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Abstract— Pitch estimation is still an open issue in 
contemporary signal processing research. Nowadays, growing 
momentum of machine learning techniques application in the 
data-driven society allows for tackling this problem from a new 
perspective. This work leverages such an opportunity to propose a 
refined Instantaneous Frequency and power based pitch 
Estimator method called IFE. It incorporates deep neural network 
based pitch estimation with audio front end used for extraction of 
instantaneous frequency and power of signal components. A 
thorough results analysis is performed and major advantages and 
shortcomings of this method are identified, leading to a wide array 
of suggestions for future improvement. While IFE exhibits an 
instantaneous temporal resolution, a comparison is made against 
state-of-the-art pitch estimators operating on time windows, 
proving a comparable degree of prediction accuracy (up to 6% 
accuracy improvement) while maintaining the advantage of 
higher temporal resolution. 

Keywords— pitch estimation, machine learning, speech 
synthesis, data augmentation, neural network, IFE 

I. INTRODUCTION

In terms of human-machine interaction, one of the 
preferred and rapidly disseminating interfaces is the speech 
interface – allowing for hands-free operation of systems and 
enabling human-like interaction. Accurate speech recognition 
and speaker identification require complex signal processing 
pipelines, including signal pre-conditioning, feature 
extraction, acoustic fingerprinting and others. One of the tools 
enabling these algorithms is pitch estimation – the process of 
identifying the fundamental frequency (𝐹𝐹O) of voiced speech. 
Many solutions to this problem have been proposed over the 
years, however few have approached the problem from 
instantaneous perspective. In this contribution, a novel 
solution is proposed - based on the authors’ prior work, but 
offering significant refinement. 

II. ANALYSIS

A. State of the art
Pitch estimation has been one of the fundamental problems

in sound analysis and information retrieval since the early 
days of sound recording and processing. Initial approaches to 
this task took advantage of the autocorrelation function (ACF) 
of a signal in time domain [1] as well as processing in 
frequency or cepstrum domains [2]. However, it wasn’t until 
digital signal processing became ubiquitous that the results 
reached a usable level of performance in real-life scenarios 
[3]. Later on, with the rise of machine learning a new family 
of solutions emerged, eventually taking the form of a hybrid 
solution , combining best practices from the conventional 
digital signal processing (DSP) approaches with support from 
data-driven machine learning. 

B. Conventional DSP
From among the impressive variety of conventional DSP

pitch estimators, three relatively recent and popular 
algorithms were examined in the course of this effort. 

A Robust Algorithm for Pitch Tracking (RAPT) [4] relies 
on computing a normalized cross correlation function (NCCF) 
for a significantly down-sampled version of the analyzed 
signal to identify a set of candidates for further search via 
NCCF of the original signal. A set of local maxima is selected 
as pitch candidates, from among which a dynamic 
programming solution is applied to pick the most likely one, 
based on local and contextual evidence. 

The YIN pitch estimator [5] is an exceptionally accurate 
solution, especially given the fact it relies on the ACF of the 
signal with further time-domain processing and hence requires 
a considerably low amount of computational power. It was 
designed to handle both speech and music signals. Since its 
initial introduction, it has been also refined by other 
contributors, resulting in embodiments such as YIN-bird [6] – 
tuned for songbirds, or pYIN [7] – a refinement including 
temporal continuity enforcement by a hidden Markov model 
(HMM). 

Pitch Estimation Filter with Amplitude Compression 
(PEFAC) [8] is the most recent of the presented conventional 
DSP pitch estimators. It operates in the frequency domain, 
where power spectral density (PSD) of the signal is convolved 
with a logarithmic comb-like analysis filter capable of 
pointing to the highest peak – thus identifying the most 
probable 𝐹𝐹O candidate. No temporal continuity enforcement is 
incorporated in this solution. 

C. Machine learning
CREPE [9] is a well-established standalone machine

learning solution to the pitch estimation problem. Within it, 
a convolutional neural network (CNN) is deployed with no 
DSP front-end or feature extraction – the input to the net is the 
direct time-domain sound data, divided to 130ms-long 
windows. According to the authors, CREPE’s accuracy 
outperforms the state-of-the-art pYIN algorithm when tested 
on synthetic music data. However, no results are provided 
regarding CREPE performance on speech data. 

