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Excitation of the entropy mode in the field of intense sound, that is, acoustic heating, is theoretically
considered in this work. The dynamic equation for an excess density which specifies the entropy mode,
has been obtained by means of the method of projections. It takes the form of the diffusion equation with
an acoustic driving force which is quadratically nonlinear in the leading order. The diffusion coefficient is
proportional to the thermal conduction, and the acoustic force is proportional to the total attenuation.
Theoretical description of instantaneous heating allows to take into account aperiodic and impulsive
sounds. Acoustic heating in a half-space and in a planar resonator is discussed. The aim of this study
is to evaluate acoustic heating and determine the contribution of thermal conduction and mechanical
viscosity in different boundary problems. The conclusions are drawn for the Dirichlet and Neumann
boundary conditions. The instantaneous dynamic equation for variations in temperature, which specifies
the entropy mode, is solved analytically for some types of acoustic exciters. The results show variation
in temperature as a function of time and distance from the boundary for different boundary conditions.

Keywords: nonlinear acoustics; acoustic heating in resonators; Burgers equation; first and second type
boundary conditions; acoustic heating in a half-space.

1. Introduction

The modes of linear flow are represented by acous-
tic (wave) and non-wave modes. The latter modes are
entropy and vortex types of fluid motion. The entropy
mode is a potential flow, usually specified by isobaric
increase in temperature and, in thermoconducting flu-
ids, by a weak bulk flow. Modes of infinitely small mag-
nitudes do not interact in the course of a flow. However,
in the real flows of finite magnitudes with attenuation
of any kind, they do interact. This interaction is fol-
lowed by two phenomena. First, by transfer of macro-
scopic energy and momentum into chaotic motion of
molecules (that is, increase of the background tem-
perature). And second, by excitation of macroscopic
bulk flows. Nonlinearity and some kind of attenuation
in a fluid are required for this transfer. Usually, non-
linear acoustics focuses on the nonlinear effects that
are associated with intense sound. However, it is nec-
essary to describe nonlinear distortion of sound itself
along with excitation of non-wave modes in its field.
In bounded flows, the geometry of a flow and bound-

ary conditions are of key importance. The nonlinear
excitation of the thermodynamic perturbations that
belong to the entropy mode in the half-space and in
one-dimensional resonator, and satisfy the physically
meaningful boundary conditions, is the subject of this
study.

The method of projections is used to this end. It
was proposed by the author and successfully applied
for many problems of fluid dynamics (Perelomova,
2003a; 2012; 2018). Its foundation is the linear projec-
tion of the total vector of perturbations onto specific
disturbances by means of matrix projectors. These fol-
low from the conservation laws in the differential form
in a linear flow. The total field of perturbations in
a planar linear flow is split into two acoustic modes and
the entropy mode (Chu, 1958; Rudenko, Soluyan,
2005). Suitability for weakly nonlinear flows is the ad-
vantage of the projection method (Leble, Perelo-
mova, 2018). By means of projection, the nonlinear
system of conservation laws may be decomposed into
individual nonlinear dynamic equations that govern
perturbations in the corresponding mode. Excitation of
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the entropy mode in the field of sound (that is, acoustic
heating) assumes dominance of sound and weakness of
the entropy perturbations. Instantaneous variation of
temperature in the entropy mode is described by the
diffusion equation with an acoustic driving force that is
quadratically nonlinear in the leading order. Acoustic
force is proportional to the total attenuation. The fluid
velocity in the sound mode satisfies the Burgers dy-
namic equation (Rudenko, Soluyan, 2005). This is
one of the consequences of projecting, where nonlinear
term in the Burgers equation can be interpreted as an
acoustic force that reflects the self-action of sound. The
summary perturbations at the boundaries that consist
of parts belonging to entropy and wave modes must
satisfy the proper boundary conditions.

The presented method is preferable due to instan-
taneous description of acoustic heating. The previous
approach made use of periodicity as the condition for
splitting the energy balance equation into acoustic and
non-acoustic parts by means of averaging over the
sound period (Rudenko, Soluyan, 2005; Makarov,
Ochmann, 1996). Averaging over the sound period is
actually some kind of projection. This, however, does
not consider aperiodic acoustic disturbances and de-
tailed dynamics of perturbations in the entropy mode.
In this study, the instantaneous equation is used for
description of heating in the bounded space: the half-
space and one-dimensional resonator with the Dirich-
let or Neumann boundary conditions that correspond
to different physical conditions of a flow. The results
may be of especial interest for flows of fluids with no-
ticeable thermal conduction, in particular, for all gases
and metallic liquids. If the thermal conduction equals
zero, the diffusion coefficient also equals zero, and the
theoretical description is simplified to a great extent.

