
Received 21 November 2023, accepted 2 January 2024, date of publication 10 January 2024,
date of current version 19 January 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3352433

Impact of SDN Controller’s Performance
on Quality of Service
SYLWESTER KACZMAREK AND JACEK ANDRZEJ LITKA
Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, 80-233 Gdańsk, Poland

Corresponding author: Sylwester Kaczmarek (kasyl@eti.pg.edu.pl)

ABSTRACT Software Defined Networking is a paradigm in network architecture; that is quickly becoming
commonplace in modern telecommunication systems. It facilitates network customization for the require-
ments of different applications and simplifies the implementation of new services. Since its proposal,
a significant evolution in its functionality has occurred. However, this development brought along problems
of efficiency and performance, which are currently under research. A number of requirements has to
be met, if Software Defined Networking is going to be the next step in the Next-Generation Networks
progression. The central part of it – the SDN controller – has to put minimum strain on the system and
provide performance which does not impede Quality of Service requirements. In this paper, the results of
a research on SDN controller’s performance have been provided in the context of keeping up with flows’
QoS. For this, an emulated-physical research platform has been implemented. This research environment
utilizes traffic generated accordingly to ITU-T recommendations to validate QoS parameters. The platform
is given a thorough description. The results obtained from it take under consideration the implemented traffic
sources, as well as the intensity of traffic handled by the controller and the traffic load of data plane links.
Authors indicate that even without breaking the limitations set for delays in QoS, the impact of the controller
workload is noticeable, which should be mitigated by applying appropriate resource control.

INDEX TERMS Emulation, performance evaluation, quality of service, software defined networking.

I. INTRODUCTION
Software Defined Networking (SDN) is an approach to the
management and operation of resources and teletraffic, that
utilizes Next-Generation Networks’ (NGN) separation of
control and data planes. This is performed by moving the
logic of traffic control away from the nodes to a separate
entity known in SDN nomenclature as the controller [1].
This entity is responsible for deciding on the rules for traffic
control and it may simply be restricted to already established
well-known routing algorithms. However, with more sophis-
ticated implementations, more complex set of rules taking
under consideration some nuances – like the type of the
traffic in the flow – may be utilized to control how traffic is
forwarded in the network.

This is a significant part of the functionality research con-
ducted within the SDN architecture. A number of papers

The associate editor coordinating the review of this manuscript and

approving it for publication was Vlad Diaconita .

published in recent years tend to focus on these aspects of
the technology: presenting optimized rulesets for controlling
the traffic and novel applications working with the controller
for this purpose, or use cases on utilization of this architecture
in modern and future networks.

The SDN architecture is generally described as consisting
of three planes. The bottom one is the Switch Plane, which
includes nodes (switches) responsible for forwarding the traf-
fic. However, they do not take active part in designing the
rules of forwarding. The middle plane is the Controller Plane,
which includes controllers connected to the switches. They
are responsible for managing the Switch Plane and decide
upon the rules of traffic forwarding, which they install in
the nodes. The upper plane is the Application Plane, which
consists of applications connected to the controller. They
work with advanced algorithms and sets of rules, allowing
for more sophisticated traffic forwarding. The results of their
work are provided to the controllers, which translate them
into sets of rules to be installed in the switches.

8262

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0003-2932-5610
https://orcid.org/0000-0002-3538-4118
https://orcid.org/0000-0002-5169-9232


S. Kaczmarek, J. A. Litka: Impact of SDN Controller’s Performance on Quality of Service

FIGURE 1. Generalization of SDN architecture.

An illustration of a generalized SDN architecture is pre-
sented in Fig. 1.

SDN paradigm has gain popularity and is becoming a
commonplace implementation for datacenters and enterprise
networks. No wonder then that with promising results from
the functionality aspect sphere of research, a push for deploy-
ment in other types of networks – like in operator networks –
has emerged in recent years.

This defines some requirements for the implementation,
most of which are concerned with performance of the archi-
tecture. Authors of an extensive survey on SDN [1] have
already noted that the performance aspect has not been clearly
defined during the SDN architecture design, which opens the
door for research in this field. Of course, the engineering and
scientific communities have already taken part in this process,
giving us many papers [2] and proposing tools, like cbench
and Mininet.

This problem becomes even more relevant with different
types of traffic serviced by data plane imposing different
requirements on the network. These requirements, known
collectively as Quality of Service (QoS), set restrictions on
the maximum values of ITU-T defined parameters. Among
these QoS parameters there are three crucial ones: IP Packet
Transfer Delay (IPTD), IP Packet DelayVariation (IPDV) and
IP Packet Loss Rate (IPLR) [3].

SDN networks are known for their ability to easily adapt to
the changing nature of the teletraffic. These changes require a
high level of performance from the controller. The controller
itself needs to be adjusted for efficient work in such an
environment, as its working lead to additional delay added
to the time it takes to forward a packet through the Switch
Plane. This is essential, since the QoS requirements for cer-
tain types of teletraffic may be significantly more restrictive,
which could lead to additional delay making the network’s
architecture not compliant with them.

Therefore, it is necessary to define what exactly SDN per-
formance is. The authors decided to distill the problem into
the subject of controller’s performance. The time of response
was proposed as a measure of the controller’s performance.
To be suitable for SDN utilization, this parameter has to be as
short as possible, even with an increase of controller’s work-
load. The time of response of the controller translates directly
into the delay it imposes on the handled flow, so by regulating
the intensity of the controller’s workload and observing its
time of response, we can evaluate its performance. An effi-
cient controller should have such a low time of response, that
the delay it adds to the flow should not lead to breaching the
maximum allowed delay for the flow’s QoS.

This paper covers research conducted to highlight the pos-
sible impact the controller’s performance has on keeping up
with the QoS requirements. A formal model for SDN network
is presented, which has been implemented with the use of a
research platform consisting of both emulated and physical
entities. A series of measurements utilizing emulated real-life
traffic types has been conducted in it, in order to indicate the
influence of the controller’s performance on the packets’ end-
to-end delay. The results have been analyzed and confronted
with recommendations of the ITU-T.

The novelty of authors’ research lies in implementing
a hybrid emulated-physical framework and utilizing real-
life traffic. With this, a testbed for realistic use cases for
SDN controller’s performance in operator networks has been
designed. Analysis conducted in it provide insight into the
influence of controller’s performance on the end-to-end delay
of forwarded traffic, as well as its impact on the distribution
of delay values, and how does it comply with the required
QoS.