A hybrid approach is taken by the authors of [10]. Sound 
is pre-conditioned with a PEFAC-like front end, operating on 
40ms-long windows and then directed to a CNN. Finally, a 
post-processor is deployed, enforcing temporal continuity by 
the means of dynamic programming. This proposition is tested 
on speech data, where a performance gain is reported, when 
compared to PEFAC, an HMM-based method [11] and a deep 
neural network (DNN) based method [12]. The top score of 
80% 𝐹𝐹O estimation accuracy in +5 dB signal-to-noise ratio 
(SNR) condition is reported, allowing a ±5% tolerance. 
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Another contribution utilizing a hybrid approach is 
HarFeature [13]. A lot of effort is put in the front-end for 𝐹𝐹O 
candidates selection. For both long-short-term spectrum and 
long-term   subharmonic   summation   spectrum,   a   set  of 
harmonic features is computed, e.g. harmonic energy ratio, 
subharmonic amplitude ratio, harmonic frequency deviation, 
odd to even harmonic energy ratio and ratio of identified 
harmonic partials. These extracted features constitute an input 
to a DNN classifier, followed by an HMM post-processor. 
Results are provided for two speech datasets: Keele pitch [14] 
and CSTR [15] and yield performance comparable to YIN 
algorithm for +20  dB  SNR,  with  the peak of  95% 𝐹𝐹O 
estimation accuracy, assuming a ±5% tolerance. 

𝑘𝑘  
𝐴𝐴[𝑘𝑘] = {sin [(2𝜋𝜋 

4 
· 𝐹𝐹O V 

𝐹𝐹 ) ]} (1) 

Interestingly, more traditional machine learning solutions 
are proved not to be inferior to deep learning by the authors of 
[16] – which can be especially reassuring in case of the
training data shortage. First, a set of 16 acoustic features is
extracted from data (e.g. ACF or  summation of  the  speech

where 𝑘𝑘 is an  index of the harmonic 𝐹𝐹k = 𝑘𝑘 ⋅ 𝐹𝐹O ,  ranging 
between a random 𝐹𝐹   to 1 𝐹𝐹 , 𝐹𝐹  is the sampling rate and  the 

2 
resonance is established by the factor 𝑣𝑣 randomly drawn from 
its range 𝑣𝑣 ∈ [0.15, 0.4], similarly to 𝑠𝑠 ∈ [1.4, 2.5]. Finally, a 
synthetic vowel is synthesized by: 

harmonics), which is then fed to a multilayer perceptron
(MLP) or K-means classifier performing the voicing detection
task. Finally, a simple final median filter is employed for 𝐹𝐹O 

where 

𝑦𝑦[𝑛𝑛] = ∑K 𝐴𝐴[𝑘𝑘]𝑒𝑒j(kr [n]+rO[k]), (2) 

estimation. Compared to RAPT and CREPE, this solution
proved superior in voiced data classification.

Contrary to all previously presented pitch estimators, [17] 
stands out as the only one embodying the unsupervised 
learning paradigm. This is a significant distinction, as the 
availability of high-quality speech datasets with accurate and 
verified reference pitch annotations is a real problem. In terms 
of the architecture, this solution consists of 2 stages: the pre- 
processing stage, in which constant-Q transform of input is 
computed; and the CNN stage, outputting the final 
fundamental frequency prediction. Results are provided for 
singing data and show comparable quality to CREPE. 

An odd one out is the method described in [18], consisting 
of a Bayesian pitch tracker. While arguably not a machine 
learning approach, its novelty makes it stand out from the 
conventional DSP category. Interestingly, on top of the Keele 
Pitch dataset, results are given also for Parkinson’s disease 
speech dataset [19] and show performance gain in relation to 
most state-of-the-art pitch estimators, e.g. YIN, PEFAC and 
CREPE. 

