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Abstract High-pressure processing (HPP) is a promising 
alternative to thermal pasteurization. Recent studies high-
lighted the effectivity of HPP (400–600 MPa and exposure 
times of 1–5 min) in reducing pathogenic microflora for up 
to 5 logs. Analysis of modern scientific sources has shown 
that pressure affects the main components of milk including 
fat globules, lactose, casein micelles. The behavior of whey 
proteins under HPP is very important for milk and dairy 
products. HPP can cause significant changes in the quater-
nary (> 150 MPa) and tertiary (> 200 MPa) protein struc-
tures. At pressures > 400 MPa, they dissolve in the follow-
ing order: αs2-casein, αs1-casein, k-casein, and β-casein. A 
similar trend is observed in the processing of whey proteins. 

HPP can affect the rate of milk fat adhering as cream with 
increased results at 100–250 MPa with time dependency 
while decreasing up to 70% at 400–600 MPa. Some studies 
indicated the lactose influencing casein on HP, with 10% 
lactose addition in case in suspension before exposing it to 
400 MPa for 40 min prevents the formation of large casein 
micelles. Number of researches has shown that moderate 
pressures (up to 400 MPa) and mild heating can activate 
or stabilize milk enzymes. Pressures of 350–400 MPa for 
100 min can boost the activity of milk enzymes by up to 
140%. This comprehensive and critical review will benefit 
scientific researchers and industrial experts in the field of 
HPP treatment of milk and its effect on milk components.
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Introduction

A plethora of research has been conducted on the impact of 
heat treatments on milk proteins during the last 60 years. 
Innovative and environmentally friendly dairy processing 
methods include ultrasound-assisted processing (UAP), 
microwave-assisted processing (MAP), and high-pressure 
processing (HPP). In general, novel technologies are less 
effective than traditional methods, so they are used in con-
junction with fermentation and enzymatic hydrolysis, and are 
promising pretreatments to modify peptide profiles, improve 
yields, and increase bioactive peptide liberation when com-
pared to conventional technologies (Murtaza et al. 2022). 
Although UAP is a unique and efficient technique because its 
mechanical effects and cavitation affect the protein structure, 
boost the biological activities of enzymes, and improve the 
rate of enzymatic hydrolysis (Garza-Cadena et al. 2023), 
HPP acts as a promising method of technological processing, 

which leads to some changes in the molecular structure of 
proteins and provides the appearance of new properties that 
cannot be achieved by using conventional methods of pro-
tein modification (Sergius-Ronot et al. 2022). HPP gives 
assurance on minimal changes in in milk quality, including 
organoleptic and rheological properties, and microbial safety 
on milk products (Ravash et al. 2022).

HPP on milk was initially reported by Hite (1899), which 
was only in the last few decades when HPP was researched 
for manufacturing of different dairy products with its objec-
tive of being an alternative to pasteurization. Some research 
studies have characterized the HPP-induced changes in the 
milk components using conventional methods of protein 
modification (Ramírez et al. 2021; Liang et al. 2023; Manin 
et al. 2023). The main thermodynamic approach to modi-
fications caused by high hydrostatic pressure is based on 
the compressibility of molecules and changes in their vol-
ume (∆V) (Ni et al. 2021). Such physical impact leads to an 
equilibrium shift in favor of the state with the smallest total 
volume. Studies conducted so far indicate that HPP mainly 
breaks the non-covalent bonds including iconic and hydro-
phobic interactions while the covalent ones are not affected. 
For instance, HPP has a destructive effect on the quaternary 
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(> 150 MPa) and tertiary (> 200 MPa) structure of most 
globular proteins, but causes a relatively small effect on the 
secondary structure (> 300–700 MPa). Protein denaturation 
includes dissociation of oligomeric proteins, unfolding and 
aggregation. The covalent bonds of the protein remain unaf-
fected (Dubois et al. 2020). These changes depend on the 
structure and concentration of the protein, pressure, tempera-
ture, pH, ionic strength, composition solvent. Denaturation 
under pressure is an easily controlled process and causes 
less significant rearrangements in the protein globule than 
temperature or chemical denaturation. Therefore, proteins 
and other macronutrients can experience structural changes 
owing to HPP while the vitamins, flavor, color, and other 
small compounds remain practically intact (Leite Júnior 
et al. 2017). In dairy products, the action of HPP needs to be 
carefully analyzed to understand the impact on the bioactiv-
ity of components at different levels of pressure, time, tem-
perature, microbial safety, etc. A combination of techniques 
are also being used and approved, including high tempera-
ture and HPP, namely, pressure-assisted thermal processing 
(PATP), that was approved by FDA in 2009 for commercial 
sterilization with the potential to replace ultra-high tempera-
ture (UHT) treatments (Sánchez et al. 2020).