2. Projecting onto acoustic and entropy modes
in the linear flow

We start from the set of conservation equations in
the planar flow of a thermoconducting Newtonian fluid
in the differential form. They are: the momentum equa-
tion, the energy balance equation, and the continuity
equation:

ρ(
∂v

∂t
+ v

∂v

∂x
) +

∂p

∂x
=

4µ

3

∂2v

∂x2
,

ρ(
∂e

∂t
+ v

∂e

∂x
) + p

∂v

∂x
= χ∆T +

4µ

3
(
∂v

∂x
)

2

, (1)

∂ρ

∂t
+

(∂ρv)

∂x
= 0,

where x, t are the spatial co-ordinate and time, and
ρ, p, v, T denote density, pressure, velocity of a fluid,
and temperature; χ, µ are thermal conductivity and
viscosity, both assumed to be constants. The caloric

and thermal equations of state of an ideal gas complete
the system (1). Its internal energy and temperature are
related as

e = CvT =
p

(γ − 1)ρ
,

with Cv denoting the heat capacity under constant
volume per unit mass; and γ = Cp/Cv being the ra-
tio of specific heats. We consider the constant equilib-
rium thermodynamic parameters without bulk flows
and make use of the excess quantities p′ = p − p0,
ρ′ = ρ − ρ0, where ρ0 and p0 are equilibrium values.
Equations (1) are readily rearranged as
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where

δ1 =
4µ

3ρ0
, δ2 =

χ

ρ0
(

1

Cv
−

1

Cp
) , c0 =

√
γp0

ρ0
.

All three Eqs (2) are written within the accuracy up
to quadratic nonlinear terms, including those propor-
tional to dissipative coefficients. This reflects smallness
of magnitudes of perturbations. Hence, the equations
are valid if the Mach number of a flow M is much lower
than the unity. All conclusions which follow are valid
in the leading order.

A linear fluid flow, that is, a flow of infinitely small
magnitudes, is represented by the system (2) with zero
right-hand side which may be rearranged as

∂ψ

∂t
+Lψ = 0, (3)

where
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⎟
⎠

.

Transfering it into the Fourier space, one arrives at

∂ψ̃

∂t
+ L̃ψ̃ = 0, (4)

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


A. Perelomova – Impact of Boundary Conditions on Acoustic Excitation of Entropy Perturbations. . . 323

where

ψ̃ =
⎛
⎜
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,

and

ψ̃(k) exp(iω(k)t) = ∫ ψ(x, t) exp(ikx)dx.

The vectors that follow are solutions to Eq. (4)
and represent all possible types of the linear flow
(Perelomova, 2003a; Chu, 1958; Perelomova,
2003b):
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Their analogues in the (x, t) space,
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(5)

are modes with the ordering numbers j (j = 1,2,3),
where ρ1, ρ2, ρ3 are excess densities which specify the
corresponding mode, and β = δ1 + δ2 denotes the total
attenuation. The definition of modes is conditioned by
the kinds of dispersion relations (Perelomova, 2003b;
Leble, Perelomova, 2018)

ω1 = c0k + i
βk2

2
, ω2 = −c0k + i

βk2

2
,

ω3 = i
δ2k

2

γ − 1
.

(6)

Three linearly independent vectors reflect three types
of links between specific perturbations in a planar
flow: the first two are acoustic, rightwards and left-
wards progressive, and the third one is the entropy

mode (Chu, 1958; Rudenko, Solyan, 2015; Leble,
Perelomova, 2018). The specific excess densities ρ1,
ρ2, ρ3 determine the total dimensionless perturbations
v, p′, ρ′ in a one-to-one way:

ψ =
3

∑
j=1

( vj pj ρj )
T
.

The specific excess densities may be extracted from
the vector of total perturbation by means of projecting
rows:

Ljψ = ρj , j = 1,2,3. (7)

These rows take the forms
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+
δ2ρ0

2c20

∂
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∂
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1
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δ2ρ0
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c20
1),
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β

4c30
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δ2
2c30(γ − 1)

)
∂

∂x
,

b∗ =
δ2

2c0(γ − 1)

∂

∂x
.

