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Abstract: The paper examines effectiveness of the vibration correlation technique which allows
determining the buckling or limit loads by means of measured natural frequencies of structures. A
steel silo segment with a corrugated wall, stiffened with cold-formed channel section columns was
analysed. The investigations included numerical analyses of: linear buckling, dynamic eigenvalue
and geometrically static non-linear problems. Both perfect and imperfect geometries were considered.
Initial geometrical imperfections included first and second buckling and vibration mode shapes with
three amplitudes. The vibration correlation technique proved to be useful in estimating limit or
buckling loads. It was very efficient in the case of small and medium imperfection magnitudes. The
significant deviations between the predicted and calculated buckling and limit loads occurred when
large imperfections were considered.

Keywords: buckling; vibration correlation technique; thin-walled structures; steel structures; shell
structures; non-destructive testing; finite element method

1. Introduction

Buckling is one of the most common reasons for steel structure failures. Thin-walled
elements subjected to compression are very sensitive to stability loss, therefore it is es-
sential to find a method to monitor the conditions of existing structures. For a long
time, a common buckling test showed a major disadvantage—destructive nature. The
tested loaded structures often buckled with plastic deformations, due to their imperfection
sensitivity. Geometrical imperfections are hard to assess without professional scanning
equipment. The numerical results of limit and buckling loads at a design stage can differ
significantly from their real values. The destructive methods cannot be applied to examine
the existing structures.

The first non-destructive methods employed for steel columns were the Southwell
method [1] and the vibration correlation technique (VCT) [2]. The latter combines vibrations
and stability of investigated structures since they show similarities between buckling and
vibration behaviour (especially columns).

The VCT can be used either to determine actual boundary conditions or to predict the
buckling loads [3].

In the case of axially loaded columns the relation between squared natural frequencies
and applied load is linear [4]. This equation, in terms of relative variables reads:

(ωn/ωn0)2 = 1 − P/Pn, (1)

where: ωn is the n-th natural frequency of the loaded structure, ωn0 is the n-th natural
frequency of the unloaded structure, P is applied load and Pn is the buckling load cor-
responding to n-th vibration mode. When the n-th natural frequency equals zero, the
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compressive load is a corresponding n-th buckling load. Jubb et al. [5] stated that vibra-
tion and buckling modes need to be identical in shape in order for there to be a linear
relationship between the squared natural structural frequency and the buckling load.

While measuring natural frequencies of an existing structure at two load stages it
is possible to draw a line pointing the predicted buckling load. The only condition is
the identity of buckling and vibration modes, thus preliminary numerical calculations to
determine the first buckling mode and a sufficient number of applied sensors to specify
the vibration modes are indispensable.

In the course of the VCT it is also possible to estimate real boundary conditions. It
can be useful in validating numerical models of existing structures. Measuring natural
frequencies of an erected structure and comparing them to the numerical values is the way
to check the stiffness of supports in a numerical model. However, when the geometric
imperfections are not measured, assessment of real boundary conditions by the VCT may
be inaccurate for complex and imperfection-prone structures.

The relationship between the squared natural frequencies and the applied load is
exactly linear only in the case of columns with simple supports [2], where the buckling
and vibration modes are identical. Small deviations from linearity may be observed in
compressed columns and plates or frame systems with different boundary conditions [6].
Nevertheless, the VCT can be still applied successfully. The problems with the VCT
application occur when initial geometrical imperfections are taken into account, here
considerable deviations from linearity are apparent [7].

Massonnet [6] tested uniform beams, plates and cylindrical shells with various sup-
ports and confirmed more or less linear relationship between squared natural frequencies
and applied load of investigated elements.

The VCT has been tested on different structures such as thin rectangular plates [8,9],
shells [10] or steel cylinders [11].

Franzoni et al. [12] presented various modifications to the standard relationship
between vibrations and buckling proposed by researchers throughout the years.

Recent research has focused mainly on shells. Based on a series of experiments,
Arbelo et al. [13] proposed a new modified VCT approach, plotting 1 − (fn/fn0)2 versus
(1 − P/Pn)2 using best-fit second order curve to find a squared drop of the load-carrying
capacity ξ2 due to the initial imperfections. Next, estimation of the predicted buckling load
(Pimp) led to the following formula:

Pimp = Pcr (1 − ξ). (2)

Skukis et al. [14] verified this method experimentally with a good result. Recent papers
confirmed effectiveness of the modified VCT by conducting experimental and numerical
analyses on cylindrical shells stiffened with lozenge grid cores [15], pressurised orthotropic
shells with rectangular stiffeners [16], sandwich plates with iso-grid cores [17], composite
unstiffened shells [18] and variable angle tow composite cylindrical shells [19].