III. DATA CREATION AND FEATURE EXTRACTION

A. Dataset
As stressed before, a significant problem in supervised

data-driven solutions development is the very core of it – 
accessibility of data. While a lot of speech datasets are 
available on various licensing terms (e.g. TIMIT [20], 
crowdsourced UK and Ireland English Dialect dataset [21] or 
GRID [22]), in case of pitch estimation a need arises to 
complement a speech dataset with an accurate set of 
annotations (e.g. PTDB-TUG [23] or Keele pitch). In order to 
work around this problem, the authors of this contribution 
chose to generate an artificial dataset, consisting of any 
number of synthetic vowel-like sounds associated with 
accurate pitch annotations with instantaneous temporal 
resolution. 

The vowel synthesizer consists of a poly-harmonic signal 
generator in which harmonics’ amplitudes are given by the 
following formula (1): 

𝜑𝜑�[𝑛𝑛] = 2rr ∑n 𝐹𝐹[𝑚𝑚] , (3) 
Fs          m=O 

𝐹𝐹[∙] is a nonlinearly, randomly swept fundamental frequency 
and 𝜑𝜑O[∙] is random. The model’s fidelity is increased by an 
addition of random jitter and shimmer [24]. Finally, white 
gaussian noise is mixed to the signal at a controllable level, 
allowing for a precise SNR control. 

Datasets created with this method were built of 500ms- 
long segments of synthetic vowel, interrupted with intervals 
of 0-200ms-long silence. 𝐹𝐹O ranged between 50Hz and 400Hz 
and two kinds of distributions were examined – logarithmic 
and linear. 

B. Audio Front End
Data generated in the previous step was transformed using

the Audio Front End (AFE) – a processing block whose goal 
is to extract features from raw audio data and prepare it for 
further processing. While in many embodiments feature 
extraction serves a purpose of reducing the amount of data to 
be processed, in this case an opposite is true. In this 
contribution, AFE is used to extract coarse estimates of 
instantaneous angular frequency of the signal’s harmonics. 
For each sample in the signal, an instantaneous frequency and 
power is computed for each of 20 frequency sub-bands 
between 50Hz and 1050Hz – outputs of 20 Hilbert transform, 
constant-Q bandpass finite impulse response (FIR) filters 
designed using the kernel CQT method [25] with Blackman 
window (Fig. 1). 

Within each sub-band, a complex mutual power operator 
(CMPO) is computed: 

𝑦𝑦CMPO[𝑛𝑛] = 𝑥𝑥[𝑛𝑛] ∙ 𝑥𝑥∗[𝑛𝑛 − 1], (4) 

where 𝑥𝑥[𝑛𝑛] is the complex filter output and 𝑥𝑥∗[𝑛𝑛] its 
conjugate. Using CMPO, instantaneous power and frequency 
are obtained: 

𝑃𝑃i [𝑛𝑛] = |𝑦𝑦CMPO[𝑛𝑛]|, (5) 

𝐹𝐹i [𝑛𝑛] = arg(𝑦𝑦CMPO[𝑛𝑛]) (6) 

The output of AFE is not as accurate to be regarded a 
standalone pitch estimator, however it provides insight into 
the fundamental frequency and ratio between harmonics of 
vowels for the neural network to build its learning upon. 

CQT filterbanks. 
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IV. NEURAL NETWORK 

The originally defined IFE method [26] leverages neural 
network as a core of its pitch estimation technique. In case of 
the presented work, the same structure has been utilized for 
further research and experiments. The chosen architecture 
consists of multilayer perceptron with two hidden layers with 
sizes of 500 and 1000 neurons [27]. It was determined via grid 
search cross-examinations, including experiments on number 
of hidden layers, neurons count, type of activation function, 
batch size and other NN hyperparameters. The input layer has 
been adjusted to fit data of 40 individual power and frequency 
features for each input sample provided by AFE. 

A. Classification 
The initially proposed classification mechanism 

categorized provided input data into 351 classes matching 1 
Hz frequency bins in the range of 50-400 Hz. In the course of 
further experiments the authors decided to substitute linear 
classes with logarithmic distribution. As a result, the neural 
network has been re-trained with input data evenly distributed 
across newly defined 351 logarithmic classes. 

