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Abstract
In this paper, energy slope averaging in the one-dimensional steady gradually varied flow
model is considered. For this purpose, different methods of averaging the energy slope between
cross-sections are used. The most popular are arithmetic, geometric, harmonic and hydraulic
means. However, from the formal viewpoint, the application of different averaging formulas
results in different numerical integration formulas. This study examines the basic properties
of numerical methods resulting from different types of averaging.

Key words: standard step method, numerical integration, initial value problem, ordinary dif-
ferential equation, open channel, steady gradually varied flow, energy slope

List of symbols

A – wetted cross-sectional area;
c – any constant in the stability analysis problem;
f (x, y) = y′(x) – derivative of the function y(x);
g – gravitational acceleration;
g(δ) – function interpolating the integrand;
h – water level elevation above the assumed datum;
L – length of the considered channel reach;
n – Manning’s roughness coefficient;
Q – flow discharge;
R – hydraulic radius;
S – energy slope;
Si – average slope of the energy line in the channel reach

bounded by the cross-sections i and i + 1;
U – average velocity in a cross section;
x – spatial variable in the energy equation or the independent

variable in the ordinary differential equation;
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y – dependent variable in the ordinary differential equation;
y0 = y(x = x0) – initial value;
z(µ) – function linking two subsequent computational values in

a numerical scheme;
α – energy correction coefficient;
δ – shape parameter of the interpolating function;
∆xi – step size (distance between the cross sections i and i + 1);
λ – Dalhquist’s equation parameter;
τ – friction coefficient.

1. Introduction

One-dimensional steady gradually varied flow (SGVF) in open channels is a basic
subject of interest for hydraulic engineers. The usual approach to analysing SGVF,
commonly called the standard step method (Chanson 2004, Chow 1959, French
1985), is a state-of-the-art methodology for finding the flow profile along the channel.
This method can be interpreted as a result of the application of the discrete Bernoulli’s
equation to a channel reach.

For a channel reach bounded by neighbouring cross-sections indexed i and i + 1
(Fig. 1), Bernoulli’s equation has the following form:

hi+1 + αi+1
U2

i+1
2g

= hi + αi
U2

i
2g
− ∆xi · Si, (1)

where:
∆xi – step size (distance between the cross sections i and i + 1),
U – average velocity in a cross section,
h – water surface elevation above the assumed datum,
A – wetted cross-sectional area,
g – gravitational acceleration,
α – energy correction coefficient,
Si – average slope of the energy line in the channel reach bounded by the

cross-sections i and i + 1.
Graphical interpretation of Eq. 1 is displayed in Fig. 1.
To estimate the energy slope Si, the arithmetic mean of friction slopes in cross-

sections involved is usually used (Chanson 2004, Chow 1959, French 1985):

Si =
1
2

(Si + Si+1) . (2)

The friction slope in a cross-section can be computed by Manning’s formula (French
1985):

S =
Q2 · n2

R4/3 · A2 , (3)
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Fig. 1. Graphical interpretation of Eq. (1)

where R denotes hydraulic radius, and n is Manning’s roughness coefficient. Alterna-
tively, the energy slope can be estimated by the Darcy-Weisbach formula (Chanson
2004):

S =
Q2 · τ

8 · g · R · A2 , (4)

where τ is a friction coefficient.
To increase the accuracy of computations, some authors introduce different types

of energy slope averaging, which are supposed to perform better with different types
of flow profiles. The most popular ones are
– the hydraulic mean

S =

(
Qi + Qi+1

Ki + Ki+1

)2

(5)

in which Q is the flow rate, and K denotes conveyance. If Q = const., Eq. 5 yields

S =

(
2Q

Ki + Ki+1

)2

, (6)

– the geometric mean
S =

√
Si · Si+1, (7)

– the harmonic mean
S =

2 · Si · Si+1

Si + Si+1
. (8)

HEC-RAS Hydraulic Reference Manual (US Army Corps of Engineers 2010) lists
the above formulas along with the flow profiles for which they should assure the best
accuracy. Apart from these formulas, some researchers propose their own (Reed and
Wolfkill 1976, Laurenson 1986, Chadderton and Miller 1980).