Franzoni et al. [12] made an attempt to evaluate the relationship between the applied
load and natural frequencies of a simple supported isotropic unstiffened cylindrical shell an-
alytically. The analytical approach was successfully compared with numerical calculations.

The paper deals with problems of predicting the buckling loads of stiffened shell. The
silo segment strengthened with cold-formed columns is investigated numerically, the VCT
is applied to determine the buckling loads on the basis of calculated natural frequencies.
Various geometrical imperfection shapes and amplitudes are introduced into the model.
The VCT is applied to each numerical model. Distinct structural performance in relation
to the literature-based pattern is observed here. The conducted calculations enhance
the previous analysis of the same silo [20] by introducing geometrical imperfections and
changing boundary conditions.

The research deals with part of a real structure, instead of a small experimental model.
Usually investigation of the issue pertains to actual imperfections which were measured
in experimental models. However, the specific imperfections to emerge in subsequent
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project stages are unknown. Generally, they are assumed as the first buckling mode or
the first vibration mode, therefore the paper presents the impact of such imperfections on
relation between squared natural frequencies and compressive force. In the introduced
investigation it can be noticed that a zero frequency in the buckling case is not necessarily
the first one, it may be a higher one as well. An innovative element of research concerns
the impact of imperfection on limit loads and their determination using the VCT.

The VCT approach is an experimental procedure. The main advantage of the method
is an accurate non-destructive prediction of the buckling load of a structure. However,
before conducting the experiments theoretical or numerical analysis of the investigated
problem should be performed. The main scope of the research was to perform numerical
simulations of the imperfect silo segment in order to predict relationship between applied
load and squared natural frequencies. As a result, the buckling or limit load was find both
by means of the VCT and non-linear static analysis. It can be added that some experiments
are difficult to perform due to the scale of the tested structures but the phenomenon may
be investigated using numerical simulations.

2. Materials and Methods

The investigated structure was a stiffened silo segment. Based on research [21,22], it
can be concluded that the silo segment model describes well the behaviour of the entire silo
in the case of sparsely distributed columns. The silo was 8.04 m in diameter and 17.62 m
high. The wall included corrugated steel sheets with the 76 mm pitch, the 18 mm depth
and the 0.75 mm thickness (Figure 1a). The silo was strengthened with 18 columns sparsely
distributed along the circumference. The columns were made of cold-formed channel
sections of 4 mm thickness and dimensions shown in Figure 1b. The entire structure
material was steel S355 of the following parameters: specific weight 7850 kg/m3, elasticity
modulus 210 GPa and Poisson’s ratio 0.3.
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Figure 1. Dimensions of silo cross-sections: (a) corrugated sheet (silo wall); (b) cold-formed channel
section (columns).

The investigated structure was modelled by a commercial ABAQUS package, version
6.14 [23]. The entire silo was substituted by the segment including the wall section of the
40 degrees angle and three columns (Figure 2a). One column was placed in the middle
of the silo part and two column halves at the edges. The boundary conditions at the side
edges were intended to simulate buckling of the entire silo [21]. A simplified model was
introduced in order to limit the number of finite elements, consequently to shorten the
computational time.
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Figure 2. (a) Scheme of boundary conditions in simplified silo segment; (b) Visualisation of
numerical model.

The lower edges of the silo segment were fixed, the upper edges restrained translations
in radial and circumferential directions, the lateral edges of side columns constrained
translations in a circumferential direction and rotations around radial and vertical axes.
The columns were attached to the wall by means of point tie connectors simulating rivets
or screws.

The silo wall, as well as the cold-formed columns, were modelled with 4-node shell
elements with reduced integration. A simplified numerical model consisted of 200,340 finite
elements. A single corrugation wave was approximated by 8 elements.

The load was imposed in the form of support displacement applied vertically to
the nodes located on the upper edges of the columns. The silo wall was not loaded in
order to avoid a number of local buckling modes of the corrugation sheets. A pattern of
displacement load subjected to one of the columns is shown in Figure 3.
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Figure 3. A pattern of displacement load subjected to the upper edges of silo columns.