Encouraged by promising results of classification methods 
adjustments, the authors focused on output bin sizes which 
initially divided 50-400 Hz range into 351 classes. Taking into 
consideration that majority of the proposed methods assume 
pre-defined classification accuracy margin [10, 13], the 
number of output classes in the depicted architecture has been 
reduced to 100. Fig. 2 depicts comparison of 351 and 100 bins 
classification for both linear and logarithmic distributions. 
Histogram    presenting   𝐹𝐹O        estimation    for    351 linearly 
distributed  classes  shows  significant  variance  for  higher 
frequencies with some of the classes being very rarely 
selected. However, switching to 351 logarithmic classes 
lowers the variance, the most vivid improvement can be 
observed for both distributions with number of classes limited 
to 100. 

B. Training & validation 
Synthetic dataset has been generated for neural network 

training purposes. It consists of 60 million individual input 
samples normalized in the range of 0 to 1, which corresponds 
to approximately 2h 5min of continuous audio data, generated 
at 8kHz sampling rate. Equivalent synthetic data, with various 
SNR levels, have been used for neural network validation 
along with real speech data acquired from Keele pitch dataset. 
In addition to the described datasets, an enlarged training 
package of 240 million samples has been prepared to rule out 
scenario of data shortage. Both training datasets provided 
similar results which indicates that initially selected data size 

 

 

 
 
 
 
 
 
 
 
 

Fragment of synthetic validation signal spectrogram with estimated 
𝐹𝐹O for 351 classes distribured logarithmicaly. 

 
 
 
 
 
 
 

Fragment of map of confidences per class for validation signal with 
estimated 𝐹𝐹O for 351 classes distribured logarithmicaly. 

of 60 million samples was sufficient for neural network 
training. 

Fig. 3 shows spectrogram of the fragment of a synthetic 
validation signal along with 𝐹𝐹O estimate. We can see here that 
for some segments 𝐹𝐹O aligns with the strongest signal 
component but there are also segments in which these 
components disappear in noise and the 𝐹𝐹O has to be 
determined from the distance between harmonic components. 
On the other hand, the neural network generates the map of 
confidences (Fig. 4) with the strongest component 
corresponding to 𝐹𝐹O . Moreover, the 𝐹𝐹O harmonics and 
subharmonics are also noticeable in this map, which in some 
cases, especially for lower SNRs, leads to estimation errors. 

C. Parameterization 
The presented network architecture has been trained 

through 10 epochs on each of the mentioned training datasets 
with batch size set to 64 samples. The model utilizes 
hyperbolic tangent which gave the best accuracy results in 
comparison to other popular activation functions. Categorical 
cross entropy has been chosen as a loss function along with 
Adam optimization algorithm. Classification leverages 
softmax function. 

Implementation of the proposed architecture was written 
in Python programming language with Keras machine 
learning framework [28]. The same environment has been 
used for training, inference and optimalization purposes. 

V. RESULTS 

Results discussed in subsections A and B were obtained 
for a synthetic validation dataset, generated with roughly 
25dB of SNR. 

A. Logarithmic and linear 𝐹𝐹O distribution 
Fig. 5 presents how the 𝐹𝐹O estimation error is distributed 

depending on the actual instantaneous 𝐹𝐹O of the signal. As we 
can see, most of the estimates are in ±1% range (marked with 
red dashed lines) with many of the outliers kept in ±5% range 
(limited by the blue dashed lines). When comparing 
previously proposed network with linearly distributed 351 
classes with reference methods (Fig. 5), the main difference 
can be seen in increased number of large outliers as well as 
slightly larger deviation of estimation errors for 𝐹𝐹O in range 
50-80Hz. Change from linear to logarithmic distribution of 
classes limits these problems at the cost of slightly increased Neural network classification per class. 
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√ 

Comparison of probability of outliers vs SNR and pobability density 

Map of logarithm of counts of estimation error values observed for 
given reference 𝐹𝐹O of synthetic validation signal for 100 classes. 

Map of logarithm of counts of estimation error values observed for 
given reference 𝐹𝐹O of synthetic validation signal for neural networks 
with 351 classes and reference methods. 

Comparison of standard deviations of estimation errors evaluated 
for 5 Hz reference 𝐹𝐹O segments. 

Estimation accuracy improvement per frequency segment in % 
resulting from change from linear to logarithmic classes distribution. 

deviation of estimation errors for high 𝐹𝐹O which can be seen 
in more detail in Fig. 6. The unit cent used in y-axis of the 
figure is a logarithmic pitch unit borrowed from the musical 
interval context, representing 1⁄100 of a semitone – the 

 

smallest musical interval with a frequency ratio of 12 2. 