Obviously,
3

∑
j=1

Lj = (0 0 1).

The important property of projecting rows Lj is to ex-
tract the linear dynamic equation for ρj when applying
at Eqs (3) (Perelomova, 2003b; Leble, Perelo-
mova, 2018). For example,

L1 (
∂ψ

∂t
+Lψ) =

∂ρ1

∂t
+ c0

∂ρ1

∂x
−
β

2

∂2ρ1

∂x2
= 0.

3. Projecting in a weakly nonlinear flow
and acoustic heating in a bounded space

3.1. The Burgers equation

Going to the flow with finite magnitudes of pertur-
bations, the wave modes need to be corrected in order
to hold adiabaticity within accuracy up to terms pro-
portional to M2. Quasi-adiabaticity plays a key role
in description of nonlinear distortions and nonlinear
effects of sound which are proportional to M2 in the
leading order. The relations as follows support adia-
baticity with the required accuracy. In particular, the
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relations for the rightwards progressive mode take the
form

ψ1=

⎛
⎜
⎜
⎜
⎜
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⎜
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1
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⎛
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0

(γ + 1)ρ0

4
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(γ − 3)ρ0

4c20

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

v2
1 . (8)

Equation (8) recall the links which specify the Rie-
mann wave. Additionally, they take into account at-
tenuation of a wave. We make use of relations (8) in
order to study the weakly nonlinear flow in the case
of a dominant first sound mode. They have impact on
the coupling of modes and dynamic equations which
take into account nonlinear interaction of modes. An
excess density which specifies the first acoustic mode,
satisfies the equation

∂ρ1

∂t
+ c0

∂ρ1

∂x
+

(γ + 1)c0
2ρ0

ρ1
∂ρ1

∂x
−
β

2

∂2ρ1

∂x2
= 0.

It may be obtained by applying L1 on the system (2)
if ψ1 is taken alone due to its dominance. The non-
linear term may be interpreted as a result of nonlin-
ear self-action of the dominant sound mode. In view
of links (5), the velocity of a fluid specifying the first
mode, satisfies the Burgers equation

∂v1

∂t
+ c0

∂v1

∂x
+

(γ + 1)

2
v1
∂v1

∂x
−
β

2

∂2v1

∂x2
= 0. (9)

We consider the dominant first wave mode. This con-
dition determines some temporal and spatial domains.
A solution to Eq. (9) should take into account proper
boundary conditions.

3.2. Acoustic heating in a half-space

Applying L3 in Eqs (2) and making use of ψ1 from
(8), yields a leading-order dynamic equation:

∂ρ3

∂t
−

δ2
γ − 1

∂2ρ3

∂x2
=
β(γ − 1)ρ0

2c20
(v1

∂2v1

∂x2
− (

∂v1

∂x
)

2

)

= F3(x, t), (10)

where F3 represents an “acoustic force” which excites
the entropy perturbations. Let us consider the pro-
cesses in the half space x ≥ 0 at t ≥ 0. The solu-
tion to (10) which satisfies the second-type (Neumann)
boundary condition is as follows:

∂ρ3

∂x
(t, x = 0) = 0, (11)

ρ3(x, t) =
√
γ − 1

t

∫
0

∞

∫
0

e
− (γ−1)(x−ξ)2

4δ2(t−τ) + e
− (γ−1)(x+ξ)2

4δ2(t−τ)

2
√
δ2π(t − τ)

⋅F3(ξ, τ)dξ dτ. (12)

The boundary condition (11) corresponds to a zero
flow of energy through the boundary which associates
with the entropy mode, since T3 = −

T0

ρ0
ρ3 and hence

∂T3

∂x
(t, x = 0) = 0.

This is valid for zero total energy flux at the boundary,
at least, on average, if excited by the periodic sound,
since the spatial derivatives of acoustic perturbations
are zero on average. The first-type (Dirichlet) bound-
ary condition for an excess density

ρ3(t, x = 0) = 0 (13)

corresponds to constant temperature at the boundary
which associates with the entropy mode,

T3(t, x = 0) = 0.

