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ABSTRACT The integration of electric vehicles (EVs) is rapidly growing compared to conventional vehicles
in Qatar. To assess how these electric vehicles will impact Qatar’s distribution network, it is necessary to
accurately model EV loads. However, EV loads exhibit uncertainties due to driving behaviour in charging
time, state of charge (SOC), number of trips, and distance travelled. This necessitates the development of a
probabilistic model. The Monte-Carlo method is employed to predict EV charging profiles probabilistically.
The generated EV load profiles are assigned to different sectors and compared with the base case voltage
profile curve. The IEEE-33 bus system is utilized to evaluate EV impacts considering the load pattern
of Qatar. EV load profile generation is performed using MATLAB software, and impact assessment is
conducted in DIgSILENT software. The results indicate that following EV integration, the system’s voltage
profile experiences drops in the early morning and afternoon. A proposed charging scheme (R2), coupled
with the integration of solar PV into the system, can mitigate this voltage drop issue. The PV panels have
a rating of 1503 kW and are connected to the 14th bus. In Qatar, the hot summer months span from
June to September, so the average PV generation data for September is used. The implementation of the
proposed reward charging scheme improves system performance in terms of the voltage profile, ensuring
grid resilience.

INDEX TERMS Electric vehicles (EV) integration to power system, impact assessment, charging scheme.

NOMENCLATURE
EV Electric vehicles.
RTP Real-Time Pricing.
TOU Time-of-Use.
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PSO Particle Swarm Optimization.
GA Genetic Algorithm.
FL Fuzzy Logic.
HVAC Heating Ventailing Air conditioning.
BTM Battery Thermal Management.
AC Air Conditioner.
PTC Positive Thermistor Heater.

131350

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0002-4783-4307
https://orcid.org/0000-0001-5547-1094
https://orcid.org/0000-0003-3432-4217
https://orcid.org/0000-0002-6932-4367
https://orcid.org/0000-0003-3482-609X
https://orcid.org/0000-0003-1901-4683
https://orcid.org/0000-0003-2010-5777


S. Deshmukh et al.: Impact Assessment of EVs Integration and Optimal Charging Schemes

THD Total Harmonic Distortion.
MV Medium Voltage.
LV LV Voltage.
SOC, DOD State of Charge, Depth of Discharge.
DTD Daily Travelling Distance.
RS Reward schemes.
RN, MN Radial Network configuration, Mesh

Network Configuration.
d Distance.
CDT , Ct Charging Duration, Charging Time.

I. INTRODUCTION
The widespread adoption of electric vehicles (EVs) globally
has given rise to a transformative shift in power systems,
impacting generation, transmission, and distribution net-
works. The surge in EV charging introduces variations in
load magnitude and alters timing patterns across distribution
networks [1]. This phenomenon poses challenges such
as transformer overloading, thermal limits of cables, and
concerns about power quality and reliability, particularly
amplified when high-power chargers are employed or EVs
are charged in specific residential zones, catering to light
vehicles or commercial fleets. The residential EV charging
surge also raises the prospect of increased household
electricity consumption, potentially necessitating electrical
infrastructure upgrades. Studies indicate that the power
demand and traffic flow curves peak during morning and
evening hours, with reduced demand during the night [1].
Evening EV plug-ins can significantly heighten power
draw, risking surpassing a distribution system’s maximum
supply capacity. Unmanaged demand spikes can overload
distribution components, necessitating cable and transformer
replacements, and may even require additional generation
capability. Notably, 10% EV penetration in Germany resulted
in bottlenecks, while Norway experienced a 5 kW increase
in average residential load leading to a 30% overload of
distributed transformers [2], [3]. The impact on utility grids
extends to renewable energy sources, grid stability, and
overall asset management [4]. Dynamic energy management
methods and time-varying pricing schemes, as proposed
in [5], present solutions to these challenges. For commercial
EV or fast charging stations, the geographic and case-specific
impacts are contingent on power levels, with public charging
stations commonly featuring 50 kW power ratings and
increasingly frequent installations of multiple charging plugs,
elevating potential loads to the megawatt scale, especially in
highway areas [1].
To address the escalating power demands and potential

grid overloads arising from EV charging, several strategies
have been proposed. Real-Time Pricing (RTP), Time-of-
Use pricing (TOU), Critical Peak Pricing (CTP), and Peak
Time Rebate (PTR) present scheduling-based solutions,
optimizing charging times based on pricing structures. Alter-
native methods focus on minimizing power losses, voltage
deviations, peak loads, and energy costs. Optimization

techniques such as Particle Swarm Optimization (PSO),
Genetic Algorithm (GA), and Fuzzy Logic (FL) aim to
smartly manage EV charging [6]. Effective analysis of grid
impacts and the implementation of dynamic pricing tier
charging schemes hinge on the accurate development of
EV charging demand models. Various methods, including
Monte-Carlo, Markov chain theory, dynamic traffic flow, and
agent-based approaches, have been proposed for modeling
EV charging demand. Noteworthy contributions include
individual EV load profiles generated based on real driving
patterns and charging behaviours [7], [8]. The one method
is Monte Carlo method for EV charging demand generation,
another method that is widely employed in the agent-based
modeling of EV charging demand [9], [10]. In alignment with
these methodologies, this paper concentrates on generating
EV charging demand profiles using the Monte Carlo
method exclusively. A case study for Shenzhen, China,
as presented in [11], predicts EV charging demand peaking
at 21:30, reaching around 1760 MW and increasing the
load by 11.08%. This underlines the critical importance
of understanding and effectively managing EV charging
demand for ensuring the resilience and sustainability of
power distribution networks.