Except for arithmetic mean averaging, the resulting formulas have not been for-
mally examined. Chadderton and Miller (1980) analysed slope averaging formulas
in means for numerical error and accuracy by performing a set of numerical tests.
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However, they based their research on numerical experiments without comparing the
results with analytical solutions. Laurenson’s (1986) analysis was based on an arbitrar-
ily assumed slope friction function, which was not an analytical solution of the flow
equation. Artichowicz and Mikos-Studnicka (2014) compared the numerical solutions
of the one-dimensional energy flow equation with analytical solutions, and concluded
that differences between the outcomes of formulas 2, 5, 6, 7 and 8 are insignificant
from the practical viewpoint. None of the researchers presents detailed discussion of
the origin of those methods or the consequences and formalism of their usage. The
introduction of different formulas for slope averaging is treated as a simple substi-
tution of one mean for another, and it is done without any comment on the formal-
ism of these proceedings. Such substitutions are often found in hydraulics, not only
in one-dimensional SGVF modelling in open channels, but also in two-dimensional
flood modelling with a diffusive wave (Gąsiorowski 2013). However, switching to
another averaging method has serious numerical consequences, as it is equivalent to
using a different type of the numerical integration scheme of the ordinary differential
equation (ODE). If so, its numerical properties, such as stability, consistence and con-
vergence, may also differ. To the best of the authors’ knowledge, there is no thorough
analysis of the above-mentioned methods using averaging formulas other than the
arithmetic mean.

In the following sections, it will be shown that the use of formulas 2, 7 and 8 for
energy slope averaging in the standard step method is in fact the application of the
one-step generalized integration rule (GIR) with respect to a function interpolating
the integrand in which a certain value of the shape parameter is used. Numerical
properties of GIRs with geometric and harmonic mean averaging will be examined.
The application of formula 5 yields another integration scheme as well, but it is not
an instance of the family of GIRs considered here and will not be discussed in this
paper.

2. The Governing Equation of SGVF

The governing equation of SGVF can be derived from the system of Saint-Venant
equations (Artichowicz and Szymkiewicz 2014). In the case of flow with discharge
constant along the channel reach, the flow equation takes the following form:

d
dx

(
h +

α · Q2

2g · A2

)
= −S, (9)

where x is the spatial variable. The ordinary differential equation obtained, which
represents the energy principle of one-dimensional open channel flow can be written
in its shorter form

dE
dx

= −S (10)
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with
E = h +

α · Q2

2g · A2 . (11)

Eq. 10 is one of the possible forms of the governing equation of SGVF. To solve
it, the initial value problem (IVP) has to be stated (Ascher and Petzold 1998, Kin-
caid and Cheney 2002). In the case considered here, this means that the energy stage
has to be imposed on one of the bounds of the solution domain (channel reach)
(Szymkiewicz 2010). If flow is subcritical, the energy stage should be imposed at
the outflow cross-section, so the initial condition will take the following form:

EL = E(xL = L), (12)

with L denoting the length of the channel reach. In the case of supercritical flow, the
energy stage is imposed at the inflow cross-section, and the initial value becomes:

E0 = E(x0 = 0). (13)

In practice, this means that to solve the IVP for Eq. 10, water surface elevation at the
first or last cross-section of the channel reach has to be known, as well as the flow rate
Q.

3. Standard Step Method as an Application of the Trapezoidal Rule to
SGVF

Consider the initial value problem for the general ordinary differential equation (As-
cher and Petzold 1998):

dy(x)
dx

= f (x, y(x)) (14)

with
y0 = y(x = x0), (15)

where

x – independent variable,
y = y(x) – dependent variable,
f (x, y) = y′(x) – derivative of the function y(x),
y0 = y(x = x0) – initial value.

If the problem stated by Eqs. 14 and 15 cannot be solved analytically, numer-
ical methods have to be applied. There are many such methods: for example, the
Euler backward (implicit) and forward (explicit) methods, the family of Runge-Kutta
methods or the trapezoidal rule. Their detailed descriptions, advantages and disadvan-
tages can be found, for example, in Ascher and Petzold (1998), Kincaid and Cheney
(2002) and many other publications devoted to numerical methods. The applications
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of such methods to hydro-engineering problems are given, among others, by Cunge
et al (1979) and Szymkiewicz (2010).