The total excess temperature at the boundary is also
zero, at least, on average. This condition requires an
inflow of external energy. The solution to (10) with the
boundary condition (13), takes the form

ρ3(x, t) =
√
γ − 1

t

∫
0

∞

∫
0

e
− (γ−1)(x−ξ)2

4δ2(t−τ) − e
− (γ−1)(x+ξ)2

4δ2(t−τ)

2
√
δ2π(t − τ)

⋅F3(ξ, τ)dξτ. (14)

The harmonic fluid velocity specifying the first mode,
that is, solution to the linear wave equation without
taking into account attenuation,

v1 = V0 sin(ω(t − x/c0)) (15)

leads to a uniform solution

−
ρ3

ρ0
=
T3

T0
=
β(γ − 1)ω2V 2

0 t

2c40
=

(γ − 1)M2θ

2
(16)

in the case of the second-type boundary condition (zero
flux of energy at the boundary) and to the solution

−
ρ3

ρ0
=
T3

T0
=
β(γ − 1)ω2V 2

0

2c40

t

∫
0

Erf
⎛

⎝

x

2a
√

(t − τ)

⎞

⎠
dτ

=
(γ − 1)M2

2

θ

∫
0

Erf (
X

√
θ − ξ

) dξ (17)

in the case of the first-type condition (constant tem-
perature at the boundary), where

X =
ω
√
β

2ac0
x, θ =

βω2

c20
t,

a =

√
δ2
γ − 1

, M =
V0

c0
.
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Since Erf (a) < 1 for any a ≥ 0, the absolute values
of perturbations which associate with the Dirichlet
boundary condition, are always smaller than that cor-
responding to the Neumann boundary condition. This
reflects reduction of energy in the volume of the res-
onator due to a flux of energy through the boundary
in the case of the second-type boundary condition. Ta-
ble 1 represents the limits to which a dimensionless ex-
cess temperature tends if X is much smaller or much
larger than the unity for the Dirichlet boundary con-
dition (13) in the case of periodic excitation (15).

Table 1. Limit to which an excess dimensionless temper-
ature which associates with the entropy mode tends if

X =
ω
√
β

2ac0
x tends to zero or infinity. The Dirichlet boundary

condition (13) and the periodic sound (15).

X X ≪ 1 X ≫ 1

T3

T0

(γ − 1)M2
√

θX

2

(γ − 1)M2

2
θ

The quasi-periodic approximate solution to the
Burgers equation (9) takes the form (Rudenko,
Soluyan, 2005):

v1 = V0 exp(−βω2t/c20) sin(ω(t − x/c0)). (18)

The case of the second-type boundary condition yields
the expression

−
ρ3

ρ0
=
T3

T0
= −(1 − exp(−

βω2t

c20
))

(γ − 1)V 2
0

2c20
, (19)

and the case of the first-type boundary condition leads
to the formula

−
ρ3

ρ0
=
T3

T0
=
β(γ − 1)ω2V 2

0

2c40

⋅

t

∫
0

exp(−
βω2τ

c20
)Erf (

x

2a
√
t − τ

) dτ

=
(γ − 1)M2

2

θ

∫
0

exp(−ξ)Erf (
X

√
θ − ξ

) dξ. (20)

Boundary conditions of the first and second type for
excess density in the entropy mode do not disturb the
total velocity at the boundary in the leading order.
The perturbation of density develops due to the acous-
tic force of heating which is proportional to β, and the
corresponding velocity v3 is a small quantity of order
β2 in accordance to the links (5). Hence, there is no
bulk flow associating with the entropy mode. Figure 1
shows the excess dimensional temperature in the en-
tropy mode as a function of X and θ for zero tem-
perature perturbations at the boundary in the cases of
periodic and quasi-periodic excitation at the boundary.

a)

b)

Fig. 1. Excess temperature associated with the entropy

mode as a function of X =
ω
√
β

2ac0
x and θ = ω2β

c2
0
t. The case

of constant temperature at the boundary and harmonic ex-
citation (15) (a) and quasi-harmonic (b) excitation at the

boundary (18).