The comparison table assessing the impact of electric
vehicles (EVs) utilizes the Monte Carlo method, presenting
key findings from various papers, including uncertainties
considered and the networks is discussed (Table 1). The
impact assessments on EVs explore factors such as EV
penetration, location, charging schemes, charging time,
different states of charge (SOC), and various EV types.
The parameters evaluated encompass voltage levels, as well
as the overloading of transformers and cables. Notably,
the majority of papers primarily focus on L1, L2 single-
phase, and three-phase chargers, with power ratings ranging
from 1.44 kW to 11 kW, emphasizing lower charger
ratings. Additionally, the studies predominantly concentrate
on radial networks, neglecting considerations for network
reconfiguration (mesh). Assessing the impact of EVs on
network reconfiguration could facilitate the integration
of more electric vehicles and the efficient utilization of
available resources. Furthermore, the objectives of network
reconfiguration discussed in the literature include reducing
active power losses, load balancing, service restoration,
and enhancing system reliability. Some papers explore
feeder reconfiguration concepts to integrate more EVs into
the system, relying solely on optimization methods such
as genetic algorithms and particle swarm optimization.
However, these approaches involve intensive computational
requirements and often fail to comprehensively consider the
overall system impact of EVs. Additionally, they overlook
the variability in EV load, such as changes in charging
time, controlled and uncontrolled charging schemes, and
the integration of renewable sources. Notably, these above
studies overlook temperature uncertainties and their impact
on energy consumption. The proposed work addresses these
limitations by providing a more comprehensive analysis that
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TABLE 1. Comparison between the proposed strategy and different research works on the resilience enhancement in DSs and microgrids.
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encompasses the impact of EVs on the overall system, consid-
ering the variability in EV load, temperature impact on energy
consumption and the benefits of network reconfiguration for
accommodating increased EV integration.

The impact assessment discussed above lacks applicability
to the specific scenario in Qatar. Situated in a hot arid climate,
Qatar experiences a significant influence on electricity
demand due to air conditioning, closely tied to external
temperatures. Research results [26], [27] highlight increased
electricity demand on hot days (36.8 ◦C) and decreased
demand on cold days (16.8 ◦C). For a comprehensive
impact assessment of EVs in the Qatari context, consid-
erations must include the unique charging times for EVs.
Commonly scheduled for the evening, this timing may not
align with Qatar’s distinctive working hours. Moreover, the
peak load in Qatar shows a peak demand at 15:00 hrs
in September and a minimum demand at 15:30 hrs in
February.

The [28] showed how the electric vehicle range is affected
by temperature.When the temperatures are optimal (21.5 ◦C),
electric vehicles can operate at 115% of their rated range.
For temperature 40 ◦C, the range drops down by 80% of
the rated range. For cold conditions temperature −15 ◦C
drops to 54% of the rated range. For the cold conditions,
the impact of EV charging on the network for extreme cold
conditions for temperatures (−5 ◦C, 0 ◦C, 5 ◦C, 10 ◦C,
and 20 ◦C) is discussed in [29]. The key findings charging
EV at lower temperatures increases harmonics and frequent
charging of EVs leads to increased demand from the grid.
The paper [29] lacks an impact assessment of EVs for
hot conditions. In [30] for temperatures 30 ◦C and 40 ◦C
charging time increases by 15-31% as compared to the
optimal temperature due to an increase in HVAC (Heating
Ventailing Air conditioning) and BTM (Battery Thermal
Management) load during driving which compensated at
charging. Moreover, the driving efficiency decreases at 40 ◦C
by 25%which requires frequent charging. Another [31] paper
showed the use of AC (Air Conditioner) and PTC (Positive,
Thermistor Heater) increases per-mile energy consumption
by 12% in Phoenix (which has a temperature like Qatar in
summer) when compared to a vehicle with no HVAC. The
increase in ambient temperature leads to an increase in use of
HVAC while driving to cool the cabin cooling. While BTMS
focus on maintaining optimal battery temperature during
charging leading to an increase in energy consumption. The
HVAC while driving impact increases by 10% and BTMS
focus on maintaining optimal battery is 10% total energy
consumption 20%. In this paper impact, assessment of EVs
for Qatar’s hot condition is carried out. Here it is assumed that
energy consumption of electric vehicles increases by 20%
in summer [26], [27]. This assumption is required for EV
charging demand, implementation of charging schemes, and
infrastructure development.

