exactly x out of N bandwidth shares are nonzero and equal then the Jain index is x/N 
[9]). 

Fig. 1 compares c-CFI and n-CFI for various bC ("power awareness" levels), including bC = –
bG ("highly power-aware") and bC = 0 ("power-unaware").  As the susceptibility function ϕ  we take 

 
,1)( aIeI −−=ϕ  (12) 

 
with the steepness parameter a = 1. Both capacity-fairness indices deteriorate as N grows, but the 
discrepancy between them remains distinct all along and becomes huge for N ≥ 10. Taking a bC 
closer to zero enhances the picture, n-CFI visibly becoming the smallest for "power-unaware" 
stations (which feel the most incentives to configure wg). It seems that the observed performance 
deterioration further aggravates that resulting from hidden stations, higher-layer protocol overhead, 
and/or imperfect channel. Obviously, network goodput as determined from the network and 
protocol setting alone is by far inadequate when estimating network capacity; factoring in 
noncooperative (selfish or greedy) behavior driven by ∞-order incentives is more realistic. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. c-CFI and n-CFI for various "power awareness" levels. 
 
Fig. 1 may be criticized on the following grounds. First, the choice of a common steepness 

parameter a = 1 at all the stations looks somewhat arbitrary; a network capacity estimate should 
abstract from a particular a. Second, when calculating pg, ps, and ph, a station assumes the function 
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ϕ to be common knowledge – in the lack of a unique (compelling) NE, this is a best reply to its 
beliefs as to the other stations' imminent play. In reality the other stations' susceptibility to 
incentives may differ from what is believed, but may be learned by repeatedly playing the 
CSMA/CA game and observing successive configuration profiles. Note that the latter task is 
possible even under assumption (A5): each station n can observe bn and the total goodput Σmbm 
(successful DATA frames followed by short ACK frames), as well as sense the presence or absence 
of empty backoff slots. It is therefore easy to recognize the cases y > 1 (with Σmbm = 0 and no empty 
backoff slots sensed), y = 1 (with Σmbm = bG and no empty backoff slots sensed), and  y = 0 (with 
empty backoff slots sensed); in the latter case, x > 0 (with bn ≈ 0) and x = 0 (with bn > 0) can also be 
distinguished. 

In a simplified scenario, the longer y = 0 is observed, the more firm becomes station n's belief 
that the other stations believe the other stations to be less susceptible to Ig,∞ (i.e., believe that the 
graph of ϕ  rises, hence are more likely to configure wg). Such a "balance of threats" keeps station n 
from configuring wg in the future, as it is the worst reply to a configuration profile with y > 0. 
(Formally, the solution of (9) then becomes smaller, as do pg and ps.) Similarly, observed x = 0 
raises the belief in the other stations' increased likelihood to configure ws. Hence, in spite of the 
incentives to configure wg and ws it is possible that cooperative behavior (x + y = 0) ultimately 
emerges provided that the stations are sophisticated enough. In view of the above, Fig. 1 may be 
regarded as too pessimistic 

We model these intuitions by manipulating the exponential susceptibility function (12) 
through the steepness parameter a (the graph of ϕ rising as a increases). In the ith instance of the 
repeated CSMA/CA game, station n's perception of the other stations' susceptibility to incentives is 
thus reflected by i

na , with the following dynamics: 
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where the function δn describes the learning process at station n, initial steepness parameter 0

na  is 
arbitrary (e.g., can be selected at random), and Xi and Yi are the numbers of selfish and greedy 
stations. We have: 
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and ps and pg are calculated from (10) using the steepness parameter i
na . 

Whether and how often cooperative behavior will emerge in the course of the repeated 
CSMA/CA game depends on the learning model (i.e., the δn, 0

na , and Φ). One way of analyzing the 
influence of noncooperative behavior upon CFI is to fix a reference learning model and compare 
the outcome of the game for various N and bC. For example, let δn(x, 0) = –∆n if x > 0, δ(0, 0) = –
r∆n, and δ(x, y) = ∆n if y > 0, where r is a constant and ∆n is proportional to 0

na  (thus relative 
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changes of the steepness parameter are the same at each station). Then ( ),...,( 1
i
N

i aa , i = 1,2,…) is 
an N-dimensional random walk with two absorbing states. Clearly, one of them is (0,…,0), since the 
solution of (9) then yields ps = pg = 0 and ph = 1. This corresponds to indefinitely long cooperative 
behavior of all the stations, producing c-CFI. At state (∞,…,∞), the solution of (9) yields pg = 1 and 
ps = ph = 0, hence this too is an absorbing state corresponding to indefinitely long greedy behavior 
and producing CFI = 0. Define amax so that the corresponding solution of (9) yields pg arbitrarily 
close to 1. 

Definition 3: The noncooperative learning CFI is given by: 
 

nl-CFI = πN⋅c-CFI, (15) 
 
where πN is the probability of eventually reaching the cooperative absorbing state (0,…,0), given 
that at the game start each station n selects ]...0[ max

0 aan ∈  at random. 

Fig. 2 depicts nl-CFI assuming ∆n = 0.2 0
na  and r = 2. The values of πN were obtained via 

Monte Carlo simulation of (13) and (14), which explains the "ragged" look of the curves for large 
N. Compared to Fig. 1 we get distinctly higher network performance in the case of "power aware" 
stations. Our approach quantitatively illustrates a few intuitions: 

 
• the network's ability to provide high and fair bandwidth shares to all stations, as measured 

by CFI, diminishes as N increases, partly on account of growing contention overhead, but 
mostly because of the stations' limited willingness to behave cooperatively; these two factors 
are graphically illustrated at N = 50 by the gray and colorless arrow, respectively, 

• incentive calculus dictates that the willingness to behave cooperatively grow with "power 
awareness" for fear of spending all the transmission power on frame collisions without 
getting any bandwidth share; accordingly, CFI improves as bC goes negative, 

• the prediction of network performance depends on a station's perception of the other stations' 
susceptibility to incentives, reflected by the susceptibility map Φ, and the learning process, 
reflected by the functions δn, and 

• each of the nl-CFI curves lies between the n-CFI∞ and c-CFI curves; its bias towards the 
latter measures the chance πN of emergence of cooperative behavior; this is almost certain 
for small enough N assuming enough "power awareness," and is hardly possible for large N 
and/or little "power awareness." 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. c-CFI and nl-CFI for various "power awareness" levels. 
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3. CONCLUSION 
  

The introduction of wg and "power awareness" changes the CSMA/CA game into one with 
multiple Nash equilibria i.e., without a compelling outcome. We envisage that each station then 
calculates common-knowledge incentives to configure ws and wg, and the corresponding probability 
distribution of imminent configuration profiles. This permits to assess the effect of a conscious 
backoff attack scenario, where a station's configuration depends on the other stations' predicted 
susceptibility to incentives. It can also model a more realistic scenario in which the other stations' 
predicted susceptibility is learned by playing the game repeatedly. Using several versions of the 
proposed capacity-fairness index we have quantified the effect of noncooperative behavior and 
indicated the possibility of emergence of cooperative CSMA/CA configuration profile. Our 
approach can be extended to nonhomogeneous "power awareness" in order to study the coexistence 
of devices with diverse battery lifetimes, and can serve as a framework for analyzing the impact of 
noncooperative behavior under any contention MAC protocol that yields a similar payoff structure. 
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