One of the methods most frequently used in open channel hydraulics because of
its excellent numerical properties is the trapezoidal rule (Szymkiewicz 2010, Ascher
and Petzold 1998):

yi+1 = yi +
∆xi

2
·
[
f (xi, yi) + f (xi+1, yi+1)

]
. (16)

The trapezoidal rule can be derived in many ways – for example, by expanding the
Taylor series. Step-by-step derivation can be found in Ascher and Petzold (1998).

The application of the trapezoidal rule to energy Eq. 10 yields its discrete form:

Ei+1 = Ei −
∆xi

2
· (Si + Si+1) . (17)

After the introduction of the average flow velocity U = Q/A and Eq. 11, a given form
of the standard step method is obtained (Chow 1959, Cunge et al 1979, French 1985,
Szymkiewicz 2010, US Army Corps of Engineers 2010):

hi+1 + αi+1
U2

i+1
2g

= hi + αi
U2

i
2g
−

∆xi

2
· (Si + Si+1) . (18)

The algebraic non-linear equation obtained has only one unknown, depending on the
required direction of integration: hi if flow is subcritical, or hi+1 if it is supercriti-
cal. All other variables are known from the initial condition or the previous step of
computation. Solving this equation iteratively in subsequent cross-sections, makes it
possible to obtain the searched-for water stage profile along the channel.

It can be noticed that the standard step method is in fact a numerical approximation
of the energy equation by the trapezoidal rule, in which the average slope is estimated
with the arithmetic mean.

4. Integration Rule Generalized with Respect to the Function Interpolating
the Integrand

The trapezoidal rule can be derived by a different method than the one presented
in the previous section. To solve the IVP, the subsequent approximations yi+1 of the
unknown function y(xi+1) can be found, starting from the initial value and evaluating
an integral. Knowing yi from the initial value y0 = y(x = x0) or from the previous step
of computations, it is possible to write that (LeVeque 2007)

yi+1 = yi +

xi+1∫
xi

f (x, y) dx. (19)

If the integral in Eq. 19 cannot be solved analytically, it has to be approximated numer-
ically. Generally, any quadratures can be used for this purpose (Kincaid and Cheney

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Impact of Energy Slope Averaging Methods on Numerical Solution of 1D Steady . . . 107

2002). However Gaussian quadratures and similar approaches require function val-
ues between xi and xi+1, and therefore are not valid for open channel computations,
as channel parameters are known in computational nodes only. For this reason, rect-
angular (backward or forward Euler) or trapezoidal methods are often used, as they
require the knowledge of only cross-sectional parameters in computational nodes. The
process of numerical integration can be interpreted as the integration of a function
g(x, y) interpolating the original f (x, y) function. In other words, f (x, y) is replaced
with g(x, y), which is usually easy to integrate analytically. Typical examples of such
functions are piecewise constant, linear or polynomial functions. However, any func-
tion g(x, y) can be used as the interpolating one. Formalizing the above observations,
it can be written that

xi+1∫
xi

f (x, y) dx ≈
xi+1∫
xi

g(x, y) dx. (20)

In the case of the forward Euler method, the piecewise constant interpolation of
the function f (x, y) is performed. An example of such integration is shown in Fig. 2a.
In the case when a linear function is used, the trapezoidal rule with arithmetic mean
averaging is obtained (Fig. 2b).

a) b)

x1 ... xi ... xn x1 ... xi ... xn

Fig. 2. Graphical interpretation of numerical methods for solving the IVP:
a) forward Euler method, b) trapezoidal rule.