Some of the papers discussed the impact assessment of
Qatar [32], [33]. In the paper [32], the author discussed the
impact of total harmonic distortion (THD) on the distribution

network. It was observed that for the medium voltage side
(MV 11 kV) THD value was observed to be within limit
for an increase in EV penetration while for low voltage side
(LV 415 V) had a high value of THD that puts a limit on
EVCS integration. The drawback of this paper is the lack of
consideration of the impact of coordinated /smart charging
schemes on EV integration on the distribution network.
Another paper [33] discusses the impact of EVs on Qatar
in which the worst scenario (10% EV penetration charged
at the same time (14 hr) leading to an increase in the peak
demand by 19.2% exceeding the generation limit. This can
be avoided by using PV source generation and charging EVs
from 5 am to 11 am would flatten the duck curve of EV
demand. However, there is the chance of creating another
peak from 5 am to 11 am. The problem further worsens if
all the sectors (public, banks, commercial and private, and
residential) charge their vehicles during the same period.
Some of the existing research focuses on off-grid- EVCS
along with the integration of solar, wind and energy storage
batteries [34], [35], [36], [37], [38]. However, the study lacks
smart charging implementation for grid-connected systems.
Another work that is carried out is based on the placement
of EV charging stations in Qatar University placement [39],
[40]. The above work provides solutions from the utility
point of does not encouraging customers to participate in
EV charging to get compensation as rewards like incentives
based, discounts on charging in non-peak hours. Therefore,
there is a need to propose appropriate charging schemes
to all sectors to integrate more EV integration that will
not cause an increase will not affect grid stability and
provide customer satisfaction. The unique reward charging
schemes help to mitigate the impact of EV integration on the
grid and make users participate in demand side response a
win-win situation for the utility and EV users. Additionally,
the focus of prior studies [27], [41] on Time-of-Use and
incentive schemes for residential areas overlooks the potential
implications in the commercial sector. Hence, the proposed
paper introduces reward-based charging schemes targeting
established government offices, banks, and private offices,
providing a more holistic perspective on EV integration.
Furthermore, the paper emphasizes the higher rating of L2
chargers and fast chargers in line with Kahrama’s (state-
owned electricity provider) guidelines. The overall system
representation is illustrated in Fig. 1. The study primarily
focuses on the bus voltages only without considering power
quality issues.

The paper is distinguished by the following key
contributions:

• Comprehensive Impact Assessment: The impact
assessment is based on uncontrolled charging schemes,
considering factors such as charging time, the level of
EV penetration, and network reconfiguration.

• Proposed Reward Charging Scheme: The paper
introduces five a novel reward-based charging scheme,
contributing to the broader discourse on effective EV
integration.
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FIGURE 1. Overall system representation.

• Integration of Renewable Sources: The impact assess-
ment of EVs is extended to include scenarios with the
integration of renewable energy sources.

The paper’s structure is organized to provide a clear
understanding of the methodologies and findings:

• Data Collection Methods (Section II): The paper
begins by describing the methods employed for data
collection.

• Mathematical Modeling of EV Load Profile
(Section III): Section III delves into the mathematical
modeling involved in generating the EV load profile.

• Reward-Based Charging Schemes (Section IV):
Details regarding the proposed reward-based charging
schemes are presented in Section IV.

• Simulation Results (Section V): Section V comprehen-
sively outlines the simulation results obtained from the
study.

• Conclusion (Section VI): The paper concludes with
a summary of key findings and insights derived
from the impact assessment and proposed charging
schemes.

Fig 1 represents the steps for the overall impact assess-
ment of EVs. Public, private, and bank sectors are first
mapped to the electric network, then EV load profiles
are generated considering uncertainties, and the last step
is to integrate EV and base load and analyse load flow.
For this overall system implementation, the data collected
for the analysis is categorized into 5 types as shown
in Fig 2.

FIGURE 2. Data set types.

II. DATA COLLECTION
A. DATA-1 (DRIVERS BEHAVIOUR)
In this data-1, the data related to drivers’ behaviour and EV
specifications are considered. The average daily travelling
distance (DTD) is around 40-100 km [26], [42]. 20 different
electric vehicle specifications such as battery specifications
and battery range kilometres were selected with mean,
and standard deviation were calculated with maximum and
minimum values. (Table 2) highlights the parameters.

1) UNCERTAINTY CONSIDERATIONS
The working hours in Qatar are classified into two categories;
public sector and private sector. The public sector working
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TABLE 2. Table of all parameters.

hours are from 6 am to 2 pm and the private sector timing
banks are 7.30 to 12 hrs and another shift from 15.30 hrs
to 7.30 hrs and private offices timings 8.30 hrs or 9 hrs to
17.30 or 18 hrs. The arrival and departure time for various
offices is depicted in Fig 3. Some of the other uncertainties
considered are state-of-charge (SOC), charging time (Ct ),
energy consumption (EC ) and temperature of winter season
(Tw) and summer season (Ts). The mean and standard
deviation of the above uncertainties are given in (Table 2).

B. DATA-2 (EV CHARGER TECHNICAL DETAILS)
This data is related to EV charger technical details suggested
by Kaharmaa the power rating of EV charger is given in
(Table 3). The workplace and commercial groups are G1,
G2-A, G2-B, and G3, G4. The residential sector as G5 with
the level of charger recommended are three phase 11 kW and
22 kW EV chargers [42], [43].