The reminder of this paper is organized as follows.
Section II gives greater detail on the performance problem
in SDN networks. Section III presents the research platform
used in this study. In Section IV, the results of the exper-
iments are presented. The final conclusion is available in
Section V.

VOLUME 12, 2024 8263

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


S. Kaczmarek, J. A. Litka: Impact of SDN Controller’s Performance on Quality of Service

II. PROBLEM OF PERFORMANCE IN SDN NETWORKS
In this section, an overview of the problem of SDN net-
works’ performance (mainly focused on the controller) is
provided. This outlines the background for the conducted
research. Conclusions regarding the necessary adjustments
for the research community are provided at the end of it.

In case of SDN networks, numerous researches have been
conducted to define the functionality range of the archi-
tecture. Aside from that, scientific community works on
novel algorithms and optimization approaches leading to
more reliant networks which follow the software defined
principle.

With the advent of programmability and the application-
based control over the network, a field for research into the
performance of the network emerges.

The performance in the case of telecommunication net-
works can be defined as the ability of the network to keep
up with the workload generated by the traffic traversing it.
In case of the SDN, this can be narrowed down to the ability
of the controller to keep up with the demands (thanks to its
time of response), as has been noted in the previous section.
This means, that an efficiently performing network should
be capable of guaranteeing successful access to the services,
as well as their positive results. In this case, an ability to
send and receive information in a manner compliant to the
time requirements – like having low and constant delay values
during a phone connection – and guaranteeing little to no loss
of information. Taking under consideration that in a typical
data center there may be up to 200,000 flows per second
incoming, problem of performance becomes essential [4].
In SDN’s case this can be separated into number of aspects,
some of which are already being covered by the scientific
community.

The research has already taken under consideration a range
of topics, like the time of response of a controller [5], [6], the
number of flows the controller is capable of managing in a
period of time [7], the response time of the switches [8], the
overall delay in SDN-domain based network [9], controller’s
placement in the network [10], intensity of traffic required for
setup and upkeep procedures [11], [12], and more. Mostly,
a constant bit rate (CBR) types of traffic are utilized during
the experiments in the testbeds.

Some solutions for decreasing the time of the controller’s
response were also provided, like project DevoFlow [13]
and DIFANE [14], they however require modifications of
the switches and not the controller, which in a way misses
the principle of SDN network. This being the centralized
controller’s objective to handle the process of designing the
logic behind traffic forwarding [15].

In modern telecommunication networks, the kind of traffic
carried is diverse and depends on the kind of information
encapsulated in it. CBR is not enough to appropriately relay
the true nature of teletraffic, as many sources generate flows
of variable bit rate (VBR). After all, traffic model for voice
service will differ from data and video [16]. Because of that,
measurement for the number of flows a controller (or a cluster

of them) can handle and the delay it imposes on the data plane
is not enough. The results of research on controller’s capacity
may complement a uniform traffic distribution, but not – for
instance – an ON/OFF traffic model, which is akin to how
the traffic for telephone VoIP connections look like [16]. The
characteristics of the flow differ, depending on the source.
It is such an important aspect, that standardization work has
already been done by ITU-T for the purpose of defining the
parameters of the flows used for network performance tests
in regards to keeping up with QoS [16].

The authors mention it, because of many services’ VBR
nature, the information on how many flows a controller is
capable of handling is not enough for assessing the architec-
ture’s level of performance. Even if the number of handled
flows is an enormous number, the controller will impose
some sort of delay on them. It might be compensated, when
it comes to CBR flows. For VBR packet streams – which
current bitrate differs depending on the time window of the
observation – compensating for the delay is not a trivial
hurdle to overcome.

This means, that the analysis of the controller’s perfor-
mance is highly dependable on the traffic characteristics of
the flows it handles.

The types of traffic existing in the modern network are a
vast collection. Traffic generated by user services will diverse
in shape. This is nothing new and has been a subject of
discussion for a long time. Packet switching network does not
guarantee QoS by default, and has to be improved by different
means of guaranteeing it.

Some works in this regard have already been done. With
the implementation of Type of Service (TOS) field in IP
packet it has become feasible to sort out which traffic is more
demanding in resources, in order to guarantee better quality of
provided service. What is more, the OpenFlow protocol (the
most common protocol utilized in SDN networks) supports
this value, which means that an OpenFlow-enabled switch
can match flows by it. This gives the network an ability
to handle such traffic accordingly, so that QoS might be
supported.

It does not implement QoS assurance mechanisms in the
SDN architecture itself. Even though SDN switch might rec-
ognize a high priority flow (by matching the TOS value),
the controller stays priority-agnostic. Without any kind of
external augmentations, the default SDN architecture is
incapable of prioritizing some traffic over the other. For
instance, by default OpenFlow does not guarantee any kind of
algorithm that would allow the controller to recognize which
packet-in messages – which are the messages informing the
controller that a flow has to be handled, when there is no
matching rule in the switch – are originating from traffic
with a higher priority. This leads to unwelcome results. These
phenomena have to be addressed, as different kind of traffic
might be influenced differently than the others. Especially
when taking under consideration, that each traffic type can be
treated as a different kind of generator, as described in ITU-T
recommendation [16].

8264 VOLUME 12, 2024

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


S. Kaczmarek, J. A. Litka: Impact of SDN Controller’s Performance on Quality of Service

With the information mentioned in the previous para-
graphs, an image of the negative influence of the controller
on the delay arises. The additional delay comes from the
fact, that when handling a stream by the controller (by which
we mean analyzing every packet-in action), it has to check
the packet of the flow, to make sure whether it should be
forwarded in the network and what are the necessary actions
to be performed by its nodes. This takes time, as the controller
confronts the packet with own base of possible flow rules.
When the controller’s reaction is too slow, we experience
events, in which packets from different flows start to gather
in a queue, awaiting handling. Each waiting packet increases
its delay and too long of a handling time leads to situation in
which every next flow’s delay increases (due to its waiting for
being handled). Not only the awaiting new flows, but also the
ones already being handled, experience additional delay. This
happens when packets of the current flow are being handled
slower than the time of arrival of the next packets of that flow.
Controller not differentiating between the priority of flows,
leads to situations in which a high QoS-requirement flow has
its delay increased, simply due to the fact, that the controller
is still handling earlier requests, some of which might come
from lower priority flows.