The basic working principles of HPP is depicted in 
Fig. 1. HPP is a promising alternative to conventional 
thermal pasteurization with its ability to inactivate food-
borne pathogens resulting in minimum nutritional losses 
along with maintaining fresh-like attributes of the food 
products. It is significantly efficient in eliminating vegeta-
tive microorganisms (Dhineshkumar et al. 2016). Simi-
larly, it also influences the physicochemical and techno-
logical characteristics of milk components where pressure 
can impact the casein micelles along with whey protein 
structure. However, no impact was observed on the lactose 
content in milk suggesting no Millard reaction or lactose 
isomerization reaction in milk because of HPP (Stratakos 
et al. 2019).

Recent studies highlighted the effectivity of HPP 
(400–600 MPa and exposure times of 1–5 min) in reduc-
ing the Escherichia coli, Salmonella, and L. monocytogenes 
for up to 5 logs along with enhanced shelf life of raw milk 
by reduction of Enterobacteriaceae, lactic acid bacteria, 
Pseudomonas spp. The particle size, color, and mouthfeel 
of raw milk were also preserved as compared to pasteurized 
milk (Stratakos et al. 2019). Recent research also confirmed 
the role of HPP in enhancing the shelf life of goat milk and 
improving its overall quality and sensory attributes (Razali 

Fig. 1  Working principles 
of HPP with specifications 
highlighted
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et al. 2021). Similar recent research also supported the same 
claim for cow milk where HPP enhanced the shelf life to 
22 days when stored at 8 °C, without any changes in pH 
and no sign of microbial contamination. Similar results were 
observed for goat milk where slight change increase in pH 
(0.04%) was observed without any variations in composi-
tional profile of the milk (Tan et al. 2020). In general, the 
researchers obtained reproducible results on the effect of 
HPP on the pH of raw milk. The generalized graph is shown 
in Fig. 2.

Thus, HPP slightly affects the pH of milk, increasing it 
by ∆pH = 0.1 when processing 600 MPa for at least 7 min. 
At the same time, as noted above, the pH of milk after HPP 
practically does not change during three weeks of storage.

Impact of HPP on structure and function of main 
milk constituents

Tables 1 and 2 both shows the overview of HPP Effects on 
main milk constituents, discussed below. Table 1 focuses 
on the impacts of HPP on the principal proteins in milk, 
while Table 2 shows highlights of the HPP effects on the 
other components in milk, such as enzyme, milk fat glob-
ules. Other components, such as lipid, not affected by HPP 
are also discussed in this section.

Caseins

HPP has a significant impact on casein micelles. Electron 
microscopy was utilized in one of the first investigations 
to assess the size of casein micelles following HPP treat-
ment (Ravash et al. 2020). Since then, numerous approaches, 
including laser granulometry, transmission electron micros-
copy, turbidimetry, and photon correlation spectroscopy, 

have been employed to identify changes in casein micelles 
during or after pressurization (He et al. 2016; Ravash et al. 
2020; Blinov et al. 2022). The pressure-induced unfolding 
of casein causes an increase in the surface hydrophobicity 
of the casein globule, which leads to aggregation monomers. 
These changes are partially reversible at pressure < 150 MPa 
(Cadesky et al. 2017).

According to Ravash et al. (2020), HPP between 100 
and 200 MPa at 20 °C for 30 min resulted in little or no 
changes in casein micelles but HPP of 250 MPa for > 15 min 
resulted in a considerable increase in casein micelles. 
Casein aggregation causes an increase in the average size of 
casein micelles. Regardless of time or temperature, apply-
ing pressures > 400 MPa reduced the average size of casein 
micelles by up to 50%. (Serna-Hernandez et  al. 2021). 
HPP (200–500 MPa) was used to treat caprine milk, which 
decreased the size and enhanced the hydration of casein 
micelles (Nassar et al. 2019). Furthermore, research on goat 
milk preserved by microfiltration revealed that the size of 
casein micelles reduced at highpressure 300–500 MPa (Nas-
sar et al. 2020). The particle size was reduced and agglom-
erated after treatment with reconstituted micellar casein 
concentrate at pressures ranging from 450 to 600 MPa (Itur-
mendi et al. 2020). Similarly, applying pressures > 500 MPa 
(for 15 min) decreased the size of reformed casein micelles 
by 42.5% (Hemar et al. 2020). Yang et al. (2020) employed 
one- and two-cycle HPP for whole and skim milk. Both 
treatments decreased the size of casein micelles, although 
the two-cycle treatment had a somewhat smaller impact.

Casein fraction dissolution also lowers the average size 
of casein structures (Blinov et al. 2021). This might be due 
to the dissolution of colloidal calcium phosphate or the 
breakdown of hydrophobic connections (Cavender and Kerr 
2020). However, prolonged HPP or heating (to 80–85 °C) 
can reverse casein dissociation due to the disintegration of 

Fig. 2  Effect of HPP on pH 
of raw milk (Tan et al. 2020; 
Stratakos et al. 2019; Serna-
Hernandez et al. 2021)
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the quaternary and tertiary structure of the protein (Anema 
2022). Furthermore, the interfering action of denatured 
β-lactoglobulin can hinder casein aggregation (Chen et al. 
2022). HPP can cause significant changes in the quaternary 
(> 150 MPa) and tertiary (> 200 MPa) protein structures. 
However, it has no effect on secondary structures since 
hydrogenic bonds are resistant to HPP. This is because HPP 
has no effect on covalent bonds and influence mainlythe non-
covalent bonds of casein (Sergius-Ronot et al. 2022). On 
the other hand, the study of the circular dichroism spectra 
of casein micelles treated at 900 MPa revealed no changes 
in the secondary structure; the destruction of the tertiary 
structure of the protein was found to be only 10% (Ravash 
et al. 2020).