TABLE 3. Power rating of EV charger [43].

C. DATA-3 (NETWORK CONSTRAINTS)
This data considers the network constraints of the power
system. Some of the constraints considered are given in
(Table 4) under voltage level, total harmonic distortion
(THD), transformer and line overloading [44], [45].

D. DATA-4 (PRICING TIER)
The (Table 5) highlights the different pricing tiers for each
sector [43].

FIGURE 3. Arrival and parking time for group G1,G2-A,G2-B,G3,G4 and G5.

TABLE 4. Grid standard [45].

TABLE 5. Pricing tier of qatar (US Dollars).

E. DATA-5 (LOAD CURVE)
As per the data collected from Kaharmaa, the summer season
with the 30-minute interval that has the maximum peak
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FIGURE 4. Load curve.

occurs in the afternoon at with P = 8475 MW [43]. This
analysis considers 0.004% of peak load and derived a load
curve as given in Fig 4. The highlighted peak period is marked
in black from 9:00 to 17:00, with the critical peak occurring
between 13:00 and 17:00.

III. MATHEMATICAL MODELLING AND METHODOLOGY
When the electric vehicle arrives at the residence or
workplace to recharge, the amount of energy remaining is
known as the state of charge (SOC). This SOC may vary
it is a random number and its probability density function
(pdf) depends on the daily travelling distance (DTD). The
distribution for DTD is the normal type with zero probability
for all negative distances as explained in Fig 5 a. The mean
of the distribution is 50 km and the standard deviation is
20 km [25], [46], [47]. The probability function is given by the
below equation. Where d is a random distance and µ, σ are
for the mean and standard deviation, respectively.

f (d) =
1

dσ
√
2π

e−
(ln(d) − µ)2

2σ 2 , d > 0 (1)

The SOC of the battery is represented as in Fig 5 b [48].
The battery capacity and temperature mean values are

78.77 kWh, 36 ◦ C (summer), and 16 ◦ C (winter) are shown
in Fig 5 c,d. The plug-in time of EVs for each group are
shown in Fig 5 e. The Fig 5 f shows the block diagram for EV
load profile generation. The charging duration for the electric
vehicle is calculated considering battery capacity, level of the
charger and initial SOC (CDT ). The normal distribution for
the SOC is given in Fig 8b.

CDT =
Bcapacity × (1 − SOC) × (DOD)

PEVcharger × η
(2)

In Eq. 2, theBcapacity represents the battery capacity (kWh).
The stored energy of the battery cannot be fully utilized
without causing damage to the battery life. The is depth of
discharge (DOD) defined as the fraction of power that can
be utilized from the battery considered DOD is 60% which
means that only 60% of battery capacity can be used by the
load.PEVcharger represents the power rating of charger while η

as the efficiency of charger.
The charging time (Ct ) is considered as the mean and

standard deviation for the public sector at 6 ammean standard

deviation 1 hour (6,1) while for the private sector at 7 hrs,
9 hrs and 15 hrs mean standard deviation 1 hour (9,1), (7,1),
(15,1). The charging time for each office is shown in Fig 5.
The EV load profile generation block diagram representation
is given in Fig 5. The algorithm of Monte Carlo is discussed
below. This code was used to generate 100 EV load profiles
for each sector as per the charger capacity assigned Table 3.

Algorithm
Start
• Set the parameters:

– Set number of iterations value
– Set number of EVs value
– Set charging power level, battery capacity, distance

and SOC, Tsummer value
• Create an array to store the load profiles values
• Start loop for iteration

– Initialize the load profile
• Start loop for each EV

– Generate parameters of battery capacity, distance,
and SOC using normal distribution

• Calculate the energy consumption using above
parameters
– Calculate the energy consumption based on temper-

ature of season parameters
– If Tsummer > 30
– Energy consumption = energy consumption × 1.2
– End

• Calculate the charging power level of charger
• Start Loop for number of trips

– Calculate for each trip charging duration and
departure time

– Calculate the start time and end time
– Update the load profile
– End loop for number of trips

• End loop for each EV
• End loop for iteration
• Stop

A. LOAD FLOW ANALYSIS
The load flow analysis can be implemented by different
methods Newton-Raphson, Gauss-Seidel and Fast coupled
method. The Newton-Raphson and Guass seidel were used
for IEEE-5, IEEE-30, 33, 57 and 118 test buses [49]. Here the
paper focuses on the netwon-raphson method is an iterative
method that solves a set of non-linear simulatauus equations
using Taylor’s series expansion. In a n bus system that has
n equations for active and reactive powers. the number of
unknowns is 2(n-1) as the voltage magnitude and phase
angle of slack and swing bus are known. The Newton-
Raphson which works faster than the Gauss-seidel technique.
Moreover, it saves time of computation and requires only
fewer iterations.

Steps for implementation Newton-Raphson are given
below [50] and [51]:
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FIGURE 5. Probability distribution of (a) distance (b) state-of-charge (c) battery capacity
(d) temperature (e) charging Time (f) EV charging load block diagram.