Different types of traffic and their influence on the SDN
network have piqued scientific interest, leading to quite inter-
esting findings and observations like the analysis of flow
table occupancy [17], or the focus on the impact of the nodes
(switches) resources and bandwidth [18].

SDN controller is the central part of this network archi-
tecture. Which means, that it’s performance will have a
tremendous impact on the efficiency of the network. The goal
of the controller is to observe the network structure, react
to changes and decide upon rules, according to which the
different flows are forwarded by the nodes.

Both the proactive and the reactive types of controllers
acting modes will require a great performance from the
hardware and software on which they relay. If the SDN
network has to be applied in an environment with a big
number of traffic sources that rapidly change their target
destination or even the characteristics of their generated
flows, then a great deal of effort has to be put into adjust-
ing the controller in such a production environment. The
number of requests for packet handling would be huge. This
would be an especially valid concern in cases where the
different flows cannot be that easily aggregated, each of
them requiring a separate set of forwarding rules. Such use
cases become more common with the ever-increasing usage
of Internet of Things (IoT) services and appliances in the
network.

A proactive controller has to take this into account and
react quickly to the ever-changing intensity of traversing
flows. Reacting with haste to the necessities arising, even
before them being signalized, is a troublesome hurdle requir-
ing specialistic algorithms and a great deal of performance
boost to not influence negatively the time requirements set
by the flows.

In case of reactive mode, when a new flow emerges, it is
accompanied by the requirement of installing a flow rule in
the switches’ tables. In such cases a switch sends over to
the controller a request for action, which results in either
dropping the packet, or installing a set of rules, according
to which the flow will be forwarded. With a truly dynamic
network, which is traversed by a great deal of different packet
flows, each new additions procure a request for handling. This
requires from the controller’s performance to be on par with
the great influx of requests generated by the network. The
controller which handling of the requests is simply too slow
will impact the network in a negative manner leading to the
increase of packet delays and changing the variance of it to
undesirable levels.

To include the effects of the controller’s performance on
the network and it’s keeping up with the QoS requirements,
research has to be conducted which includes real-life-like
traffic in the experimental framework. Such research sheds
light on what is leading to negative impact on the network
and outlines the necessary changes into its implementation,
or the architecture as a whole.

By understanding the nature of the problem outlined in this
section, the authors have decided to conduct research, which
takes the aforementioned doubts into account. A research
environment for SDN performance – no matter if it focuses
on the controller, or on the nodes – should utilize traffic
no different from real-life use cases. Even when most of
the different flows are aggregated for the simplification of
its forwarding, we have to take under consideration, that
with new emerging services, there exist events of sudden
bursts of short living, yet high priority flows. This means,
an SDN controller’s performance has an incredibly high role
in providing the necessary level of service handling, to make
sure the flows comply with the QoS.

An environment for such experiments to be conducted –
with focus on a single controller network – is presented in the
following section of this paper. In the later sections authors
provide the results of research, that was conducted in the
described testbed.

III. CONTROLLER’S PERFORMANCE RESEARCH
PLATFORM
The hybrid approach of the platform required preparing a
number of computer machines. The authors decided to utilize
three PC machines, all of which working under the control
of Linux OS (specifically speaking, Ubuntu 18.04). One of
the PCs was working as the single controller, the second as
the emulated domain, and the last one as the generator of the
real-life-like traffic.

Both the controller’s, as well as generator’s PCs, tech specs
were: Intel Core i7-4770 CPU (3.4 GHz, 8 cores), 16 GB
of RAM and a Gigabit Ethernet NIC. The last component
of our framework was the emulator, which run on a single
PC machine. The tech specs for this computer were: AMD
Ryzen Threadripper 1920X CPU (3,5 GHz, 24 cores), 64 GB
of RAM and two Gigabit Ethernet NICs.

VOLUME 12, 2024 8265

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


S. Kaczmarek, J. A. Litka: Impact of SDN Controller’s Performance on Quality of Service

FIGURE 2. Proposed SDN performance model.

A. MODEL’S FORMAL DESCRIPTION
For the research purposes authors have come up with a formal
description of the model. The model consists of n+1 entities,
which include a single controller (CTRL) and n number
of switches (SWn). Each switch generates traffic forwarded
to the controller, which consists of packet-in messages the
controller has to handle (this was mentioned in previous
sections of this paper). After handling the packet-in message,
the controller generates a flow-mod message, which includes
the rules of how to forward the packets of the flow from
which the packet-in message came. Alongside the flow-mod
message, the original packet is being returned to the network,
encapsulated in the packet-out message. The intensity of this
traffic is denoted by λcl−i,where i is the index of the switch.
In the model authors decided on a chain-like structure of
inter-switch connections, which means, that the index i equal
to 1 will mean the first switch in the chain (an entry point
for the teletraffic) and index i equal to n will denote the last
switch of the domain (an exit point for the teletraffic). Traffic
λcl−i is highly dependable on the number of flows, which the
teletraffic consists of and the time of their flow rule expiration
in the i switch. In previous paragraph the term ‘‘teletraf-
fic’’ is used, by which authors mean the traffic generated
by their generator and working as an emulation of real-life
traffic traversing telecommunication networks. This is the
end-to-end traffic, which delay is used to validate the perfor-
mance of the architecture. From this point it will be denoted
by λe2e. The generator in author’s testbed is called Traffic
Generator (TG).

To measure the performance of the controller, extra traffic
handled by it, called load traffic λcl , was added. This traffic
was generated with the use of Controller Workload Genera-
tor (CG), which targets the single controller utilized in this
architecture.

In this performance model one more parameter is included,
which is the background traffic. The background teletraffic
is denoted with ρlink and is generated with the use of Link
Workload Generators (LGs).

The proposed model for SDN controller’s performance is
illustrated in Fig. 2.
The parameters that are regulated are λcl (from CG) and

ρlink (from LGs). λe2e (from TG) and λcl−i (from SWs) are
parameters that randomly change in each run of the experi-
ment, the reasoning behind it is explained in Section IV.

Before the implementation, the authors have conducted an
analysis of the network behavior of the SDN architecture. The
goal was to propose the metrics for performance evaluation
and decide upon the requirements put on the architecture that
had to be fulfilled to guarantee a desired level of performance.

The times in the architecture have been described as fol-
lows: the total time of the packet traversing the SDN domain
(te2e), consist of both the time in the controller (tc) and
the time spent in the switches (ts). By ‘‘time spent in the
switches’’ authors mean not only the time in the nodes them-
selves, but also the time spent in the links in-between them.