Caseins differ in their content and conformation struc-
ture. At pressures > 400 MPa, they dissolve in the follow-
ing order: αs2-casein, αs1-casein, k-casein, and β-casein. 
Although this order is connected to the quantity of serine 
phosphate left and may be due to its hydrophobic tendency 
(Serna-Hernandez et al. 2021).

Whey proteins

β‑lactoglobulin (ß‑Lg)

Whey protein behavior under HPP is very significant for 
milk and dairy products. Several studies have examined the 
effect of HPP on whey proteins. Meng et al. (2017) found 
that when pressure increased, the quantity of non-casein 
nitrogen in milk serum dropped, implying denaturation and 
insolubilization of whey proteins. HPP has the greatest effect 
on ß-Lg. There are just two disulfide bonds and one free –SH 
group in ß-Lg (Bogahawaththa et al. 2017). As a result, it 
is less stiff than α-La, which contains four disulfide bonds. 
Treatment of raw milk at up to 100 MPa does not denature 
ß-Lg and it stays in its original monomer form (Liepa et al. 
2017). When pressure exceeds 100 MPa, ß-Lg unfolds and 
the free—SH group is exposed, which may interact with 
k-casein or other unfolded ß-Lg molecules (Meng et al. 
2017). It causes an increase in the size of casein micelles 
and a little aggregation of ß-Lg molecules.

HPP causes significant denaturation of ß-Lg, with dena-
turation reaching 70–80% following 400 MPa treatment 
(Liepa et al. 2017; Ravash et al. 2020). At 400–800 MPa, 
there is minimal additional denaturation of ß-Lg (Nassar 
et al. 2019). Renaturation happens in 1–2 days at 20–40 °C 
during storage. At lower temperatures (5 °C), reassociation 
does not occur because the energy of atoms is too low to 
establish hydrophobic and ionic connections. As a result, 
the strength of hydrophobic interactions is quite weak at 
low temperatures. Ravash et al. (2020) studied the impact of 
temperature and pressure on the denaturation of ß-Lg. The 
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authors observed almost 100% denaturation at 300 MPa and 
60 °C or at 400 MPa and 40 °C.

It unfolds and produces dimers via disulfide connections 
between 100 and 450 MPa. During storage, this change is 
reversible. It creates polymers via disulfide bonds at pres-
sures ranging from 450 to 800 MPa, and the process is irre-
versible. No denaturation of ß-Lg was detected at pressures 
of 100 MPa, but the amount of denaturation increased at 
higher pressures, with a sudden and substantial rise between 
300 and 400 MPa (Yang et al. 2018). At 800 MPa, almost 
90% of the entire ß-Lg was denatured. The degree of α-La 
denaturation was substantially lower than that of ß-Lg; at 
600 MPa, approximately 10% of the α-LA was denatured, 
while at 800 MPa, around 50% of the α -LA was denatured. 
The degree of HPP-induced denaturation of β-Lg and α-La 
in milk rises with holding time, temperature, and pH (Nas-
sar et al. 2019).

α‑lactalbumin (α‑La)

α-La is a omponent of whey proteins in cow milk ranges 
from 1.2 to 1.5 g/L, and it is the second-largest component 
in the whey protein fraction by concentration (20%) after 
β-Lg. α-La has four intramolecular disulfide bonds and no 
free thiol groups, and it possesses the best described molten 
globule (MG) state, which is very stable and hence a favored 
model for researching protein folding (Marciniak et  al. 
2020). Because it possesses four disulfide connections, α-La 
is more resistant to denaturation under pressure. Denatura-
tion of α-La begins only at pressures > 400 MPa. Because it 
lacks a free –SH group (Nassar et al. 2019), no transforma-
tion of monomers into disulfide-bonded aggregates was seen 
at HPP of 400–800 MPa (Ambrosi et al. 2016).

Because α-La contains no free thiol groups and only a 
minor fraction of the protein forms aggregates even at pres-
sures as high as 1000 MPa, thiol-induced oligomerization of 
this protein at HPP can only be accomplished by the addition 
of low-molecular-weight reducing agents such as cysteine, 
2-mercaptoethanol, or dithiothreitol (Sun et al. 2021). Small 
aggregates of α-La were found at 1000 MPa because to 
bonding between Cys 6- Cys 120, which was more vulner-
able to cleavage due to its surroundings (Ravash et al. 2020). 
With increased holding duration, temperature, and pH of 
milk, the degree of HPP-induced denaturation of α-La and 
β-Lg rises (Liepa et al. 2017). Some α-La and ß-Lg were 
also observed to be linked tothe milk fat globule membrane 
in HPP-treated whole milk (Yang et al. 2018).