• Form the nodal admittance matrix (Yi,j). Set initial bus
voltage and reference bus.

Vi = Vi, spec. ̸ 0◦ (at all PV buses)

θi = 1 ̸ 0◦ (at all PQ buses) (3)

where θ is the voltage angle and Vi is the magnitude of
bus i.

• Calculate the real power Pi using below equation.

Pi = Gii |Vi|2 +

n∑
j=1

|Vi|
∣∣Vj∣∣ (Gij cos θij + Bij sin θij

)
(4)

• Calculate the reactive power Qi using below equation.

Qi = −Bii |Vi|2 +

n∑
j=1

|Vi|
∣∣Vj∣∣ (Gij sin θij − Bij cos θij

)
(5)

• Form jacobian matrix H N’ M L’.
• Calculate the errors.

1Pi = Pi, specified. − Pi, calculated
1Qi = Qi, specified − Qi, calculated (6)

where 1Pi = Active power errors
1Qi = Reactive power errors
Pi, specified. = Active power at specific bus
Qi, specified. = Reactive power at specific bus
Pi, calculated. = Calculated active power using voltage
estimation
Qi, calculated. = Calculated reactive power using voltage
estimation

• Select tolerance value.
• Iteration stops if all the values are within the tolerance
value.

• Update the values of Vi and θi.

IV. REWARD BASED CHARGING SCHEMES
The existing reward or incentives-based charging schemes are
listed in the given (Table 6). They are broadly categorized as
EV subsided, Tax benefits and charger incentives for Norway,
Germany, France Spain Italy and the UK.

In these four different reward-based charging schemes are
proposed for each sector and the results are analyzed for one
of the reward schemes (RS). The proposed reward schemes
are listed below:-

• RS1 - Tariff based.
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TABLE 6. Comparison of existing reward charging schemes [52], [53].

• RS2 - Bill Discount-based weekly/monthly/yearly
• RS3 - Free Public Charging Sessions
• RS4 - Reward as Vouchers
• RS5 - Environmental Impact
A peak hour and a non-peak hour pricing tier are used for

the (RS1) charging scheme. From Fig 6, three peak hours are

initial (6 hrs to 12.30 hrs) critical (12.30 hrs to 17.30 hrs)
and final peak (17.30 to 18.30 hrs ) hours. The non-peak
hours are from 18.30 to 6 hrs. The pricing tier is highest for
critical peak hours, followed by peak hours initial and peak
hours final. The RS2 charging scheme deals with electricity
bill discounts shown in Fig 7. Discounts will be available
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FIGURE 6. Reward scheme RS1.

FIGURE 7. Reward scheme RS2.

FIGURE 8. Reward scheme RS3.

depending on time (after 3 pm or non-peak hours) and the
mode vehicles are operating in, such as grid-to-vehicle (G2V)
and vehicle-to-grid (V2G). In peak hours, V2G mode offers
a greater discount than G2V mode. There will be different
discounts on electricity for residential, public offices, banks,
and private and industrial areas.

The number of free charging sessions (RS3) will be
available for different sectors. As shown in the Fig 8. The
public sector has more free charging sessions Fig 8 if EVs
are charged in non-peak hours for the entire month/week.
The reward schemes (R4) will give vouchers for shopping,
and grocery shops the vouchers will given if charged during
non-peak hours and other vouchers if charged from solar
plants installed in various sectors as shown Fig 9. This scheme

FIGURE 9. Reward scheme RS4.

FIGURE 10. Reward scheme RS5.

can save monthly expenses of grocery. The last charging
(RS5) scheme is shown in Fig 10. When EVs are charged
by renewable sources that emit lower CO2 emissions every
week, they will get rewards as receive parking preferences in
parks and malls.

V. SIMULATION RESULTS
The IEEE 33 bus system has been used for this study as shown
in Fig 11. It has 33 buses with 32 fixed lines and 4 dotted
branches (34, 35, 36 and 37) called tie lines. Initially, the
system operates in the radial network. Tie lines highlighted
in Fig 11 are connected later forming meshes to the radial
system. EVs impact assessments are done for both network
configurations from radial to mesh network. The grid source
is connected to bus no 1 and other sources and reactive power
compensation is absent. The safe operating range of the bus
is considered as per [54], [55] 0.90 p.u and 1.1 p.u. In the
modified system network only the voltage ratings are changed
from 12.66 kV to 11 kV and the load as discussed in section II
matches the Qatar Scenario.
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FIGURE 11. System under study.

The system is divided into 5 sectors with the following
percentages 11% government (G1), banks (G2) and private
office (G3) are 14.5% each while industrial (G4) is 27%, 33%
residential (G5). Further, each sector load curve is derived
from the base case shown in Fig.4 eg for the public sector
(0.11% of base case load curve). Here Xn represents the
R, B, P, Pr and I ‘for’ residential, bank, public, private,
and industrial groups ‘respectively’ and n represents bus
numbers 1 to 33. The list of buses for each sector is given
below.