Time in the controller consist of five components: time
of transmitting to the controller (dependent on the interface
transmission speed) (tts2c), time of propagation on the switch
to controller link (tps2c), time of handling by the controller
(tch), time of transmitting the packet back to the switch (ttc2s)
and the time of propagation on the controller-to-switch link
(tpc2s). For the n number of switches in the domain the mean
value of tc is (1).

E (tc) = E
(
tts2c + tps2c + tch + ttc2s + tpc2s

)
(1)

Times of propagation is dependent on two components.
One being the length of the link between switch and the
controller (sc2s) and vice-versa (ss2c), the other being the
delay per kilometer for the links (tlink ), which is defined by
the velocity of propagation of the signal in the transmission
medium. The lengths are typically presented in kilometers
and the delay of the link in case of an optical link is 5 µs
per kilometer. This means that (1) can be presented as (2).

E (tc) = tlink · (ss2c + sc2s) + E
(
tch + tts2c + ttc2s

)
(2)

What has to be remembered at this point, is the fact, that
controllers might work in a different way when handling the
packet. They can either install the flow rule just for the switch
from which the packet came, or send flow rule installation
messages to all switches on the path of the given flow.

When it comes to the time in the switches, authors distin-
guish three components: time of handling by the switch (tsh)
(which includes the work of the switch, aside fromwaiting for
the flow rule to arrive), time of transmitting (tst ) and time of
propagation between the switches (ti,i+1). The i value is from
the range <1; n >, which includes the order of the switches
in the chain.

The mean ts formula for a domain with n switches is (3).

E (ts) =

n∑
i=1

E
(
tshi + tst i

)
+

n−1∑
i=1

E(ti,i+1) (3)

Time of propagation is dependent on the length of the
link in kilometers (si,i+1) and the delay per kilometer. The
links are again fiber optic lines. With this in mind, we can
transform (3) into (4).

E (ts) =

n∑
i=1

E
(
tshi + tst i

)
+ tlink ·

n−1∑
i=1

si,i+1 (4)

8266 VOLUME 12, 2024

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


S. Kaczmarek, J. A. Litka: Impact of SDN Controller’s Performance on Quality of Service

The formula of mean te2e for packets of the flow sent to the
controller is (5).

E (te2e) = E (tc) + E (ts) (5)

Depending on how the first packet in the domain is
treated the (5) formula can be presented as either (6) or (7).
Equation (6) is for cases when a packet of the flow is for-
warded to the controller only once and the controller installs
the flow rules for all the switches in its path.

E (te2e) = E
(
tch + tts2c + ttc2s

)
+

n∑
i=1

E
(
tshi + tst i

)
+ tlink · (ss2c + sc2s +

n−1∑
i=1

si,i+1) (6)

Equation (7) is for cases when a packet of the controller
has to be sent to the controller, when entering each switch in
the path. In these cases, the tc will be repeated n times.

E (te2e) = tlink · (
n∑
i=1

(
ss2ci + sc2si

)
+

n−1∑
i=1

si,i+1)

+

n∑
i=1

E(tchi + tts2ci + ttc2si + tshi + tst i ) (7)

With all of the above formulas in mind, a mathematical
descriptor for the correct work of the SDN architecture has
been established.

In the case of this particular model, the authors decided to
utilize the (6) formula variant, as they consider it to be a more
viable solution.

Knowing the times in the domain, authors decided on the
metrics to be used for the validation. This being the ratio
of the mean time in the controller to the mean end-to-end
time (8) and the ratio of mean time in the controller to the
mean time in the switches (9).

mc/e2e =
E (tc)
E (te2e)

=
E (tc)

E(tc) + E(ts)
(8)

mc/s =
E (tc)
E (ts)

= mc/e2e ·
E (te2e)
E (ts)

(9)

For the domain to work correctly, the flow-message for a
given flow has to reach a switch before the next packet of that
flow. When a first packet of a flow reaches the first switch in
the chain, it triggers an event of preparing a new flow rule to
be installed for the rest of the switches in that path (typically,
by encapsulating that packet, sending it over to the controller
and then returning it back to the network with corresponding
flow-mod message). This means that for the network to work
correctly, the second and each next switch in the path should
receive a new flow rule to install, before they receive a next
packet of that flow.

The i value includes the index number of switch in the path,
excluding the first switch, which ends with n equal to the total

number of switches in the path. For each of the i, (10) has to
be fulfilled:

tarrpi < tarr fmodi , (10)

where tarrpi is the time of the arrival of the packet at the i
switch and tarrfmodi is the time of arrival of the flow-mod
message to the i switch from the controller.

The tarr is equal to the sum of ts and tc for all the switches
before the switch i.

The situation in the case of the first switch in the chain
(SW1) for the beginning of the flow is illustrated with Fig. 3.

FIGURE 3. Current of events in the SDN domain. Second packet of the
flow has to arrive after the rule from the FLOW-MOD packet has been
installed.

The tarrfmodi denotes the time it takes the rules of forward-
ing the flow to reach a switch. The value for an i switch can
be described with the equation (11).

E
(
tarr fmodi

)
= E

(
ttc2si

)
+ tpc2si , (11)

where ttc2si is the time of transmitting a packet from the
controller and tpc2si is the time of propagation of the packet to
the switch. Both of these values are taken from the tc formula.
The mean value of tarrpi can be calculated from the for-

mula (12).

E
(
tarrpi

)
= E

tarr fmod1 +

i−1∑
j=1

E
(
tshj + tst j + tj,j+1

)
(12)

Note the presence of tcfmod1 for the first switch. It is there,
as the packet entering the domain will not continue its path,
until it is sent further by the first switch. As we have discussed
earlier, the model works under the principle that the first
packet of the flow triggers the controller to install the rules
for its forwarding in all of the switches in its path.

The tarri can be further presented as (13).

E
(
tarr i

)
= E

(
ttc2s1

)
+ tpc2s1

+

i−1∑
j=1

(
E

(
tshj + tst j

)
+ tj,j+1

)
(13)

VOLUME 12, 2024 8267

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


S. Kaczmarek, J. A. Litka: Impact of SDN Controller’s Performance on Quality of Service

With both (11) and (13) substituted in (10) we conclude
with the final (14).