Both perfect and imperfect silo geometry cases were considered. Two primary free
vibration (F1, F2) and buckling (B1, B2) mode shapes were implemented by the software
inner procedure to the numerical model in the form of initial geometrical imperfections
(Figure 4). Relevant linear buckling analysis was performed to copy the nodal coordinates
of buckling modes and introducing such a new geometry in order to conduct further
analyses. Imperfection amplitudes in each case were set as 2 mm (a), 5 mm (b) and
20 mm (c). The total number of the investigated structures was equal to 13.
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Numerical calculations covered the following analyses for each silo geometry model:

• Linear buckling, resulting in 5 primary buckling modes and eigenvalues. The buckling
modes were bound to correspond to the vibration modes, therefore it was essential
to compare them in order to draw right conclusions. The buckling eigenvalues were
used to assess the primary buckling loads.

• Geometrically non-linear analysis, leading to a full equilibrium path: the segment
displacement load vs. the average vertical displacement of the columns top edges.
A static, general method based on Full Newton solution technique was applied [23].
The initial, minimum and maximum increment sizes were equal to 0.001, 10−15 and
0.01, respectively. In order to avoid problems with solution convergence automatic
stabilization was introduced in the models by numerical damping factor (equal to
10−9). The analytical aim was to determine the limit load, i.e., the load corresponding
to the load-displacement path maximum (Plim).

• Combined geometrically non-linear and dynamic eigenvalue analysis. Non-linear
analysis was performed repeatedly—each time the displacement load increased to
a certain value in order to pre-stress the structure. After each process a dynamic
eigenvalue problem was solved, resulting in 5 vibration modes and corresponding
natural frequencies. The vibration modes were necessary to trace their shape variation
during the loading course [20]. It was easy to confuse the natural frequencies of
various orders as the pre-load increased. The primary natural frequencies allowed
applying the vibration correlation technique and drawing the relationships between
the applied load and the squared natural frequencies.

3. Results and Discussion

The aim of the performed analyses is to verify the vibration correlation technique in
its standard form, with itis ability to predict buckling loads of the silo segment stiffened
with thin-walled columns. The characteristic curves of the perfect and imperfect structure
are traced and analysed.

Four primary vibration and buckling modes of the silo segment without initial im-
perfections are shown in Figure 5. It may be observed that the buckling modes shapes
differ from the vibration modes completely. However, during structural loading process
selected vibration modes change their shapes. While the first and fourth vibration modes
remain unaffected by the applied load, the second and third modes continuously alter their
forms. In our case, at first, the half-wave along the silo height of the second vibration mode
narrowed making it possible for two new smaller waves to occur, forming three semi-waves
along the silo height. This shape resembled the second buckling mode. Similarly, the third
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vibration mode consisting of two semi-waves along the silo height changed its form in
the same way, narrowing and allowing two new semi-waves to occur, creating a total of
four semi-waves. This shape, in turn, resembled the first buckling mode. The changes in
vibration modes during the loading course are presented in Figure 6. When the applied
load exceeded the maximum limit point, it was impossible to follow the vibration modes
in some cases of the investigated structures with initial geometrical imperfections.
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The full equilibrium paths between the average vertical displacements of the upper
edges of the columns and the applied compressive loads are presented in Figure 7. The dia-
grams include the silo parts with various imperfection shapes and amplitudes. Denotations
of the abbreviations used in the figure description are following: B0—the perfect geometry,
B1—the initial imperfections as the first buckling mode, B2—the initial imperfections as the
second buckling mode, F1—the initial imperfections as the first vibration mode, F2—the
initial imperfections as the second vibration mode. The terms ‘2 mm’, ‘5 mm’ and ‘20 mm’
denote imperfection amplitudes. The imperfect geometry with the greatest assumed im-
perfection magnitude reduces the limit load over three times. Unsurprisingly, the buckling
modes set as initial imperfections were more disadvantageous than the vibration modes
(about twice). Moreover, the first buckling mode influenced the limit load slightly more
than the second one. Note that the first and second buckling loads are close, however their
corresponding buckling modes diverge. On the contrary, the first vibration mode showed
a much smaller impact on the structural load-carrying capacity (Plim) than the second one.
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Figure 7. Evolution of total vertical reactions and average vertical displacement of columns top edges obtained from
geometrically non-linear analyses of the silo segment with initial imperfections in the form of: (A) buckling modes: (a) B0,
(b) B1_2 mm, (c) B1_5 mm, (d) B1_20 mm, (e) B2_2 mm, (f) B2_5 mm, (g) B2_20 mm; (B) vibration modes: (a) B0, (b) F1_2
mm, (c) F1_5 mm, (d) F1_20 mm, (e) F2_2 mm, (f) F2_5 mm, (g) F2_20 mm.