1) G1 (Public office) - P14, P15, P18, P24.
2) G2 (Banks)- B12, B13, B16, B17
3) G3 (Private office)- Pr19, Pr20, Pr21, Pr22, and Pr25.
4) G4 (Industrial office) - I26, I27, I28, I29, I30, I31,

I32, I33.
5) G5 (Residential) - R2, R3, R4, R5, R6, R7, R8, R9,

R10, R11.

The renewable sources are connected to bus
number P14.

The system operates in two modes radial and mesh
network. For both modes the study considers only on bus
voltages. The two operation are discussed below:

1) RADIAL NETWORK CONFIGURATION (RN)
During this radial configuration, the switchable branches 34,
35, 36 and 37 are switched out. That is there is no loop
formation.

2) MESH NETWORK CONFIGURATION (MN)
During this mesh configuration, the switchable branches 34,
35, 36 and 37 are switched on. Here the assessment is based
on six factors as shown in Fig 12.

FIGURE 12. Impact assessment factors.

The analysis encompasses the following robust case
studies (CS):

• CS-A: Baseline scenario with no EVs.
• CS-B: Significant impact scenario with 20% EVs in a
radial network.
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FIGURE 13. Base case bus voltages.

• CS-C: Enhanced scenario with 20% EVs and network
reconfiguration.

• CS-D: Dynamic scenario involving 20% EV penetration
in a mesh configuration, coupled with a shift in charging
time.

• CS-E: Innovative scenario with 20% EV penetration in
a mesh configuration, synergized with solar plants.

• CS-F: Outcome of the proposed reward charging
schemes.

A. CS-A: BASE CASE WITH NO EVS
In the base case, a meticulous load flow analysis and
quasi-dynamic simulations were executed using the DigSI-
LENT PowerFactory software. The total active and reactive
power recordedwere 3.23MWand 1.56MVAR, respectively.
The study focuses on the voltage profile only. The voltage
profile following the load flow analysis is depicted in Fig 13.
For the base case, it was observed that 30% of the system
operates in the unsafe region. With a 20% EV penetration
in a radial structure, this percentage increases to 39.3% in
the unsafe region. The quasi-dynamic simulation provides
detailed insights into the voltage profile changes across
24 hours for each sector. According to Table 4, the IEC
standard 50160 specifies that the lower limit for the voltage
parameter is 0.90 p.u., and the upper limit is 1.1 p.u. For the
residential sector (R2 to R9), all operate in the safe region
above 0.90 p.u, except for R10 to R11, which operate below
0.90 p.u. During the morning hours from 6 to 8, a general
drop in voltage profile was noted, with buses R10 and R11
consistently operating in the unsafe region. Conversely, from
20 hrs onward, there is a rise in voltage profile in the base
case (Fig 14a). In the G2 group, B23 operates in the safe
mode at all times, while banks located in B12, B13, B16, and
B17 enter the unsafe mode from 6 to 20 hrs (Fig 14c). In the
public sector (G1 group), P24 is the only unit operating in
the safe region, while P15, P18, and P24 are in the unsafe
regions (Fig 14e). The private sector (G3 group) exhibits a
consistent safe operation throughout the day for Pr19, Pr20,
Pr21, Pr22, Pr23, Pr24, and Pr25 (Fig 14g). Finally, in the

Industrial group (G4 group), all units (Ir26 to Ir33) operate in
safe regions (Fig 15i).

B. CS-B: CASE WITH 20% EVS RADIAL NETWORK
To assess the impact of uncontrolled EV charging on the
IEEE-33 bus system, EV load profiles were generated for
each group using the Monte Carlo method, considering
the charging times specified in Table 2. In this case
(CS-B), EV loads were added to the base case of the system,
with the charger level set as 60% of 11 kW and 40%
of 22 kW. The charging time, with a mean and standard
deviation of (14, 1), was considered. The average load profile
for 100 EVs profiles was generated using Matlab in in
Fig 16 and assigned to respective buses in the DigSILENT
software.

The quasi-dynamic results for this case (CS-B) are
presented in Fig 14 (b). In this scenario, 20% of the buses
are EVs, connected to buses (R3, R4, B23, P14, Pr19, I27,
I28). The voltage profiles for the residential sector (G5)
indicate that buses R2 to R5 operate in a safemode throughout
the day, while R6 to R11 are in an unsafe mode. Voltage
drops were observed twice: first from 3 to 6 hrs and then
at t = 11 to 13 hours, compared to the base case voltage
profile. The voltage profile improves from 14.30 hrs. Buses
R8 to R11 experience higher voltage drops as they are farther
from the substation. The bank sector EV, connected to bus
B23, operates in a safe region all day, with voltage drops
observed for bank buses B12, B13, B16, and B17 at periods
3.30 to 6 hrs and the second drop at t = 11 to 13 hrs in
Fig 14 (d). The voltage drop at t = 13 hrs decreases by
0.45 % for B12,B13,B16 and B17 while 0.20% decrease
for B23. In Fig 14 (f), voltage drops in the public sector
occur in the early morning and afternoon. For the other two
sectors, voltage drops were observed at 8 am for the private
office, and at time t = 3.30 to 7 hrs for the industrial sector.
Public office P24 has a small voltage drop and operates above
0.90 throughout the day, being near the source. Offices P14,
P15, and P18, situated farther from the substation, experience
larger voltage drops, especially P14, which is connected to
an EV. The voltage drop occurs at two intervals during the
day: one in the morning and another small drop at t =