E
(
ttc2s1

)
+ tpc2s1 +

i−1∑
j=1

(
E

(
tshj + tst j

)
+ tj,j+1

)
< E

(
ttc2si

)
+ tpc2si (14)

By fulfilling the requirement (14) we design a domain
that works correctly. Without it, events occur in which the
packet reaches the switch before the rule for it is installed,
which would in turn trigger sending the packet as packet-in
message to the controller, having to handle it and install the
rule again, even though it has already been sent beforehand.
This increases the workload for the controller. The more it
happens, the bigger delay it imposes on the network.

B. REQUIREMENTS AND CONCEPT FOR THE RESEARCH
PLATFORM
The overall concept behind the research platform required to
design a framework, which implements an environment in
which teletraffic akin to realistic case scenarios could be used.
It was also crucial to allow regulation of parameters, which
would lead to ability of changing them, so that observation
of their impact on the performance of the network could be
conducted. Measurements should be done during the period
of experiments’ runs and be stored in a format which can be
easily transferred to an external entity (either application or a
device) for analysis. The general form of the proposed testbed
is presented in Fig. 4.

FIGURE 4. Testbed for SDN controller’s performance.

SDN Model block includes switches SWs implemented
in Network Emulator and traffic generator TG. Workload
Generators block implement CG and LGs.

The framework produces workload for controller and emu-
lated network from generators, which are implemented with

the use of MGEN traffic generator [19]. These generators are
launched from the level of custom C++ scripts, which define
the pattern of packets generation from PCAP files [20], that
were gathered earlier from real-life IP traffic.

The results are provided in PCAP and CSV files, which
can later be exported to external tools for analysis and calcu-
lations.

The details on the structure of the network utilized in the
model are provided in the following subsection.

1) NETWORK STRUCTURE
Design of the structure was created with a specific scenario
in mind. The topology emulates a bottleneck from a real-life
telecommunication network and adjusts it to an SDN archi-
tecture philosophy. The structure consists of a number of
switches (SWs), a single controller (CTRL) and generators.
It is illustrated in Fig. 5.

FIGURE 5. Network structure in the proposed testbed.

This particular structure consists of four SDN-compatible
switches (SW1-4), a single SDN controller (CTRL), link
workload generators (LG1-3) and their receivers (three pairs
in total), a controller workload generator (CG) and its receiver
and a traffic generator.

The specific goal of the controller is presented in the later
subsection of this paper. For now, it will suffice to describe it
as a central element of the structure, tasked with management
of flow rules.

The switches are the network’s nodes of data plane. Their
task was to forward traffic traversing the network according
to flow rules, which have been decided by and installed by
the controller. All of them were connected to a controller via
separate point-to-point network. The switches were available
under a single IP address. Each of them opened a unique TCP
sessionwith the controller, making it possible to recognize the
switches by TCP ports. Such a connection is called out-of-
band (or simply out-band) and allows separation of resources
for traffic forwarding and control.

The model incorporates both physical and emulated
approach dividing the elements of its structure between them.
Controller and traffic generator have been implemented as
physical, distinct machines; the rest has been implemented in
emulated environment with the use of Mininet emulator [21].

8268 VOLUME 12, 2024

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


S. Kaczmarek, J. A. Litka: Impact of SDN Controller’s Performance on Quality of Service

Mininet works by launching a number of virtualized Open
vSwitches (OVS), hosts, links between them and even vir-
tual controllers in Linux user space. Switches and hosts are
visible as self-contained virtual machines, allowing the host
machine’s operator to launch host’s applications in any of
these virtual machines, simplifying the benchmarking and
versatility of the experimental environment. Additionally,
Mininet allows the VMs to connect with physical devices
outside of the host machine, which include switches, hosts
and controllers, which was an important factor in choosing
this solution. Currently, Mininet is an industry standard for
research on the SDN networking subjects, utilized in a num-
ber of research papers referred by the authors.

This structure allows expansion in case of such necessity
arising. A chain-like connection of switches can be length-
ened by adding additional nodes to it.

The emulated nature of the model allows for easy scala-
bility. Implementation of the controller and traffic generator
as physical machines mitigates the necessity to share the
resources between them and the emulated domain, making
sure that the controller and generator do not impact the perfor-
mance of the domain itself. It is important, as the generation
of traffic that is not uniform in nature is a complex and highly
resource dependent task. What is more, it makes the project
vendor-agnostic, allowing any kind of an OpenFlow-enabled
SDN controller to be connected to the domain.

Generators used in the structure followed different princi-
ples, all of which are described in the next subsection.

The emulator was connected to a controller via single NIC
card. The second NIC card was used to connect with the
generator. Description of the traffic sources is provided in the
following subsection.

2) TRAFFIC SOURCES
There are five traffic sources in this testbed. Three of them
generate traffic which is tasked with working as workload for
the links themselves. Regulating the intensity of them allows
to observe the influence of link load on the performance of
SDN network. One generator produces traffic which is send
via Controller Workload Switch to generate workload for the
controller. These four generators are emulated alongside the
teletraffic in domain. The last generator is a physical machine
connected to it, and is tasked with generating the traffic that
emulates real teletraffic and as such differs from the previous
four in a pronounced way, which will be detailed later in this
section.

Link workload generators generate traffic in a uniform
manner, with constant number of same-sized packets per
second. They produce flows in different relations. All of
these flows are CBR in nature and require simple forwarding
rules in the switches’ flow tables. In a manner of fact, this
traffic should not produce packet-in messages, aside from a
single one at the very beginning of traffic generation, as the
rules that manage them should not be removed. Their single
objectivewas to create workload for the links themselves. The

workload is devised from a simple equation (15).

ρlink =
α · λlink

c
(15)

where c is the link bandwidth (in this case 1 Gb/s), α is the
size of the packet and λlink is the intensity of traffic generated
by the Link Workload Generator. The value ρlink (link load)
is one of the parameters we regulate in our model allowing it
to reach values from the range <0; 1>.

Controller workload generator generates traffic in a uni-
form pattern as well. This workload does not weigh on the
links in-between the switches, as they are directly sent to
the controller, to generate packet-in events. The details on
this process are provided later in this section, in its final
subsection. The packets of this workload are of the same-
size. By changing the number of same-sized packets a flow
sends per second, we regulate the intensity of the controller’s
workload (λcl).