Standard deviations and bias of relative estimation error. 

B. Performance in relation to the number of output classes
As mentioned before, the network with 351 classes seems

not to be able to utilize all the classes equally for higher 
frequencies. This problem is slightly alleviated with 
logarithmic distribution of classes but larger improvement can 
be achieved with limiting number of classes to 100 (Fig. 7). 
This, however, results in deterioration of estimation error in 
consequence     of     coarser     estimated    𝐹𝐹O     quantization. 
Consequently, standard deviation of estimated 𝐹𝐹O   increases, 
which  limits  accuracy  depending  on  classes  number and 
distribution (Fig. 8). Nonetheless, if larger tolerances (above 
50 cents) can be accepted, such smaller network performance 
is similar to that of the larger network (Fig. 9). 

function estimates of relative 𝐹𝐹O estimation errors. 

𝐹𝐹O estimation accuracy comparison for synthetic validation signal. 
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C. Performance in relation to SNR
Performance of the proposed estimator in presence of high

gaussian noise has been measured for synthetic test signals 
and compared with CREPE and YIN methods. Here we 
compare  the  proposed  network  with  351  logarithmically 
distributed classes that provides 𝐹𝐹O  estimated per each audio 

could be effectively decreased to the level of other methods 
with post-processing in 10ms segments. 

D. Performance for speech signals
Since the goal of the proposed network training is to

estimate 𝐹𝐹O for speech signals, another test has been done on 
sample (IFE log 351 in figures). Since CREPE and YIN were 
configured to estimate 𝐹𝐹O in 10ms segments, the estimates 
postprocessed in 10ms segments have been additionally 
introduced (IFE seg 351 in figures). The 𝐹𝐹O estimated per 
segment is selected as an average of estimates what are in 
range of ±10% of median and is corrected with the help of 
std of averaged values to mitigate estimation bias. 

In Fig. 10 we can see how the number of outliers increases 
for small SNRs. At 20dB all compared approaches 
demonstrate about 1.6% of outliers mostly located at original 
signal segments boundaries and with decreasing SNR the 
number of outliers increases up to 67% at SNR=−10dB with 
slight edge of our proposition over CREPE and YIN. From 
pdf of relative estimation error (Fig. 10) we can also see that 
with increased noise level the outliers tend to group around 
frequencies that are about 2, 3, 4 and times smaller than the 
actual 𝐹𝐹O (-50%, -66,7%, -75% and -80%). 

If large outliers (estimates with relative errors exceeding 
10%) are discarded then the std of the relative error (Fig. 12) 
of the proposed method increases from 1% at 20dB to almost 
4% at -10dB with some performance gain from post- 
processing in segment. This is similar to YIN that performs 
better in this respect for lower SNR but achieves worse results 
for high SNRs. The best results are obtained with CREPE and 
the proposed method performing similarly for high SNR. If 
relative estimation error bias (mean) is compared (Fig. 11), 
then the raw proposed method demonstrates larger bias which 

Keele pitch speech dataset. As can be seen in Fig. 12, better 
accuracy is achieved for female speech while male speech 
with lower 𝐹𝐹O pose more of a challenge, particularly the m1 
speaker. 

When we compare our previous network with current 
proposition with logarithmic classes distribution and per 
segment post-processing (Fig. 13) then we can notice small 
improvement in accuracy for low tolerances (about 50 cents) 
for female speech and significant improvement of accuracy 
for all male speech samples. Moreover, for tested dataset the 
proposed method performed better than CREPE (Fig. 14), 
especially for male speakers. 

VI. POST PROCESSING WITH HIDDEN MARKOV MODEL 

It is apparent from the results analysis that one of the
primary types of error in pitch estimation is a phenomenon of 
favoring a harmonic over the fundamental. This may be due 
to a vowel resonance resulting in higher harmonic amplitude, 
masking by noise or other effects. In case of female speech 
this problem is marginal. For example, in the map of network 
confidences  obtained  for  female  speech   with  𝐹𝐹O    around 
200Hz (Fig 15) we can notice that for voiced segments there 
is very little unambiguity between 𝐹𝐹O and its harmonic. On the 
other hand, in case of m1 male speech map of network 
confidences (Fig. 16) shows similar confidence levels for 𝐹𝐹O 
and its harmonic, which results in decision switching between 
those two values. Tests performed for speech and synthetic 
signals  show  that for  the  proposed  method  as  well as for 

𝐹𝐹O estimation accuracy improvement for female and male speech for the proposed method in comparison to CREPE. 