Bovine serum albumin (BSA)

BSA is a 582 amino acid polypeptide with 17 disulfide 
bridges and one free thiol group, Cys 34. The BSA structure 

is made up of 76% helix, 10% twists, 23% extended chain, 
and no ß-sheets. It is particularly resistant to pressure up to 
400 MPa (Liepa et al. 2017), most likely owing to a huge 
number of disulfide bonds,.Denaturation happens at slower 
pace over 400 MPa pressure. Immunoglobulins can with-
stand pressures of up to 300 MPa. Immunoglobulins in 
caprine milk were resistant to pressures up to 300 MPa, but 
denaturation occurred at a rate of 35% following treatment 
at 500 MPa (Ravash et al. 2020).

When treated with 800  MPa, a significant effect on 
the secondary structure of BSA was shown, in contrast to 
β-lactoglobulin (Antonov et al. 2022). However, pressure-
induced changes in the secondary structure were reversible. 
The presence of fifteen disulfide bonds in BSA prevents pro-
tein aggregation at a pressure of 1270 MPa (Anema et al. 
2022). Although, at higher pressure polymerization can 
occur due to free thiol groups (Antonov et al. 2022).

Immunoglobulins

HPP tended to cause less harm to short RNA molecules, 
particularly piRNA-sized ones, which remained essentially 
intact. Wesolowska et  al. (2019) indicated comparable 
effects on the quantity of immunoglobulins and other bio-
active substances. MicroRNA readings, while being greatly 
reduced, were detectable after HPP in the experiment of 
Smyczynska et al. (2020), The authors suggested that exo-
somal sequestration protects microRNA against higher 
pressure but does not prevent heat destruction. The capac-
ity of milk exosomes to reduce the adverse impact of HPP 
on microRNA appears to be another intriguing property of 
milk and should be studied in the future.

Lactoferrin (LF)

LF, an iron binding glycoprotein found in many mammalians 
external secretions, is known for its ability to bind and trans-
port iron ions, as well as its antibacterial, anti-inflammatory, 
anti-tumoral, and immunomodulatory properties (Yang et al. 
2018). LF, a known functional food component, is utilized 
in a broad range of products including infant formula, pro-
biotics, supplementary tablets, pet food, and cosmetics, as 
well as a natural iron solubilizer in food (Li et al. 2019). 
However, just a few research have looked at how HPP affects 
the structural and functional features of LF. Franco et al. 
(2018) studied the impact of HPP (400, 500, and 650 MPa 
for 15 min at 20 °C) on the structure and immunoreactivity 
of LF and found that the antibacterial activity of LF may be 
sustained after 400 MPa, 15 min treatment. When LF was 
treated to HPP at pressures > 500 MPa, the structure of LF 
was altered (Ramos et al. 2015) investigated the impact of 
HPP (450–700 MPa at 20 °C) on LF denaturation in skim 
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milk, whey, and phosphate buffer. They discovered that as 
pressure and holding time rose, the denatured fraction of LF 
increased, and protein denatured slower in the buffer and 
milk systems than in the whey system. Mayayo et al., (2014) 
investigated the effect of HPP (300–650 MPa at 20 °C) and 
heat treatment (65–90 °C) on LF immunoreactivity and esti-
mated kinetic parameters for its denaturation process. The 
findings showed that HPP might be a viable alternative to 
thermal pasteurization in terms of native LF preservation.

Enzymes

HPP can either activate or deactivate milk enzymes, but 
can be no impact on the milk enzymes due to dependence 
on the pressure levels. The HPP technique processes dairy 
products,such as matured cheeses by activating or deacti-
vating proteolytic and lipolytic enzymes. The HPP impact, 
on the other hand, is dependent on the pressure level and 
the process parameters. In this way, adding 400 MPa pres-
sure to bovine milk (Munir et al. 2020) and 200–300 MPa 
pressure to ewe milk (Ávila et al. 2017) boosted proteolytic 
activity during cheese ripening. Other research has shown 
that moderate pressures (up to 400 MPa) and mild heating 
can activate (Leite Júnior et al. 2017) or stabilize (Medina-
Meza et al. 2014) milk enzymes. According to Nivedita and 
Hilton (2018), milk enzymes vary in their sensitivity to high 
pressure. Lipase, xanthine oxidase and lactoperoxidase are 
resistant to pressures up to 400 MPa. Phosphohexoseisomer-
ase, γ-glutamyl transferase and alkaline phosphatase in milk 
are partially inactivated at pressures > 350, 400 and 600 MPa 
respectively, and almost completely inactivated at ∼550, 630 
and 800 MPa respectively.