Let us introduce the following notation: fi = f (xi, y(xi)) and fi+1 = f (xi+1, y(xi+1)).
Then the function g(1)(x, y), which interpolates linearly fi and fi+1, is expressed as:

g(1)(x, y) =
fi+1 − fi
xi+1 − xi

(x − xi) + fi, (21)

which after integration yields:
xi+1∫
xi

g(1)(x, y) =
(xi+1 − xi)

2
( fi + fi+1) =

∆xi

2
( fi + fi+1) . (22)

Substitution of Eq. 22 into Eq. 19 gives the well-known trapezoidal rule:

yi+1 = yi +
∆xi

2
· ( fi + fi+1) . (23)
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Let us consider a general interpolating function

g(δ)(x, y) =

(
( fi+1)δ − ( fi)δ

xi+1 − xi
(x − xi) + ( fi)δ

) 1
δ

, (24)

in which δ is a real-valued parameter influencing the type of interpolation between
points (xi, fi) and (xi+1, fi+1). Hence, when linear interpolation is used, the value δ = 1
yields Eq. 23. When Eq. 24 with δ = −1/2 is applied, the interpolating function takes
the following form:

g(
−

1
2
)(x, y) =

(
( fi+1)−1/2 − ( fi)−1/2

xi+1 − xi
(x − xi) + ( fi)−1/2

)−2

. (25)

Integration of Eq. 25 yields:
xi+1∫
xi

g(
−

1
2
)(x, y) = (xi+1 − xi) ·

√
fi · fi+1 = ∆xi ·

√
fi · fi+1. (26)

Introduction of Eq. 26 into Eq. 19 results in another numerical integration scheme,
which is an instance of the GIR:

yi+1 = yi + ∆xi ·
√

fi · fi+1. (27)

It can be noticed that the geometric mean of the derivatives of y(x) in computational
nodes is obtained, and it can be used only if fi and fi+1 are greater than zero.

After repeating these steps with δ = −2, we obtain another form of the interpolat-
ing function:

g(−2)(x, y) =

(
( fi+1)−2 − ( fi)−2

xi+1 − xi
(x − xi) + ( fi)−2

)−1/2

, (28)

xi+1∫
xi

g(−2)(x, y) = (xi+1 − xi) ·
2 fi · fi+1

fi + fi+1
= ∆xi ·

2 fi · fi+1

fi + fi+1
, (29)

resulting in another method for solving the IVP:

yi+1 = yi + ∆xi ·
2 fi · fi+1

fi + fi+1
. (30)

In Eq. 30, the harmonic mean of the derivatives of y(x) in computational nodes is
obtained. Formulas 27 and 30 are nonlinear integration methods and instances of the
GIR. For comparison, to highlight the differences between the formulas obtained,
functions g(1), g(−1/2), g(−2) were applied to interpolate between two arbitrarily chosen
points (0,1) and (2,27). The result is shown in Fig. 3.
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x

y(x)

g(1)(x)

g(-1/2)(x)

g(-2)(x)

2.01.51.00.50
0

5

10

15

20

25

Fig. 3. Example of interpolation between points (0,1) and (2,27) with g(1), g(−1/2), g(−2).

As it can be noticed, the functions g(1), g(−1/2), g(−2) have different shapes. The func-
tion g(1) interpolates linearly, whereas g(−1/2) and g(−2) interpolate with hyperbolic
functions. The graphical interpretation of the integration of the IVP with formulas 27
and 30 are depicted in Fig. 4.

x1 ... xi ... xn x1 ... xi ... xn

a) b)

Fig. 4. Graphical interpretation of integration with functions a) g(−1/2) and b) g(−2).

5. Solution of the IVP for Dahlquist’s Test Equation

As shown in the previous section, the introduction of different energy slope averaging
methods is in fact the application of different numerical methods for the integration
of the ODE. Such methods differ in their numerical properties, which influence the
solution obtained. The most important properties are stability, consistency and con-
vergence.