The last generator (‘‘traffic generator’’) is a physical
machine connected by Gigabit Ethernet to the emulated
domain. This network entity is the origin point of the traffic,
which emulates real-life examples and is utilized to verify
whether the architecture keeps up with completing the QoS
requirements. Because of that, authors have decided to diver-
sify it by guaranteeing different types of traffic to originate
from that single generator.

The diverse number of traffic types generated by author’s
generator conforms to the existing teletraffic in networks.
Most works done on the controller’s performance do not
take that under consideration in their performance assess-
ments [22], [23], [24], [25], [26], [27], [28], [29], [30], [31],
[32], [33], [34], [35].

This stream of traffic consisted of nflows different flows,
which were divided into three separate groups, each of which
had characteristics of a different service-type stream: voice
(VoIP), video (VOD) and data (FTP). This traffic generator
is a single physical generator, but consisting of a number of
software generators, cooperating to produce the teletraffic for
the domain.

The voice flows were most numerous, consisting of a total
of nVoIP different flows. Each of the flows had a maximum bit
rate of 64 kb/s. Each of them was implemented as a different
software generator, with ON/OFF characteristics, as pre-
sented in [16]. The parameters of the generator were based
on [36], which is an ITU-T recommendation that defines
experimentally a model for an artificial representation of a
phone conversation in English. In [36] the talk-sprout lasts
on average for about 1 s, in case of pause the average is about
1.5 s. For this research, it has been decided to correspond this
into our voice-traffic generators, treating a talk sprout as an
ON period and pause as an OFF period.

There was a total of nVOD video flows. Each of them was
created by replicating an appropriate PCAP file [20]. These
files have been generated by capturing 30-minutes long traffic
from a point-to-point Gigabit Ethernet connection between
two computers during an RTSP video transmission. The

VOLUME 12, 2024 8269

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


S. Kaczmarek, J. A. Litka: Impact of SDN Controller’s Performance on Quality of Service

video transmitted was encoded with MPEG-4. Ten different
recordings have been utilized, each providing a separate file.
The video traffic does fulfill self-similarity criteria. During
validation it was observed that the Hurst parameter for all
of these recordings did range from 0.6957 to 0.814, making
them flows compliant with the ITU-T recommendation [16].

The last nFTP flows were data-oriented. They have been
created by replicating PCAP files, as in the case of video
flows. These files were generated by capturing traffic orig-
inating from an FTP download session between two comput-
ers. These sessions were limited to have amaximum available
bandwidth of about 10 Mb/s (by limiting the download on
the FTP server side). The sessions differed by the size of the
file downloaded by the client. The available file sizes were:
1 GB, 350 MB, 67 MB and 8 MB. By guaranteeing different
file sizes, we have provided four different flowswith different
traffic characteristics.

In all of the presented in this subsection cases, for traffic
generation the MGEN packet generator [19] was utilized.
Details on the implementation are presented in the fourth
subsection. The complete set of teletraffic is summarized in
Tab. 1. In the table the bandwidths for each flow types have
been presented.

TABLE 1. Types of traffic utilized in the paper.

After defining the types of traffic traversing the domain,
the authors have defined the objectives of the controller. This
has been provided in third subsection.

3) CONTROLLER’S OBJECTIVES
SDN controller is the central entity in the architecture of
Software Defined Networks [1]. Its main goal is to provide
rules for traffic forwarding in the network. However, it is not
the sole task of the controller, as it is also capable of gathering
information on the network, e.g., utilization metrics or the
data on the intensity of traffic forwarded in the controlled
domain. The functionality aspect of it might be easily aug-
mented and expanded by connecting it to a suite of advanced
applications specified for these tasks. The controller itself
works as a proxy of sort, between the rules designed by
these applications and the network they work on. Of course,
an ‘‘out-of-the-box’’ controller has already a number of prein-
stalled applications working with it, which provide necessary
tools to manage and operate the network. SDN architectures
allow for the controller to work as a single entity or to share
its objective in a decentralized cluster consisting of a number
of controllers, which either perform the same functionality,
sharing the workload or are tasked with operating within

different areas of the network. Authors of this paper utilize
the single controller approach.

In most cases, the SDN controller is capable of working in
both proactive and reactivemode. The first mode is akin to the
legacy networks, in which the administrators of the network
designed the rules for management, later to install them by
configuring its equipment, e.g., load balancers, switches and
routers.

The reactivemodeworks in a way that allows the controller
to react to the changes in the network. It is achieved by
making the controller listen for events that denote a necessity
of changing the flow rules of its domain. In case of OpenFlow
it is done simply by handling packet-in messages which are
send to the controller whenever a switch receives a packet
for a flow, which it does not know how to handle. All the
rules are stored in the switch in ‘‘Flow Tables’’. By default,
if a switch receives a packet that does not match any entry
in its flow tables, it is encapsulated into a packet-in message
and rerouted to the controller. The controller, thanks to its
application, checks the packet with its store, where it keeps
designed rules of forwarding. If an appropriate rule exists, the
packet is returned to the network and the rule is installed into
the switch’s flow table. This of course means, that the whole
operation has to take as little time as possible to not impose
any significant delay in the realization of the service.

The controller in the described testbed was limited to
reactive mode. The rules in the network were devised by the
default mechanisms of the controller. In this case based on
the implementation of spanning tree protocol (STP) [37] and
controller’s knowledge of the topology – which is updated
thanks to periodical link layer discovery protocol (LLDP)
[37] message handling.

The Floodlight controller [37] was chosen for this solu-
tion. Due to the fact, that it allowed to easily tweak with
its specification, which was necessary for the experimen-
tal environment. It was decided to work in reactive mode,
as it was necessary to change how Floodlight installed the
rules. To achieve that, authors have reconfigured the module
responsible for reactive mode. In the next subsection author
present the details on the configuration of the domain and how
the measurement was done in it.

It is important to highlight that the controllers do differ
from each other and how they are designed may have an
impact on the obtained experimental results. This paper does
however focus on the ‘‘black box approach’’ trying to dis-
tinguish limitations of any controllers, no matter the inner
logic that is behind their workings. Papers that provide further
insight – by comparing controllers – into this subject are
already available to the research community [22], [28].

What is more, the delay imposed by the controller might
be tweaked around by focusing on optimizing the code of
the software that the controller de facto is. In case of the
controller, it is possible to distinguish at least three modules
that might impose the delay, them being: Receive Queue,
Processing Queue and Sent Queue. This paper focuses on the
controller as a black box and do not delve into the details

8270 VOLUME 12, 2024

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


S. Kaczmarek, J. A. Litka: Impact of SDN Controller’s Performance on Quality of Service

of its implementation, but research into the matter open an
interesting field for further research.