11 to 13 hrs. In the private sector (Fig 14h), all offices at
Pr19, Pr20, Pr21, Pr22, and Pr25 operate in a safe region for
24 hours. However, voltage drops occur during two intervals.
The voltage drop is smaller in Pr19, being closer to the source,
while Pr25, connected to the B23 bus with bank sector EV
load, experiences a higher voltage drop. In the industrial
sector, EV load is connected to I27 and I28. Fig 15(j) shows
that all buses in this sector experience a larger voltage drop
due to the higher-rated EV charger size. The impact of 40%
EV penetration on all sectors is shown in Fig 17. The EVs
are connected to buses R4, R5, R6, R7, B12, B23, P14, P24,
Pr19, Pr20, I26 to I29. Residential, banks, public, private
offices, and industrial sectors exhibit a larger first voltage
drop compared to the second voltage drop. Despite this,
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FIGURE 14. CS-A(a),(c),(e) and (g) and CS-B results 20% EV penetration (b),(d),(f),(g).

private offices continue to operate in safe regions throughout
the day.

C. CS-C: 20% EVS PENETRATION WITH NETWORK
RECONFIGURATION
In this scenario, the impact of uncontrolled charging on
network reconfiguration is observed. After adding EV
load profiles to the base case, switchable branches or tie

lines 34, 35, 36, and 37 are activated for the mesh network.
The results for this case are presented in Fig 18. All sectors
operate within a safe voltage range compared to the scenarios
in Fig 14 (b), (d), (f), and (h), and Fig 15 (j). Additionally,
the voltage profile waveform pattern for the radial network
is similar to that of the mesh network, as depicted in Fig 18.
Despite the resemblance in thewaveform patterns, the voltage
drop for the residential, banks, public, and industrial sectors
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FIGURE 15. CS-A (i) and CS-B results (j).

FIGURE 16. Average charging profile for 100 EVs for group G1, G2-A, and
G3, G4, G5.

shows improvement in the mesh network by 11.70% (bus
R11) in Fig 18(a), 16.99% (B17), 17.77% (P18), and 15.37%
(I33) respectively at 7 hrs. Notably, Pr25 exhibits a reduced
voltage drop by 1.5625%. For the bank, public-private, and
industrial sectors, significant voltage drops are observed for
B13, P14, Pr22, and I27. (Table 7) provides a comparison
of load flow analysis between different EV penetrations and
configurations. The table clearly indicates that the mesh
configuration yields a better voltage profile and lower load
losses compared to the radial network. The voltage profile
improvement in mesh configuration is due to connection
strong bus to the weak bus.

D. CS-D: 20 % EVS PENETRATION IN A MESH
CONFIGURATION WITH A CHANGE IN CHARGING TIME
The impact of uncontrolled EV charging with change in
charging time is considered in this case for residential (18,2)

and banks (15,1). For this case, the results are shown in
Fig 19. Two voltage drops occurred during 24 hours in
Fig 19. The first drop in voltage in all sectors in the early
morning time and the second drop in the afternoon. The
second voltage drop for the sectors residential, banks, public,
and private is sharper as compared to the first voltage drop.
In addition, goes below 0.96p.u (R11, B13, P14, and Pr25)
in Fig 19 as compared to in Fig 18. The industrial sector
buses are unchanged. The voltage drop becomes larger as the
penetration of EV increases to 40%.

E. CS-E: 20% EVS PENETRATION IN A MESH
CONFIGURATION WITH SOLAR PV PLANT
In this case, the impact of integrating PV sources and
EVs is analyzed. For this scenario (CS-E), PV integration
is considered at bus P14. The rating of the PV panels
is 1503 kW for the 14th bus. In Qatar, the hot summer
months extend from June to September, and therefore, the
average PV generation data for September is taken into
account. (location - 25.239727◦, 51.613770◦ (25◦14’23’’,
051◦36’50’’), obtained from the website [56], was used
for analysis. Large-scale commercial photovoltaic systems
mounted with tilt of PV panels 24 degrees are selected.
The results indicate an improvement in the voltage profile,
as illustrated in Fig 20. In this case, all sector buses are
operating in safe regions above 0.90 p.u. Furthermore, there
is an increase in the voltage profile for residential, banks,
public, and private sectors during the period from 6 to
13 hours, compared to the case other cases. For the industrial
sector, the voltage profile improves from 10 to 13 hours.
Specific increases in voltage are observed in bus P14 (5.26%),
bus B13 (4.21%), buses Pr25 and R11 (2.08%), and bus Ir33
(1.04%) at 10 hrs.

F. CS-F: PROPOSED REWARD CHARGING SCHEMES
RESULTS
In this case, the impact of controlled charging is analysed
with mesh and radial network reconfiguration. To do this
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FIGURE 17. CS-B results 40 % EV penetration (a) Residential (b) Banks (c) Public (d) Private (e) Industrial.