The properties are usually obtained by examining the behaviour of the method
applied to so-called test equations (Ascher and Petzold 1998, Gustafsson 2011, Hairer
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and Wanner 2010). To study stability, Dalhquist’s test equation is used:

dy
dx

= λ · y (31)

with
y(x0 = 0) = y0, (32)

where λ is a complex number. It is necessary to apply the numerical method to a stable
IVP. The IVP considered here is stable if the real part of λ is less than zero:<(λ) ≤
0. In such a case, the perturbations of the numerical solution decay with increasing
values of the independent variable x(x ≥ 0). A detailed discussion of IVP stability
according to the λ parameter can be found in Ascher and Petzold (1998). In the present
case, the IVP has an exact solution:

y(x) = y0 · eλ·x. (33)

To examine the stability properties of the numerical integration formula, it is nec-
essary to apply the formula to the test Eq. 31 and to express it in a general form linking
the previous and following computational steps with a function denoted as z(µ):

yi+1 = z(µ) · yi, (34)

where µ = λ · ∆x. The integration step ∆x = ∆xi = xi+1 − xi is assumed to be con-
stant. The z(µ) function is obtained by rearrangement of the numerical method for-
mula. The application of the trapezoidal method with arithmetic averaging (δ = 1)
(Eq. 23) to the test Eq. 31 yields

yi+1 = yi +
λ · ∆x

2
· (yi + yi+1) . (35)

After rearranging Eq. 35 to the general form, one obtains

yi+1 =
1 + λ · ∆x

2

1 − λ · ∆x
2
· yi, (36)

so the z(µ) function for the trapezoidal rule with arithmetic mean averaging has the
following form:

z(1)(µ) =
1 +

µ
2

1 − µ
2
. (37)

The value in the subscript denotes the interpolation parameter δ introduced in the
previous section (here δ = 1).

The application of the integration rule with geometric (δ = −1/2) and harmonic
averaging (δ = −2) to the test Eq. 31 yields respectively:

yi+1 = yi + λ · ∆x
√
yi · yi+1, (38)
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yi+1 = yi + 2λ · ∆x
yi · yi+1

yi + yi+1
. (39)

The formulas obtained are implicit and non-linear with respect to yi+1, and it is impos-
sible to express them in a general form of Eq. 34. For this reason they can be treated
as non-linear equations with the unknown variable yi+1. Solving each of them with
respect to this variable, one obtains different forms of these formulas. Eq. 38 is then
rearranged into

yi+1 =
1
2

(
2 + (λ · ∆x)2 ±

√
4(λ · ∆x)2 + (λ · ∆x)4

)
· yi, (40)

whereas Eq. 39 is rearranged into

yi+1 =
(
λ · ∆x ±

√
1 + (λ · ∆x)2

)
· yi. (41)

This makes it possible to express geometrically and harmonically averaged integration
methods in a general form given by Eq. 34. In both cases, there are two possible
expressions obtained, which differ in the sign before the square root term. Formula
40 is an exact equivalent of numerical integration formula 38 if the sign before the
square root term is chosen on the basis of the sign of the real part of λ:

z(−1/2)(µ) =
1
2

(
2 + µ2 + sgn(<(µ)) ·

√
4µ2 + µ4

)
. (42)

Formula 41 is an exact equivalent of formula 39 if, irrespective of the value of λ,
the expression with the plus sign preceding the square root is taken. Thus the z(µ)
function for the GIR with harmonic averaging is given by

z(−2)(µ) = µ +

√
1 + µ2. (43)

6. Stability Analysis

The numerical method for the IVP is absolutely stable if

|z(m)| < 1 (44)

when a stable IVP for test Eq. 31 is considered. This means that, when the numerical
approximation scheme is applied to Dahlquist’s test equation, any two subsequent
values fulfil the following condition (Ascher and Petzold 1998, Gustafsson 2011):

|yi+1| ≤ |yi | , for i = 0, 1, . . . . (45)

The trapezoidal rule given with Eq. 23 is very popular and thus well examined.
It is consistent, 0-stable, absolutely stable, A-stable and therefore convergent (Ascher
and Petzold 1998).
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In the present test case, the computational step is assumed to be greater than zero
(∆x > 0), and the test equation parameter is less than zero (λ = −1), so the value
µ = λ · ∆x is always less than zero. The plots of the functions |z(1)(µ)|, |z(−1/2)(µ)| and
|z(−2)(µ)| are depicted in Fig. 5. It can be noticed that both |z(−1/2)(µ)| and |z(−2)(µ)| de-
crease towards minus infinity, whereas for µ = 0 they reach a value of 1. This suggests
that both functions fulfil the stability condition expressed by inequality 44.