3.3. Acoustic heating in a resonator

The counterpropagating waves do not nonlinearly
interact in the leading order. This was discovered
by Kaner and co-authors (Kaner et al., 1977). Re-
cently, a similar result was obtained by Ruderman with
the help of the spectral method (Ruderman, 2013).
The counter-propagating waves have individual influ-
ence on acoustic heating, if they are periodic. The
cross acoustic terms in the acoustic force of heating
are zero on average. The author has proved that in
(Perelomova, 2008). The leading-order equation

∂ρ3

∂t
−

δ2
γ − 1

∂2ρ3

∂x2
=
β(γ − 1)ρ0

2c20

⋅(v1
∂2v1

∂x2
− (

∂v1

∂x
)

2

+ v2
∂2v2

∂x2
− (

∂v2

∂x
)

2

) = F3 (21)

describes evolution of the entropy perturbations. The
velocities v1, v2 satisfy the Burgers equations for pro-
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gressive perturbations and the summary conditions at
the boundaries of a resonator,

v1(x = 0, t)+v2(x = 0, t) = v1(x = L, t)+v2(x = L, t) = 0.

The solution is valid for the small Reynolds numbers,
that is, for large enough attenuation, it is a sum of two
components:

v1 = V0 exp(−βω2t/c20) sin(ω(t − x/c0)),

v2 = −V0 exp(−βω2t/c20) sin(ω(t + x/c0)),
(22)

where the length of a resonator L includes the natural
number of wave lengths,

ωL

c0
= Nπ,

and N is any natural number ensuring smallness of the
Reynolds number which is proportional to N−1L. The
resulting acoustic force of heating equals to

F3 = −
βV 2

0 (γ − 1)ω2ρ0

c40
exp(−

βω2t

c20
). (23)

The acoustic force of heating takes the same form for
the boundary conditions of the second type at both
boundaries or for the first-type condition at one of the
boundaries and the second-type condition at the other
one. The series

ρ3(x, t) =
∞
∑
n=1

⎛

⎝

t

∫
0

e−
a2π2n2

L2 (t−τ)F3,n(τ)dτ
⎞

⎠
sin(

nπx

L
),

(24)
where

F3,n(τ) =
2

L

L

∫
0

F3(τ) sin(
nπx

L
) dx

=
2 exp (−

βω2τ
c20

) (1 − cos(πn))

nπ
,

is a solution satisfying the first-type boundary condi-
tions and ensuring constant temperature at the bound-
aries,

ρ3(x = 0, t) = ρ3(x = L, t) = 0,

T3(x = 0, t) = T3(x = L, t) = 0.

The total fluid velocity v1 + v2 + v3 at both boundaries
remains zero. An excess density which associates with
the entropy mode, takes the form

ρ3(x, t)

ρ0
=

2β(γ − 1)L2ω2V 2
0

πc20

⋅
∞
∑
n=1

c∗

βL2ω2n − π2a2c20n
3

sin(
nπx

L
), (25)

where

c∗ = (1 − cos(πn))(exp(−
βω2t

c20
) − exp(−

a2n2π2t

L2
)).

If βL2ω2 −π2a2c20n
2 = 0 for some n, the corresponding

constituent in the sum,

(exp (−
βω2t
c20

) − exp (−a
2n2π2t
L2 ))

βL2ω2n − π2a2c20n
3

needs to be substituted by −t exp (−
βω2t
c20

). Making use
of the dimensionless variables

t′ =
π2β

L2
t, ν =

a2

β
, N =

ωL

πc0
,

Eq. (25) may be readily rearranged as

ρ3

ρ0
= −

T3

T0
=

2(γ − 1)N2V 2
0

πc20

⋅
∞
∑
n=1

d∗

n(N2 − n2ν)
sin(

nπx

L
), (26)

where

d∗ = (1 − cos(πn))(exp(−N2t′) − exp(−n2νt′)).

For any parameters, the sum is negative and an ex-
cess temperature associated with the entropy mode is
positive. ν = δ2

(δ1+δ2)(γ−1) varies from 0 (zero thermal

conduction) untill (γ − 1)−1 (this does not exceed 3,
this is the case of δ1 = 0). The absolute quantities of
perturbations in the entropy mode achieve maximum
in the middle of a resonator, that is, at x = L

2
. They

achieve maximum at some time which is difficult to
establish due to an infinite amount of constituents. It
may be evaluated approximately in view of the fact
that the first constituent has the biggest contribution
in the series of partial sums. It corresponds to n = 1

and achieves maximum at t′ = ln(N2)−ln(ν)
N2−ν . The case

N2 = ν corresponds to the maximum at t′ = N−2. Ex-
amples of numerical evaluations of

1

(γ − 1)M2

T3

T0
,

where M = V0

c0
, are shown in Fig. 2.