TABLE 7. Comparison with with base case.

10 driver ratings from (1 to 5) are taken for reward
charging schemes RS1 to RS5. Further, using ANOVA p
values are calculated to compare the mean values across
different groups to if there is a significant difference.

The p-values of RS1, RS2, RS4 and RS5 as given in
(Table 8). values less than 0.05 concluding that there is
a significant difference from the other drivers [57]. The
schemes RS1, RS2, RS4, and RS5 are having values less
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FIGURE 18. CS-C results ((a) Residential (b) Banks (c) Public (d) Private (e) Industrial.

TABLE 8. Comparision with TOU.

than 0.05. Furthermore,the Pearson correlations analysis
are used to find relationships between schemes. If near
to 1 positive linear relationship between two schemes
If near to -1 strong negative linear relationship between
schemes If near to weak or no linear relationship between
schemes.

The results of 40% EV penetration for the mesh network
with reward charging RS2 is shown in Fig 21. Now to
implement a reward charging scheme residential sector the
service provider discounts on tariff rates as a reward to the
residential sector if charged after 15 hrs onwards. The tariff
rate for non-peak hours (15 to 24) is considered as lesser as
compared to peak hours. Comparing results within Fig 18 the
following are observations.

• The first observation was that the voltage drop that was
occurring earlier between 11 to 14 hrs is no more for all
sectors.

• Secondly, it was observed that a voltage drop occurs
for 15 to 24 the service provider assigned a dis-
count for this duration for the residential sector.
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FIGURE 19. CS-D results (a) Residential (b) Banks (c) Public (d) Private (e) Industrial.

TABLE 9. Comparison with TOU results.

That improves the overall performance of the other
buses.

• The third observation is that the first voltage drop that
occurred early in the morning is still visible because
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FIGURE 20. CS-E results with EVs and PVs (a) Residential (b) Banks (c) Public (d) Private (e) Industrial.

TABLE 10. Impact of RS.

of reward charging scheme is not implemented in other
sectors. The other reason is the, EV charging for banks,
public, private and industrial sectors as shown in Fig 16.

• The fourth observation is that the voltage profile
improved after 8pm onwards because the baseCS-A and
EV load is lower as seen in Fig.14,15,16. However, all
buses are operating above 0.90 p.u and they are in safe
regions all day.

The below comparison (load flow analysis) (Table 9) of the
impact of uncontrolled and TOU charging impact on genera-
tion, load and load losses for 20 % and 40% EV penetration
for radial and mesh network analysis. It was observed that
TOU charging reduced load with lesser load losses for both
RNs and MNs. The (Table 10) give details about the impact
of RS (advantage, parameters and parameters effect for
RS 1 to 5).
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FIGURE 21. CS-F Proposed reward charging schemes RS2 results with EVs and PVs(a) Residential (b) Banks (c) Public (d) Private (e) Industrial.

VI. CONCLUSION
In conclusion, the impact assessment of Electric Vehicles
(EVs) is influenced by several key factors. This study
identifies seven crucial elements that determine the impact:

• Network load curve pattern.
• Type of network (radial, mesh).
• Schedule of charging time.
• Power rating of EV charger.
• Charging schemes (uncontrolled, reward charging
schemes).

• Location of EV integration.
• Integration of solar PV plants.

The paper investigates the impact of both uncontrolled
and controlled EV charging in distribution systems with
radial and mesh configurations. Additionally, it proposes
four reward charging schemes applicable to public, private,

bank offices, industrial, and residential sectors. The key
conclusions drawn from the study include:

• For 20% EV penetration, specific sectors such as
residential (R1 to R8), bank (B23), and public (P24),
as well as private offices (Pr19 to Pr25), operate in the
safe region throughout the day. However, other sectors
experience unsafe conditions, and further increases in
EV penetration worsen the voltage drop.

• Mesh configuration with 20% EV penetration results in
all sector buses operating in safe regions, indicating a
reduction in load losses compared to radial networks.

• Altering charging times and introducing additional EVs
(shopping load) to mesh configurations leads to a
sharper voltage drop during specific hours (11 to 13 hrs).

• The integration of solar PV in mesh configurations
improves the voltage profile during the period from 8 to
13 hrs, with all bus voltages above 0.90 p.u.
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• Implementation of the R2 scheme in the residential
sector helps avoid voltage drops during specific time
intervals. Implementing specific schemes for one sector
also enhances the voltage profile of other sectors.

The findings emphasize the importance of implementing
reward charging schemes and network reconfiguration during
specific time intervals, such as early morning and early after-
noon, to alleviate network stress and equipment wear. These
strategies can aid in sustainable, green energy management,
acting as additional sources during peak demand. The study
underscores that implementing reward charging schemes and
network reconfiguration facilitates the integration of more
EVs into distribution networks without violating operational
limits.

The future scope involves implementing Vehicle-to-Grid
(V2G) grid analysis across all sectors. It is essential to
acknowledge the study’s limitation, as it did not consider
other parameters like lines overloading, thermal limits, and
Total Harmonic Distortion (THD),etc.
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