1.0

0.8

µ

z(µ)

0.6

0.4

0.2

0.0

z(-2)
z(-  )1

2

z(1)

0-0.5-1.0-1.5-2.0-2.5-3.0

Fig. 5. Plot of the functions z(1)(µ), z(−2)(µ) and z(−1/2)(µ).

To show this explicitly, let us take two values: µ1 > µ2 (note that µ1, µ2 ≤ 0). To
demonstrate that the functions z(−1/2)(µ) and z(−2)(µ) always fulfil condition 44, it is
enough to show that they decrease as µ goes to minus infinity. These functions reach
a value of 1, which is to be a maximum, for µ = 0. The function z(−1/2)(µ) can be
rearranged to

z(
−

1
2
)(µ) =

1
2

(
2 + µ2 −

√
4µ2 + µ4

) (
2 + µ2 +

√
4µ2 + µ4

)
2 + µ2 +

√
4µ2 + µ4

=

=
2

2 + µ2 +
√

4µ2 + µ4

(46)

whereas the function z(−2)(µ) can be expressed as

z(−2)(µ) =

(
µ +

√
1 + µ2

)
µ −

√
1 + µ2

µ −
√

1 + µ2
=

1√
1 + µ2 − µ

. (47)

In both cases the two functions are the inverses of expressions which increase as µ
goes to minus infinity. Therefore z(−1/2)(µ1) > z(−1/2)(µ2) and z(2)(µ1) > z(2)(µ2), which
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proves that these functions are monotonic and therefore can never exceed a value of
1 for µ ∈ (−∞, 0]. Thus the integration rule with geometric or harmonic averaging
fulfils condition 44, which means that both methods are absolutely stable.

The numerical method is A-stable if its region of absolute stability (Eq. 44) covers
the complex negative half-plane of µ. The trapezoidal rule is proved to be an A-stable
method (Ascher and Petzold 1998), and the set of µ values for which the absolute
stability condition is fulfilled is depicted in Fig. 6a. When harmonic averaging is used,
the integration method is A-stable as well and has the same set of values that fulfil
the stability condition as the trapezoidal rule (Fig. 6a). However, when geometric
averaging is used, the integration method is not A-stable, as its region of absolute
stability does not cover the whole complex left half-plane (Fig. 6b).

2

-2

-4

4

420-2-4
Re(µ)

a) b)

Re(µ)

Im(µ)

2

-2

-4

4

420-2-4

Im(µ)

Fig. 6. Plot of the regions where a) |z(1)(m)| ≤ 1 and |z(−1/2)(m)| ≤ 1, b) |z(−2)(m)| ≤ 1.

Another type of stability is 0-stability, which depends on the behaviour of the
numerical method in terms of round-off errors. A practical way to test the zero stability
property is to use the method to solve the ODE which has a constant solution. An
example test problem can be the following IVP (LeVeque 2007):

dy
dx

= 0 (48)

with

y(x0 = 0) = c, (49)

where c is a constant value. If a numerical one-step method is 0-stable, when applied
to (48), it results in the formula

yi+1 = yi, (50)
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as f (x, y) = 0 for any x and y. When the GIR with arithmetic (Eq. 23) or geometric
(Eq. 27) averaging is applied to Eq. 48, the resulting formula is Eq. 50, so these meth-
ods are 0-stable. However, when the GIR with harmonic averaging (Eq. 30) is applied
to Eq. 48, an indeterminate expression is obtained:

yi+1 = yi + ∆xi ·
2 fi · fi+1

fi + fi+1
= yi + ∆xi ·

0
0
, (51)

so this method is not 0-stable.