The next case represents the boundary conditions
which correspond to zero temperature flux at the
boundaries, that is, thermally isolated boundaries:

∂ρ3

∂x
(x = 0, t) =

∂ρ3

∂x
(x = L, t) = 0,

∂T3

∂x
(x = 0, t) =

∂T3

∂x
(x = L, t) = 0.

The total fluid velocity v1 + v2 + v3 at both boundaries
remains zero. The solution to Eq. (21) with acoustic
force (23) is uniform:

ρ3

ρ0
= −

T3

T0
= −M2

(γ − 1)(1 − exp(−
βω2t

c20
)) . (27)
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a) b)

c) d)

Fig. 2. Dimensionless excess temperature associated with the entropy mode, 1
(γ−1)M2

T3
T0

as a function of t′ = π2β
L2 t

and X =
x
L

. Cases of different N and ν.

4. Conclusions

The main result of this study is a theoretical de-
scription of the non-wave perturbations of density and
temperature, where boundary conditions and thermal
conductivity of a fluid are taken into account. These
contribute to the equilibrium thermodynamic state of
a fluid. In turn, variations in equilibrium tempera-
ture affect the wave processes. The entropy perturba-
tions are nonlinearly excited by sound that may be
aperiodic or impulsive. This is the advantage of the
current methodology as compared to previously pro-
posed methods that used averaging over the sound pe-
riod (hence referred only to the periodic sound) and
considered heating in unbounded volumes of a fluid
(Rudenko, Soluyan, 2005; Makarov, Ochmann,
1996; Hamilton, Blackstock, 1998). The theoreti-
cal results of this study are supplemented by analyt-
ical examples of dynamics of an excess temperature
that is associated with the entropy mode. These ex-
amples consider periodic and quasi-periodic acoustic

disturbances and boundary conditions of the first and
second types. The description may be useful in tech-
nical and medical applications of ultrasound, where
accurate evaluation of variations in temperature is of
great importance (Izadifar et al., 2017). Molevich
(2001) studied acoustic heating excited by the peri-
odic sound in acoustically active unbounded media.
Recent studies in plasma physics pay special attention
to magnetoacoustic heating of coronal plasma which
requires proper accounting for the boundary condi-
tions and magnetosound source (Sakurai, 2017; Mu-
rawski et al., 2011). Acoustic heating in plasmas is
special due to presence of fast and slow magnetosound
perturbations.

Evolution of density perturbations belonging to the
entropy mode is governed by the diffusion equation
with coefficient proportional to the thermal conduction
(Eq. (10)). It is instantaneous, and includes an acous-
tic source in its right-hand side, which is nonlinearly
quadratic in the leading order, and proportional to the
total attenuation. The fluid velocity specifying the first
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dominant mode satisfies the Burgers equation (9). The
boundary conditions play a key role in dynamics not
only of wave perturbations, but also in dynamics of
the secondary non-wave motions that get stronger
in the wave field. The perturbations at boundaries may
be conditioned by excitation of a transducer, and by
properties of boundaries themselves to reflect physics,
for example, requirement of zero total velocity at the
boundary. Usually, these conditions may be satisfied
by the discrete wave spectrum, in contrast to the flows
in unbounded volumes. It is worth noting that the
second-type boundary condition for an excess temper-
ature (the Neumann condition, that is, zero energy
flux through the boundary) in a problem that relates
to the half-space, yields perturbations in the entropy
mode that do not depend on thermal conductivity at
all. Solutions (16), (19) overlap with solutions to (10)
with zero diffusion coefficient. The same conclusion
may be formulated for the entropy mode perturba-
tions in a resonator in the case of the Neumann con-
ditions for an excess temperature at the boundaries.
This is related to periodic and quasi-periodic acoustic
disturbances that excite acoustic heating. The reason
for that is the uniform acoustic force of heating, which
in turn creates uniform entropy perturbations.

In this study, Eq. (10) is solved analytically for
physically meaningful examples of acoustic perturba-
tions. In media without heat conduction, excess den-
sity in the entropy mode may be established by simple
integration of the acoustic force over time. Considera-
tion of thermal conduction requires to solve the diffu-
sion equation with proper total boundary conditions.
Thus, there is a pronounced difference between analy-
tical description of acoustic heating in thermoconduct-
ing fluids and those without thermal conduction.
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