4) MEASUREMENT SETUP
Firstly, the controller had to be reconfigured to prepare it
for the measurements. In it, the default matching rules were
changed, to make sure that each flow was identified not
only by the source and destination IP addresses, but also
by transport protocol (either UDP or TCP) and the source
and destination ports. The second change was done to the
default timeout. For a reactive flow rule, it was changed to
last 1 second. (This is the minimal value for timeout allowed
inOpenFlow configuration.) Thanks to that, the configuration
created a scenario in which a flow responsible for handling a
VoIP connection can be removed from the switch during the
connections OFF period.

To generate workload for the controller, a single switch
was added to the domain. Controller workload generator was
connected to this node, which generated a constant stream
of packets, providing additional workload for the controller.
This single switch throughwhich the packet is send has a high
priority flow rule pre-installed, which action is set to sending
incoming packets to the controller. It is done by encapsulating
the packet in an OpenFlow packet-in message, which is then
send to the controller. The controller has to handle such a
message and act accordingly. In this paper’s case, as this
rule should never retire from the switch, the controller only
lookups for a matching rule, then stops working on the packet
and sends it back to the network. This means, that some of the
controller’s resources have to be utilized for some period of
time for this task. The more packets the controller workload
generators generate, the more resources and time controller
has to delegate. By changing the number of packets gener-
ated by the controller workload generator it was possible to
regulate controller’s workload as an experiment parameter.

The generator software has been installed on both the gen-
erator’s, as well as emulator’s PCs. For the traffic generation,
authors have prepared a number of C++ scripts, which run
the MGEN software with different parameters, allowing for
simultaneous launch of many MGEN processes, each tasked
with generation of a different flow.

The script tasked with VoIP traffic creates nVoIP flows.
This has been achieved by parallel running of nVoIP different
MGENprocesses. Before launching the flow, the script would
randomly pick a number from range <0.001; 2.000> (with
a 0.000001 resolution), which corresponded to values from
1 ms, to 2 s for all of the VoIP flows. This number was
the time between the script launch and the beginning of a
flow generation. Each of the flows have been designed as
ON/OFFUDP traffic (inMGEN it is achieved by selecting the
BURST pattern of packet generation) with a 1.5 s average for
OFF period and 1 s average for ON period (both distributions
were exponential). Each flow had a different UDP source and
destination ports and thanks to that (and the mentioned earlier
tweak in the controller’s behavior) a separate flow rule has
been installed in each of the switches for each of these flows.

FIGURE 6. Objectives of the generators.

A single packet of this flow corresponds in size to a 20 ms
long G.711 voice sample encapsulated into UDP/IP packet.

The script tasked with video traffic created nVOD flows.
This has been achieved by parallel running of nVOD different
MGEN processes. It picks a start time the same way as in the
case of VoIP traffic. The MGEN has been set to replicate
the given PCAP file input into appropriate UDP packets with
the same size and time relation between them, as in the case
of the original captured packets. Just like in the case of the
VoIP rules, here as well each of the flows have different
source and destination UDP ports.

The script tasked with data traffic created nFTP flows.
This has been achieved by parallel running of nFTP different
MGEN processes. It picks a start time the same way as in
the case of VoIP traffic. The MGEN has been set to repli-
cate the given PCAP file input into appropriate TCP packets
with the same size and time relation between them, as in the
case of the original captured packets. The TCP source and
destination flows were different for each of the flows, just
like in the case of VoIP and video flows.

Themeasurement procedure lasted 30minutes per iteration
and required launching the aforementioned generators:

1) Controller Workload Generator – to provide additional
workload for the controller.

2) Three Link Workload Generators – to provide addi-
tional workload for the in-between switch links.

3) Scripts for three traffic types on Traffic Generator –
to provide the actual teletraffic utilized for the bench-
marking procedure.

Fig. 6 gives additional insight into the placement and objec-
tives of the generators.

CG generates a current of events that are enqueued in the
controller. This increases its workload, giving a parameter to
steer during the measurement process. TG generates actual
teletraffic traversing the domain. Traffic from TG, as well as
streams from LGs share the same link. In case of the LGs,

VOLUME 12, 2024 8271

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


S. Kaczmarek, J. A. Litka: Impact of SDN Controller’s Performance on Quality of Service

their streams are generated to offer additional workload for
the links themselves to emulate real-life network processes.

The exact description of the chosen parameters and the
obtained results are provided in Section IV of this paper.

IV. MEASUREMENTS AND ANALYSIS
In the framework described in Section III a number of mea-
surements have been conducted to validate influence of the
OpenFlow-driven SDN architecture on the QoS of different
teletraffic.

Before the measurement procedure started, the authors
had tomake sure that the frameworkwasworking as intended.
To verify that, four tests were conducted, which objective was
to check if the scenarios of message handling in the proposed
testbed complied with the assumptions for OpenFlow. Firstly,
during the capture of the packets it has been checked if the
time that the controller took to handle a packet-in message
was included in the end-to-end delay of that packet. Secondly,
it has been verified, if all the necessary steps for OpenFlow
packet handling have been undertaken, by checking if such
events consisted of all the required protocol messages, this
being Packet-In, FlowMod and Packet-Out. Thirdly, the exis-
tence of the required flow rules in the framework’s switches
has been observed and if their match and actions rules were
installed properly. Lastly, authors have validated these flow
rules’ n_packets counters (which counts the number of pack-
ets that were matched against the rule) and time (which
informs about how long the rules have been installed in the
table) fields, by checking if their values changed with time
accordingly to themodeled scenarios. All four of these checks
were successfully passed by the model.

For the measurement procedure the following considera-
tions have been made:

1) The links in-between the nodes had 1 Gb/s bandwidth.
2) Traffic Generator (TG) provided traffic load equal to

around 10% of the link bandwidth (a total bitrate of
approximately 100 Mb/s). The parameters of this traf-
fic were: nflows = 264, nVoIP = 250 (a bit rate equal
to 16 Mb/s), nVOD = 10 (with summed bit rate of
39.79 Mb/s), nFTP = 4 (the total summed bitrate was
41.738 Mb/s). The details on the streams included in
this traffic are provided in Tab. 2.

3) A single measurement lasted 30 minutes.
4) In a single measurement two parameters are set: ρlink

and λcl .