HPP increased the coagulating activity of recombinant 
chymosin, calf rennet, adult bovine rennet, and porcine 
pepsin without changing their nonspecific action (Leite 
Júnior et al. 2019). However, there is a limit to the amount 
of pressure that can be applied to each enzyme before its 
activity is lost owing to denaturation caused by increased 
temperature due to pressure processing (Leite Júnior et al. 
2019; Medina-Meza et al. 2014). In general, dairy enzymes 
are more resistant to HPP than to heat processing. Lactop-
eroxidase, for example, retains 50% of its original activ-
ity after 4 h HPP at 800 MPa at 25–60 ℃. (Leite Júnior 
et al. 2019). Similarly, lysozyme can withstand a pressure 
of 400 MPa for 30 min (Sousa et al. 2014). These find-
ings are significant for HPP-treated dairy products because 
the antibacterial activity is sustained due to the presence 
of enzymes that are heat sensitive. Nonetheless, various 
enzymes have varying responses to HPP. Some of them are 
resistant to alkaline phosphatase in human body, which is 
stable at 800 MPa for 8 min, although pressures > 200 MPa 
can readily render acid phosphatase inert. Lipase activity is 
favorable in matured cheeses. Pressures of 350–400 MPa 

for 100 min can boost the activity of this enzyme by up 
to 140% under these circumstances (Martínez-Rodríguez 
et al. 2014). Plasmin activity in milk and its products, on 
the other hand, dropped by 75% at 20 °C for 30 min (Perin-
ban et al. 2019) and by 87% at 400 MPa at 60 °C for 15 min 
(Ravash et al. 2020).

Lipid constituents

Among the lipids, the following constituents are considered.

Milk fat globule

Milk fat remains as an emulsion owing to the presence of 
milk fat globule (MFG) as a complex moiety (Sánchez et al. 
2020). This structure contains triglycerides surrounded by 
milk fat globule membrane (MFGM). This membrane is 
constituent of two-layered phospholipids with the internal 
monolayer near to the lipid core and an outer bilayer (Alberts 
et al. 2002). The membrane also encompasses the presence 
of different polar lipids, cholesterol molecules, proteins, and 
other minor constituents, with an average size of 0.1–9 µm 
in diameter. Only sheep milk is reported to have a decrease 
in this size without any MFGM disruption owing to HPP 
(Sánchez et al. 2020). Proteins react differently, where whey 
proteins are seen binding with MFGM proteins via interac-
tions of sulfhydryl-disulfide interchanging process, that later 
impacts the denaturation (like β-Lg, α-La) of MFGM pro-
teins at a high-pressure state. HPP at 500 MPa–15 min had 
no significant effect on anti-rotavirus activity in lactadherin, 
while 600 MPa–15 min combination decreased 60% of the 
overall activity. Similarly, bovine xanthine oxidase (Xod) 
also exhibited a diminishing 43%, 62 and 98% for 400, 500 
and 600 MPa HPP for 15 min (Sánchez et al. 2020). There-
fore, for formula milk enriched with MFGM, this technique 
can hinder the functional attributes of small constituents.

From technological perspective, it was observed that 
HPP can affect the rate of milk fat adhering as cream with 
increased results at 100–250 MPa with time dependency 
while decreasing up to 70% at 400–600 MPa. The results 
were explained with IgM aggregation on low pressures that 
escalated the cold agglutination resulting in avoiding the 
MFGs interactions. Altering flocculation was also observed 
owing to HPP, as at 400 MPa, an increase of MFG diameter 
was recorded at 15 min, while at 500 MPa, diameter increase 
was visible after 10 min but later decreased owing to the 
destabilization of clumps over the time. Therefore, with 
high zeta-potential values, more flocculation was observed 
as compared to coalescence. This was associated with IgM 
aggregation that produces particles with multiple binding 
sites for MFGs, making large clusters that can enhance the 
creaming phenomena (Kiełczewska et al. 2021).
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Lipids

The lipid composition of milk constitutes on triglycerides, 
cholesterol, phospholipids. On HPP exposure, fatty acids 
sustained the treatment along with other minor constituents 
around 250–900 MPa for 5 min analysis. Lipids being most 
pressure sensitive are more prone to get influenced by HPP. 
This is the case of lipid oxidation, in which kinetics is accel-
erated in the presence of high hydrostatic pressure. There 
has been increasing focus on the response of lipid compo-
nents to HPP, especially considering the deleterious out-
comes that secondary products of oxidation have on the final 
product (Medina-Meza et al. 2014). Triglycerides melting 
temperature enhances > 10 °C, with an individual increase 
in 100 MPa pressure indicated a susceptibility towards crys-
tallization in case of increased pressures (Medina-Meza 
et al. 2014). Similarly, the impact of HPP on the microbial 
concentration also was researched. Some studies revealed 
the protective impact of fat towards microorganisms, while 
others found no effect at all (Podolak et al. 2020; Sehrawat 
et al. 2021). Gram-negative bacteria are strongly impacted 
with change in pressure and temperature, microbial strains 
present and the animal species used for the extraction of the 
milk varieties (Sánchez et al. 2020).