7. Consistency Analysis

To test the consistency of the method, let us assume that the function y(x) is known.
Expressing the value yi+1 in terms of the Taylor expansion at point xi, one obtains

yi+1 =

∞∑
k=0

∆xk

k!
· y(k)

i . (52)

To find the order of the method, all the terms are moved to one side of the equation,
and the Taylor expansion (Eq. 52) is introduced instead of yi+1. The term with the
lowest power of the integration step of the remaining part denotes the method’s order
of consistency. For the trapezoidal rule, the following expression is obtained:

e(1) =
yi+1 − yi

∆x
−

1
2

(y′i + y′i+1) = −
∆x2

12
y′′′i + O(∆x3). (53)

In the case of the methods with geometric and harmonic averaging, manipulations of
Taylor’s series have to be applied to obtain the result. For the integration rule with
geometric averaging, the following formula is obtained:

e(− 1
2 ) =

yi+1 − yi

∆x
−

√
y′i · y

′
i+1 = ∆x2 ·

1
6
y′′′i −

1
2

y′′′i
2
−
y′′2i
4y′i

 + O
(
∆x3

)
, (54)

whereas the rule with harmonic averaging yields

e(−2) =
yi+1 − yi

∆x
−

2y′i · y
′
i+1

y′i + y′i+1
=

= ∆x2 ·

1
6
y′′′i − 2y′i ·

1
4

y′′′i
y′i
−
y′′2i

y′2i

 +
1
8

 y′′i
y′2i
−
y′′′i
y′i

 + O(∆x3).
(55)

This shows that each integration method is consistent of the second order.

8. Convergence

Convergence is obtained for every method which is 0-stable and consistent. Among
the methods examined, only the trapezoidal rule and the GIR with geometric averag-
ing are convergent, as they fulfil both conditions. When the harmonic mean is used
for averaging, the method is not 0–stable and therefore not convergent.
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9. Impact of the Slope Averaging Method and Manning’s Roughness
Coefficient on the Solution of the Flow Equation

Different integration methods are applied to the SGVF equation in order to increase
the accuracy of its numerical solution. It seems, however, that the greatest error is
produced by an inaccurate estimation of Manning’s roughness coefficient, whereas
errors generated by the choice of the numerical solution method are irrelevant.

To examine the impact of the numerical method and Manning’s roughness coef-
ficient, a test case was formulated by means of the analytic benchmark solution of
1D SGVF (MacDonald et al 1997), with which numerical outcomes were compared.
The benchmark solution is constructed by formulating the inverse problem for the
SGVF equation, in which the bed level function z(x) is estimated for an assumed
depth function H(x). Apart from the depth function, the data required to find the
channel bed level function, are flow discharge and channel geometry: channel width
B(x,H(x)), active flow area A(x,H(x)) and wetted perimeter P(x,H(x)). The energy
slope function S(x,H(x)) is estimated by formula 3. The bed slope function is given
by

sb(x) =
dH
dx

+ S (x,H(x)) +
α · Q2

2g
d
dx

(
1

A2(x,H(x))

)
. (56)

The bed level corresponding to the imposed depth function H(x) and channel geom-
etry can be found by integrating the bed slope function 56:

z(x) = −

L∫
x

sb(χ) dχ. (57)

The benchmark solution was generated for a prismatic channel with the following
properties: constant channel width b = 5 m, channel length L = 1000 m, Manning’s
roughness coefficient n = 0.03 s/m1/3, flow discharge Q = 5 m3/s, energy correction
coefficient α = 1.1. The gravitational acceleration was assumed g = 9.81 m/s2. The
assumed depth function is

H(x) =
9
8

+
1
4

sin
(
π · x
500

)
. (58)

The channel bed function z(x) and the water surface level h(x) = z(x) + H(x) as well
as the energy line and the critical depth level obtained for this flow case are depicted
in Fig. 7.

Numerical computations were performed by integration methods using different
types of energy slope averaging: arithmetic, geometric and harmonic means. Two so-
lution cases were considered. In the first case, the computations were performed for
the data used to construct the benchmark solution. In the second case, the roughness
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Fig. 7. Generated analytic benchmark solution.

coefficient was changed from n = 0.03 s/m1/3 to n = 0.031 s/m1/3 to highlight the im-
pact of this parameter on the numerical solution. The integration step assumed was
∆x = 50 m.