Figures 8 and 9 show the vibration correlation technique results. In each case four
primary squared natural frequencies were followed. The diagrams show various rela-
tionships between natural frequencies and the applied load. Depending on geometrical
imperfection shapes and amplitudes, the first natural frequency reaching the zero value
was different. In a geometrically perfect structure the second and third frequencies reached
zero almost at the same time (Figure 8A). Their corresponding vibration modes at these
points resembled the first and second buckling modes. The predicted buckling load (Ppred)
was equal to 1383 kN, whereas the calculated buckling load was equal to 1360 kN. The rela-
tive difference was 1.7%. The limit load was equal to 1734 kN, i.e., 1.275 times greater than
the buckling load. No initial imperfections introduced to the numerical model exceeded
the outcome. Moreover, the first and fourth modes were straight, while the second and
third ones (exhibiting changes during the loading course) non-linear. It should be noted
that predicted buckling load is defined as applied load value either when natural frequency
equals zero or when it reaches minimum value (if it does not intersect with load axis).
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The limit loads of structures with various initial imperfections are frequently similar
or much smaller than the numerical value of the lowest buckling load. The buckling loads
predicted by means of the VCT represent, in contrary to the perfect structure, the limit
load. The VCT seems to indicate the minimum of the lowest buckling load and the limit
load as the predicted buckling load (Ppred), not just the first of the two. In the case of the
investigated shell the buckling load was smaller than the limit load for the perfect structure
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and greater than the limit load for the structure with imperfections (Table 1). This relation
is also illustrated in Figure 10.

Table 1. Summary of the GNA, LBA and VCT results.

The Numerical Model Plim [kN]
(GNA)

Pcr [kN]
(LBA)

Ppred [kN]
(VCT)

The Difference
[%]

B0 1734 1360 1383 1.7
B1_2 mm 1120 1357 1126 0.5
B1_5 mm 938 1340 952 1.5

B1_20 mm 517 1129 571 10.4
B2_2 mm 1134 1357 1142 0.7
B2_5 mm 958 1344 982 2.5

B2_20 mm 544 1156 594 9.2
F1_2 mm 1379 1360 1372 −0.9
F1_5 mm 1361 1359 1356 −0.2

F1_20 mm 1186 1346 1184 −0.2
F2_2 mm 1336 1359 1332 −0.3
F2_5 mm 1284 1353 1281 −0.2

F2_20 mm 997 1245 1000 0.3
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Figure 10. GNA, LBA and VCT loads versus imperfection amplitude of the silo segment with initial geometrical imperfec-
tions as modes: (a) first buckling (B1), (b) second buckling (B2), (c) first vibration (F1), (d) second vibration (F2).

Equation (1) states that natural frequencies should tend to zero when the applied
compressive load becomes a subsequent buckling load. However, numerical computations
discard this statement. The squared natural frequencies followed one of two ways: they
dropped to the zero value or they decreased to the minimum value at some level, next
increasing. In almost all VCT diagrams one of the primary natural frequencies fell to
zero; only in the structure with the second buckling mode as initial imperfection of 2 mm
amplitude (Figure 8E) three lowest frequencies reached the minimum values and then rose
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again. In some cases it was difficult to match frequencies with correct vibration modes
when the applied load was nearly equal to the maximum load capacity, therefore the curves
corresponding to squared natural frequencies had stopped before they reached the load
axis level (Figures 8E and 9C,E).

Moreover, it can be observed that the greater the imperfection amplitude the more
curvilinear the first squared frequency relation. The relationship between squares of natural
frequencies and the compressive load was linear when the applied load was low or medium.
While the limit load tends to its limit value the curve shapes become non-linear in a higher
extent. When the curves frequently reached zero values rapidly, the VCT effectiveness
was reduced.