Lactose

Limited research is conducted to evaluate the impact of HPP 
on lactose content of milk. Milk treated with 100–400 MPa 
for 10–60 min at 25 °C showed no signs of Millard reac-
tion or the lactulose formation. Some studies revealed the 
protective role of lactose for globular proteins (secondary 
structures) (Chen et al. 2019; Tang 2020). The mechanism 
responsible for this protective influence involves the trans-
ferase of water molecules to nonpolar residual content to the 
inner side of proteins. This effect can also stabilize whey 
protein isolates and the concentrated treated with HPP, espe-
cially for food with high functional value (Baier et al. 2015). 
Some studies indicate the lactose influencing casein on HPP, 
with 10% lactose addition in casein suspension before expos-
ing it to 400 MPa–40 min prevented the formation of large 
casein micelles (Kelly and Meena 2022; Ma et al. 2024). 
Since lactose doesn’t enable to calcium and casein aggre-
gate association and it also inhibits hydrophobic interactions 
among the micellar fragments during the treatment. The lac-
tose has negative impacts on reduction in bacterial load. An 
E. coli suspension K12 in phosphate buffer with 1% casein 
or lactose showed less signs of growth in phosphate buffer 
then the growth in the whole milk (Stratakos et al. 2019).

Other constituents

Other than nutritional and organoleptic properties, HPP is 
also used to effectively study the properties of volatile con-
stituents lost during the heat-treated mechanisms. Aldehydes 
and methyl ketones are promoted at higher temperatures, 
while at high pressures accompanied with higher tempera-
tures enhances the formation of aldehydes. HPP prevents 
the sulfur compounds formation, that is generally associ-
ated with cooked flavor of milk that consequently renders 
low consumer acceptability. Therefore, a higher sensory 
score with in-depth sensory analysis can further enhance 
the consumer’ likeability towards HPP-treated milk samples 
(Sánchez et al. 2020).

Impact of HPP on production of bioactive 
constituents in milk

The biological activities of milk proteins have reportedly 
been impacted on applying different processing techniques. 
HPP application (500 MPa for 1 min) to whey protein isolate 
(WPI) before the digestion of enzyme pepsin and pancreatin 
escalated in respiratory epithelial cells (exposed to lipopoly-
saccharide) (Ali Redha et al. 2022). Similarly, hydrolysates 
from casein extracted via HPP 100 MPa for 1.0 h using dif-
ferent proteases including elastase, trypsin, thermolysin, 
savinase and flavourzyme. Also, it is known to increase the 
anti-inflammatory properties. Flavourzyme hydrolysates 
reduced nitric oxide and also suppressed the cytokines in 
Lipopolysaccharide (LPS)-stimulated macrophage cells, 
known for their pro-inflammatory role (Ambrosi et al. 2016).

In preserving the bioactives of human milk (2–6 lactation 
week), HPP at 200 and 400 MPa preserved the IgG (82.24%) 
while showing no alteration in adiponectin level (38.55%) as 
compared to raw milk. HPP preserved adipokines, growth 
factor, lactoferrin, IgG constituents as compared to holder 
pasteurization (Wesolowska et al. 2018). It is also known to 
preserve the protein activity using hydrogen bonds and pro-
tein’s secondary structure, as beta sheet is more pressure per-
sistent than alpha helix. Pressure below 400 MPa makes the 
protein structure reversible owing to weak hydrogen bonds 
and Van der Walls forces. It is also known to preserve the 
IgA antibodies (1.4 g/L) with 88% decrease at 500 MPa and 
69% at 600 MPa observed in the studies (Aceti et al. 2020).

Influence of HPP on the milk protein allergenicity

Allergenic proteins of bovine milk are mainly α-casein and 
β-Lg. Studies indicate that HPP when applied to WPI and 
β-Lg by ELISA with reference to antibodies found in rab-
bits, egg yolk, applied HPP to WPI solution resulting in 
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antigenicity of β-Lg on the increase in pressure, holding 
period and temperature (Kleber et al. 2004, 2007; Sánchez 
et  al. 2020). Similar treatments enhanced the proteins 
reactivity along with its specific antibodies (HPP to β-Lg, 
100–500 MPa at 25 °C). Variable results were obtained when 
IgE was used in case of cow’s milk allergic patients (Meng 
et al. 2017). In another study, combined pressure (600 MPa 
for 6 min), with heat treatment (50 °C) of β-Lg in terms of 
allergenicity was considered (Orcajo et al. 2015). At room 
temperature, no variations were observed but from 75 to 95 
°C allergenicity was considerably decreased (Kurpiewska 
et al. 2019; Sánchez et al. 2020). These changes in β-Lg 
was associated with changes in tertiary structure resulting 
in antigenicity and (Ma et al. 2020; Rodiles-López et al. 
2008), allergenicity (Bogahawaththa et  al. 2017). Milk 
immunogenicity was also studied at 400, 500 or 600 MPa 
for 15 min with cellular model accompanied with human 
peripheral blood mononuclear cells and exhibiting cytokines 
variating concentrations. T helper (Th)1 and Th2 cytokines 
are needed to be balanced with an increase in pressure of 
500 MPa, replenishing the immunogenic milk protein capac-
ity at 600 MPa (Bogahawaththa et al. 2017).