To examine the quality of numerical solutions, the mean square error was com-
puted

MSE =
1
N

∑
i

(Hi − H(xi))2 , (59)

where Hi denotes depth values obtained from the numerical solution, whereas H(xi)
denotes depth values from the analytical solution for the corresponding spatial coor-
dinates xi, and N denotes the number of computational nodes. The resulting values
of the mean square error are displayed in Tab. 1.

Table 1. Mean square error values for the test cases

n [s/m1/3] arithmetic geometric harmonic
0.03 4.87 · 10−7 8.68 · 10−7 2.56 · 10−7

0.031 3.56 · 10−4 3.28 · 10−4 3.01 · 10−4

It can be noticed that the change in Manning’s roughness coefficient had a great
impact on the solution error. The 3.33% difference in Manning’s roughness coeffi-
cient caused the mean square error to increase about a thousand times. However, the
errors for each of the solution methods are of the same order. The outcome of the
computations is depicted in Fig. 8. The solution is expressed by the relative depth
Hi/H(xi) function. The horizontal line at a value of Hi/H(xi) = 1 denotes the analyt-
ical solution.

The roughness coefficient is estimated on the basis of tables with descriptive en-
tries, such as “smooth texture,” “corrugated metal,” “earth channel – gravelly” etc., to
which numerical values of the coefficient are assigned. The choice of the coefficient
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Fig. 8. Comparison of numerical solutions obtained by different numerical schemes and for
different values of Manning’s roughness coefficient.

is based on a subjective impression of the researcher. Considering the impact of this
parameter on the quality of the numerical solution, it is presumably the main source
of error in SGVF computations.

10. Conclusions

In this paper, averaging methods used in 1D SGVF modelling were examined from
the numerical viewpoint. It was shown that the standard step method coincides with
the trapezoidal rule, a well-known method for numerical solution of ODEs, and that
the introduction of different methods for averaging the energy slope results in the
application of different numerical schemes for solving the governing equation.

The numerical methods arising from different types of averaging are instances
of the generalized integration rule with respect to the interpolant. Arithmetic mean
averaging is equivalent to the generalized integration rule with linear interpolation
between computational nodes. Geometric and harmonic averaging is equivalent to
hyperbolic interpolation. In the sense of derivation, all the methods have a common
origin. However, the trapezoidal rule is a linear method, whereas geometric and har-
monic averaging results in non-linear integration methods.

The trapezoidal rule, and instances of the GIR with geometric and harmonic mean
averaging were analysed for their basic numerical properties. All methods are consis-
tent of the second order and stable. The trapezoidal rule with arithmetic and geometric
averaging is 0-stable. When the harmonic mean is used, the resulting method is not
0-stable, and therefore not convergent.

Artichowicz and Mikos-Studnicka (2014) showed that all the methods of aver-
aging the energy slope give almost identical solutions when applied to the SGVF
equation. The analyses presented in this paper show that the rule with arithmetic av-
eraging seems to be the best choice for solving the SGVF equation. Although the
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integration rule with geometric averaging has identical basic numerical properties, it
is a non-linear method and, as such, may cause various problems in the process of
numerically solving a differential equation. For example, the geometric mean in the
form discussed here is valid only for non-negative numbers.

Non-linear methods of integrating ODEs are introduced when dealing with spe-
cific (usually stiff) differential equations. Then the process of deriving numerical in-
tegration schemes is conducted in such a way as to work around issues specific of
differential equations considered, or to increase the accuracy of methods applied to
a given problem (Fatunla 1982, Lambert and Shaw 1965, Luke et al 1975). The solu-
tion of 1D SGVF is not such a case.

The conclusion of this work is that different methods of averaging applied in
solving differential equations introduce different numerical schemes and should be
avoided if their properties were not formally examined. Such proceeding may intro-
duce serious numerical consequences such as lack of stability or convergence. For
this reason, linear integration methods should be used for solving SGVF, as they are
very well examined.

Additionally, it should be highlighted that, in the case of 1D SGVF, the main
source of error is the estimation of Manning’s roughness coefficient. Therefore,
changing the numerical integration scheme will usually not increase the accuracy of
the solution.
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