𝐹𝐹O estimation accuracy improvement for female and male speech resulting from change to logarithmically distributed classes. 

𝐹𝐹O estimation accuracy for female and male speech. 
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competitive methods, mistaking 𝐹𝐹O with its harmonics is the 
most common problem. 

In cases where harmonic candidate is picked over the 
fundamental throughout only a portion of the vowel’s 
duration, the confidence map (Fig. 16) shows also high 
confidence for actual 𝐹𝐹O. This type of error can be handled 
with some kind of temporal continuity enforcement. As noted 
during the literature review, a common method used in solving 
this problem is incorporation of a hidden Markov model 
(HMM). 

In principle, HMM is a probabilistic model of a given time 
series and can be successfully used in plethora of applications. 
For pitch estimation, its purpose is to serve as a pitch tracker 
– a model responsible for determining what is the likelihood
of certain pitch being followed by a given one. To achieve that
goal, HMM must be armed with an emission matrix – a square
matrix of probabilities of subsequence of each pair of allowed
pitches. In this case, the emission matrix was extracted from
MATLAB built-in set of examples [29], which in turn was
derived from PTDB-TUG dataset [23].

In this effort, only linearly-spaced NN output of 351 pitch 
classes confidences was considered. During the algorithm run, 
first a set of 10 highest confidence candidates was picked from 
all 351 candidates. Then, for each of those candidates, its 
confidence was weighted by a matching factor in the emission 
matrix. Afterwards, a backward run through the confidence 
matrix was performed to pick the highest confidence pitch 
contour. In Fig. 17, a sample excerpt spectrogram of Keele 
pitch dataset is shown with IFE predictions without (white) 
and with (red) HMM post-processing. It shows a promising 
degree of improvement, however further refinement and 
enabling logarithmic output processing is necessary in the 
future. 

VII. CONCLUSIONS AND FUTURE DIRECTIONS

The presented work provides a deep analysis and 
refinement of novel pitch estimation method called IFE. The 
main areas of interest covered in this paper are as follows: 

• Influence of linear and logarithmic class distribution
and number of classes on the neural network ability to
estimate pitch.

• Impact of various SNR levels on IFE method accuracy.

• Analysis of outlier errors and suggestion of potential
post-processing to overcome them.

• Comparison of IFE with current state-of-the-art
traditional and machine learning based methods as
YIN and CREPE.

The authors scrupulously examined and validated IFE 
method with various variants of input data and classification 
aspects. The conduced research and improvements allowed 
for achieving convergent results with other state-of-the art 
methods as CREPE and YIN. It is crucial to remark that 
contrary to previously mentioned techniques, IFE is 
instantaneous – it does not require any time segmentation of 
the input data, resulting in a sample-level temporal resolution 
of pitch estimation. However, if this degree of precision is not 
required, an additional post-processing could be implemented 
to refine the IFE output with some time-windowing approach, 
e.g. a median filter.

An additional distinguishing factor of the IFE approach is
generation of training dataset. The presented results of 𝐹𝐹O 
estimation for speech signals were achieved based on NN 
training with solely synthetic data. Such approach eliminates 
issues with establishing ground truth 𝐹𝐹O values for input 
signals during training step and allows for efficient 
preparation of large datasets required by neural network 
models. 

An example of HMM post processing effect. 

Fragment of map of confidences per class for male speech signal m1. Map of confidences per class of femal speech signal f5. 
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Despite satisfactory results, the authors still see plenty of 
room for IFE method improvements. More sophisticated post- 
processing methods could create significant opportunity for 
limitation of the number of outliers in the output estimation. 
Apart from this, there is still a need for robust grid search of 
optimal structure and parametrization of the model. Finally, 
special attention should be put on Audio Front End calibration 
to ensure that feature provided to the trained model are 
sufficient for optimal classification results. 
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