The impact of HPP on functional properties 
of milk compounds

HPP methods, such as high-pressure homogenization 
and high hydrostatic pressure, were found to have posi-
tive effects on functional properties of α-lactalbumin and 
casein (Han et al. 2020; Ma et al. 2020; Rodiles-López 
et al. 2008). High pressure treated milk compounds demon-
strated increased emulsifying properties and foam forma-
tion. Han et al., (2020) shown that the foaming properties 
disappear for casein at pressure 60–80 MPa, the increasing 
treated pressures shown a foaming properties. High pressure 
(300–700 MPa) for 30–60 min was investigated for lactofer-
rin properties by He et al., (2016) observing that increasing 
pressure increase the foaming capacity of lactoferrin, but 
the highest was found at 400 MPa, while the lower pres-
sure improve the solubility of the lactoferrin. Rodiles-López 
et al., (2008) investigated effects of temperature and pH with 
the method of high hydrostatic pressure and found signifi-
cant effects on foaming capacity of β-LG for all pH values. 
The highest foam stability was found at 600 MPa, 40 °C, pH 
9 and 5 min. These cases show different milk compounds 
have different optimum condition to reach optimal foaming 
capacity. Besides pressure, pH was another main contribut-
ing factor towards the foaming ability of milk compounds.

The emulsifying properties are also highly related to 
physical changes in milk’s emulsion, like milk. Protein plays 
in important role on emulsification process to generate a 
high homogeneity of emulsion in oil/water systems. HPP 

improved emulsion stability of casein in milk (Han et al. 
2020). For casein 60–120 MPa of pressure is a relatively 
mild high-pressure to obtain the homogeneous emulsion. 
Emulsifying properties of α-LA by high pressure, including 
emulsion stability (ES) and emulsifying activity index (EAI) 
were also investigated by Rodiles-López et al., (2008). The 
studies also reflected decreased EAI and lower solubility of 
alpha LA at 400–600 MPa/55 ℃. Nonetheless, at the condi-
tion, no effects were found in ES because loss of solubility 
and aggregation by the HPP process. Similar results were 
obtained by Baier et al., (2015) in study of effect of HPP on 
technological and rheological properties of whey protein. 
HPP led to a decreased ES for emulsions from whey pro-
tein solutions independent from the treatment pH, while the 
foam stability was increased for these samples. For lacto-
ferrin treated at pressure 400 MPa for 30 min, increase in 
emulsion stability was observed, but treatment with pressure 
more than 400 MPa decreased the stability (He et al. 2016). 
Besides the pressure treatment, the droplet size and pH also 
need to be considered due strong impact on ES (He et al. 
2016).

Available technologies to improve milk quality 
and safety

Improvement of milk products’ quality and safety have 
been reported since many years ago. New processing 
technologies are commonly used by Industry; millisec-
ond technology (Myer et  al. 2016), plasma activated 
water (Perinban et al. 2019; Widyaningrum et al. 2021), 
microfiltration (France et al. 2021), high pressure pro-
cessing, and ultraviolet (UV) treatment for food surface, 
milk disinfection, and food preservation (Cappozzo et al. 
2015) (Chawla et al. 2021; Delorme et al. 2020). These 
technologies are used to inactivate spoilage and patho-
genic bacteria to improve the shelf life and safety of the 
raw milk. However, there are technologies influencing the 
quality and properties of the milk constituents, such as 
HPP, plasma activated water and microfiltration.

These technologies influence milk quality in different 
ways. HPP treatments are effective in inactivating vegeta-
tive bacteria but are ineffective against spores (Sánchez 
et al. 2020). In this case, combination with heat treatment 
can help to inactivate the spores. Besides, HPP treatments 
have significant effects on the milk components, such as 
lipid, protein, and salt, influencing the quality and proper-
ties of the milks (Anema 2022; Kieserling et al. 2021b). 
Increase in milk salts solubility can alter mineral bal-
ance and physical properties especially milk appearance, 
which significantly influenced by disintegration of casein 
micelles (Anema 2022). Microfiltration approach is very 
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effective to remove the bacteria and spores from milk, but 
the effectiveness depends on membrane fouling and spore/
bacteria concentration in raw milk (Martínez-Rodríguez 
et al. 2014). This approach includes by filtering the com-
ponent of the milk than passing through the membrane 
pores (France et al. 2021). Due to filtration process with 
membrane, a possibility for milk components, such as 
large protein clusters, can be retained due to its bigger 
sizes than the membrane pores (Martínez-Rodríguez et al. 
2014). Furthermore, another technology is plasma acti-
vated water, done by using plasma generated form ambi-
ent oxygen, carbon dioxide, nitrogen, air, and other gases, 
dissolved in water (Perinban et al. 2019; Widyaningrum 
et al. 2021). Low pH and reactive ions used in plasma 
activated water inactivate the microorganisms by oxidiz-
ing microbial cells structural components (Widyaningrum 
et al. 2021). On the other hand, the treatment exerts physi-
cal–chemical damage on the milk components, such as 
proteins and fats.