In most cases of the conducted analyses the first squared frequency to reach the zero
value was the second or the third one in a row. The second and third vibration modes
resembled the first and second buckling modes. While the corresponding buckling loads
were very close, the curves representing the second and third squared natural frequencies
often dropped to zero at the same or nearly the same time. In the structure with the second
buckling mode as initial imperfection of 2 mm amplitude the first and second curves
reached the minimum values and no natural frequency was equal to zero (Figure 8E). When
the initial imperfection took the buckling mode shape (first or second) with the greatest
assumed amplitude (20 mm), the first natural frequency curve reached zero (Figure 8D,G).
In both cases the second curve reached the minimum value, next it increased. When one
of the three lowest natural frequencies were equal to zero, the other ones reached their
minimum values and rose again. The exception was the perfect silo segment (Figure 8A),
where the first and fourth curves were unaffected by the loading process. It may be
incorrect in the case of vibration mode shapes assumed as initial geometrical imperfections
because full analyses could not be finished due to the problems with determining the
correct numbering of vibration modes and, in consequence, natural frequencies.

The predicted by the VCT buckling or limit loads are shown in Table 1. Denotations
are as follows: Plim is the maximum load-carrying capacity (limit load) based on non-linear
analysis, Pcr is the lowest buckling load obtained from the linear buckling analysis, Ppred is
the predicted load received in the VCT and the difference is assessed between the Ppred and
the minimum of Plim and Pcr. If the zero value was not achieved by any curve, the predicted
buckling load was assumed equal to the load when the squared natural frequency reached
its minimum value. It can be noted that the difference was less than 2.5% in a majority of
structural analyses. Only ‘B1_20 mm’ and ‘B2_20 mm’ structures, where large imperfection
amplitudes were introduced, showed lower effectiveness of the VCT. It should be also
highlighted that the predicted maximum load in the structures, where the buckling modes
were introduced as initial imperfections, was always greater than the Plim or Pcr, it leads to
underestimation of structural load-carrying capacity.

Figures 11 and 12 illustrate the relationship between 1 − (fn/fn0)2 and (1 − P/Pn)2

investigated in each structure. A squared drop of the load-carrying capacity ξ2 was deter-
mined according to the modified VCT proposed by Arbelo et al. [13]. Next, Equation (2)
was employed to assess the predicted buckling load. The results are collected in Table 2.
The buckling loads are equal or close to the results of the standard VCT. The maximum
relative differences of both methods are 1.7%.
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Table 2. Arbelo method results.

The Numerical Model ξ2 Pcr [kN] Pimp [kN] The Difference [%]

B0 0 1360 1360 0
B1_2mm 0.02513 1357 1142 2.0
B1_5mm 0.08468 1340 950 1.3
B1_20mm 0.2463 1129 569 10.0
B2_2 mm 0.02731 1357 1133 −0.1
B2_5 mm 0.07254 1344 982 2.5

B2_20 mm 0.2365 1156 594 9.2
F1_2 mm 0 1360 1360 0
F1_5 mm 0 1359 1359 0
F1_20 mm 0.01467 1346 1183 −0.3
F2_2 mm 0 1359 1359 1.7
F2_5 mm 0.002816 1353 1281 −0.2
F2_20 mm 0.03863 1245 1000 0.3

4. Conclusions

The following conclusions stem from the performed numerical analysis only.

• The vibration correlation technique seems to be very effective in estimating buck-
ling or limit loads of silos strengthened with columns sparsely distributed along
their circumference.

• The VCT allows to predict the silo segment buckling load for the perfect structure and
the limit load in the case of the imperfect structure.

• The increase of geometrical imperfection magnitude reduces the VCT precision in the
case of the structures with buckling loads as initial imperfections.

• The loading course in numerical simulations affects the shape of selected vibra-
tion modes.

• The relationship between squared natural frequencies and the applied load is linear
in small load cases only. Considerable non-linearity occurs when the applied load
becomes close to the minimum buckling load or the limit load.

The future research will be focused on sensitivity analysis application in the VCT in
order to improve the estimation of real buckling loads by means of experimental tests. A
number of experiments is planned to be conducted in laboratory conditions to compare
numerical and experimental results.

Author Contributions: Conceptualization, P.I.; methodology and validation, Ł.Ż.-T.; numerical
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