Millisecond technology and UV irradiation of food sur-
faces effectively inactivate the pathogenic and spoilage 
bacteria without influencing the milk constituents during 
processing. The millisecond technology rapidly pre heat 
raw milk under pressure, and then the milk is depressurized 
with rapid heating and continued rapid cooling inactivate 
the bacteria (Myer et al. 2016). While UV irradiation is 
applied to inactivate bacteria using UV light wavelengths 
with the range 100 to 400 nm (Cappozzo et al. 2015). No 
milk constituents effects are found because the treatments 
of this method is only applied and exposed to the surface of 
the milk products and is not penetrated into the milk con-
stituents. The effect on milk constituents is not due to the 
lower penetration but because of no rise in temperature dur-
ing inactivation treatment (Pendyala et al. 2022; Vashisht 
et al. 2022). However, validation and additional testing for 
several parameters are important for the efficacy to inactivate 
more thermally robust bacteria (Myer et al. 2016).

The technologies applied to improve the quality and 
safety of milk products gave advantages and disadvantages 
in terms of the microbial inactivation and the effects on milk 
components. Those dis- and advantages needs to be consid-
ered in the preservation of milk.

In vivo studies in the preservation of processed 
bioactives in humans

The in vivo studies related to effects of HPP methods on 
bioactives preservation are limited. Wemelle et al. (2022a) 
investigated potential high hydrostatic pressure process-
ing (HHPP) to replace holder pasteurization (HoP) for the 
human breast milk sterilization. Two hormones, e.g. milk 
apelin and glucagon-like peptide 1 (GLP-1), were found 

to be degraded by HoP, but HPPP was found to effectively 
preserve both hormones and increase glucose tolerance by 
acting on gut contractions in adult mice. Another study by 
Wemelle et al. (2022b) who assessed in vivo for antioxidant 
activity of donor human milk using HHPP or HoP treatment 
in mice, found that HHPP treatment retained vitamins to 
near-raw milk levels while decreasing  H2O2 content. When 
compared to HoP treatment, HHPP for donor milk delivery 
stimulated antioxidant defenses and lowered certain inflam-
matory markers in the liver and ileum. HHPP treatment for 
donor milk may improve preterm infant nutrition and health. 
In general, both studies show the better preservation of the 
milk bioactive and antioxidant activities with HPP than 
treatment with higher temperatures. More specific studies 
are required to assess the preservation of other bioactive 
compounds, such as whey protein, lipid, etc.

Conclusion

With the latest finding, HPP has contributed valuably 
towards the enhanced shelf life, novelty, textural proper-
ties, nutritional profile and sensory characteristics of dif-
ferent milk-based products and milk obtained from differ-
ent sources. Recent studies highlighted the effectivity of 
HPP (400–600 MPa and exposure times of 1–5 min) in 
reducing the E. coli, Salmonella, and L. monocytogenes 
for up to 5 logs along with enhanced shelf life of raw milk 
by reduction of Enterobacteriaceae, lactic acid bacteria, 
Pseudomonas spp. The particle size, color, and mouthfeel 
of raw milk treated by HPP stay preserved compared to 
pasteurized milk. It is noted, that HPP slightly affects the 
pH of milk, increasing it by ∆pH = 0.1 when processing 
600 MPa for at least 7 min. Analysis of modern scientific 
sources has shown that pressure affects the main compo-
nents of milk: proteins, fat, lactose, biologically active 
substances. HPP lowers the average size of casein struc-
tures. It can affect the rate of milk fat adhering as cream 
with increased results at 100–250 MPa with time depend-
ency while decreasing up to 70% at 400–600 MPa. On 
HPP exposure, fatty acids sustain the treatment along with 
other minor constituents around 250–900 MPa for 5 min 
analysis. Limited research has been conducted to evalu-
ate the impact of HPP on lactose content of milk. Milk 
treated with 100–400 MPa for 10–60 min at 25 °C showed 
no signs of Maillard reaction or the lactulose formation. 
Number of researches has shown that moderate pressures 
(up to 400 MPa) and mild heating can activate or stabilize 
milk enzymes. The biological activities of milk proteins 
have reportedly been impacted owing to different process-
ing methodologies applied to them. Anti-inflammatory and 
antioxidant potential escalated in respiratory epithelial 
cells (exposed to lipopolysaccharide) with 500 MPa for 
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1 min, HPP application to whey protein isolate before the 
digestion of enzyme pepsin and pancreatin. HPP improves 
the emulsification and emulsion stability of casein in milk.

Although HPP requires higher financial investment, this 
non-thermal treatment reduces the harmful impacts along 
with enhancing the functional profile with higher added 
values. Similarly, growing market demand is recorded for 
HPP with clean label characteristics. Additionally, imple-
mentation of such technologies should be deeply evalu-
ated by the food industries not only for cost comparison 
for wide scale products but also for large scale adoption, 
aligning rules and regulations for intended food products. 
Consumers demand for nutritionally rich foodstuff; hence 
these consumer targets can help us understand the require-
ment of alternative treatments for better bioactive constitu-
ents’ profile.
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