The measurement procedure has been conducted 90 times.
Which included 5 measurement intervals per set of variables
ρlink and λcl . These set values are presented in Tab. 3.

Authors focus on validating the IPTD as the essential
QoS metric. Papers on the subject of QoS in SDN mostly
benchmark IPTD and IPLR. In case of the author’s research
there were no packet losses observed in the testbed.

The measurements take under consideration how the link
loads and the controller’s workload influence the time param-
eters of the traffic flows traversing through the domain.

TABLE 2. Flows utilized during the measurements.

TABLE 3. Types of traffic utilized in the paper.

It has been noticed that for data and video streams therewas
only a single packet handling event per stream. This came to
no surprise, as the time intervals between consecutive packets
was lower than 1 second. This means that the flow rules
for these streams were never purged from the flow tables.
With that in mind the authors have decided to minimize their
importance in the validation of the model, as their end-to-end
delays would be only influenced by the link loads and not the
controller’s workload.

However, the case for voice traffic flows was signifi-
cantly different. The generated traffic was emulating artificial
speech and included times of ‘‘silence’’ that came from emu-
lating time in between talk sprouts, during which the speaker
does not talk. This led to an enormous amount of time periods
lasting longer than 1 second that created opportunities for the
flows to be handled by the controller. The set of results for
voice traffic was chosen as a manner of representing the influ-
ence of controller’s performance on the SDN architecture.

From these results authors selected parameters for valida-
tion of the performance. These were:

8272 VOLUME 12, 2024

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


S. Kaczmarek, J. A. Litka: Impact of SDN Controller’s Performance on Quality of Service

1) mean end-to-end delay of packets traversing the
domain E(te2e),

2) mean end-to-end delay of packets traversing the
domain, without packets send to the controller
E(te2e_without_cl),

3) mean time of the controller handling a packet E(tch).
To present and analyze the results, authors have decided to

present them in a manner of forms:
1) line chart presenting the function ofE(te2e)= f(λcl), for

different ρlink ,
2) distribution of E(te2e) for different λcl and ρlink ,
3) distribution of E(te2e) of packets sent to the controller

for different λcl and ρlink ,
4) percentage of packets with te2e higher than 1 ms for

different λcl and ρlink ,
5) percentage of packets with te2e higher than 100 ms for

different λcl and ρlink ,
6) percentage of packets sent to the controller with te2e

higher than 1 ms for different λcl and ρlink ,
7) percentage of packets sent to the controller with te2e

higher than 100 ms for different λcl and ρlink ,
8) ratio of packets sent to the controller to total number

of packets with te2e higher than 1 ms for different λcl
and ρlink ,

9) ratio of packets sent to the controller to total number of
packets with te2e higher than 100 ms for different λcl
and ρlink .

The above has been conducted with the link length settings
in the emulator set to 0, which means that the time of prop-
agation through the links in the domain are not taken into
consideration.

Firstly, the results were presented on the graph showing the
relation between the delay and the controller’s workload. This
has been drawn for three different link loads in Fig. 7.

FIGURE 7. Mean end-to-end delay.

Fig. 7 shows the dependency between increasing con-
troller’s workload and the increase in the mean end-to-end
delay. The differences between the values for different
workloads are not that visible for low workloads of 0 or

250 requests per second, meaning that the controller works
without any issues, no matter the link loads at these points.
The differences start to be visible with the increase of work-
load to 500 and 750 requests per second. Mean end-to-end
delay increases to values from 2 to 4 ms, the biggest increase
is visible at the 1000 and 1250 requests per second point,
where it reaches values from 6 to 8 ms. This outcome is
the result of the increase in packets handling time in the
controller, as presented in (6).With the increase of the number
of packets to be handled (regulated with λcl) the mean time
of being handled by the controller increases as well. Addi-
tionally, with the increase of link workload increases number
of packets that land in switches’ buffers and with the queue
increasing in size, time spend in the switch increases as well,
which leads to the increase in total end-to-end delay.

The authors decided to validate if there is an indication of a
phenomena which might lead to the sudden increase in delay
of the packets traversing the SDN domain.

It is crucial to distinguish two different packets groups:
packets which were handled by the controller and packets
that were not. A packet handling by the controller is a part
of the end-to-end delay, as indicated in formula (5). Authors
decided to verify howmuch of an impact on these two packets
groups have λcl and ρload . To delve deeper into understanding
of the measured values, the authors decided to present how
big part of the end-to-end delay is the effect of being handled
by the controller. Two graphs have been charted. One of them
(Fig. 8) presents the end-to-end delay of the packets that
were not sent to the controller, the second (Fig. 9) presents
the time required for the controller to handle a packet send
to it.

FIGURE 8. Mean end-to-end delay of packets not sent to the controller.

As seen in Fig. 8, the mean end-to-end delay of packets
that were not send to the controller are of small values. The
link load seems to impact the delays as there is a noticeable
increase in the values between 0.7 link load and the other two,
however all of the values themselves are diminutive, not even
reaching half of a millisecond.

VOLUME 12, 2024 8273

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


S. Kaczmarek, J. A. Litka: Impact of SDN Controller’s Performance on Quality of Service

These results were expected. As noted in the previous
paragraphs, with the increase of ρload , number of packets
awaiting forwarding by the nodes increases, as in (3). The
difference in delay between values of 0 and 0.35 is negligibly
low. However, the 0.7 link load has a distinguishable increase
in end-to-end delay.

When compared with the results charted in Fig. 7, authors
notice that delay imposed by the switch plane itself has a
small effect on the total end-to-end delay, the impact of
controller’s workload doesn’t change the values that much.
Suggesting that the bigger part in influencing the end-to-end
delay is played by the controller’s handling time.

To prove this point, a graph was charted, presenting the
impact of the controller’s workload on the time required
by the controller to handle a packet-in event. The graph is
presented in Fig. 9.

FIGURE 9. Mean controller’s handling time.

With the increase of number of requests to handle, the
values for mean controller’s handling time increase as well.
This is not surprising, after all with the increase of workload
the time of waiting for being handled must also increase.

What is of note in Fig. 9 is the difference in waiting time
between different link loads for the highest workload value.
It is most likely, that the time of being handled by the switch
are also influencing the results. After all, the packet that
requires attention from the controller has to be handled by the
switch first. More important are the values themselves when
Fig. 7 is taken into context. When comparing a packet mean
end-to-end timewith the time of a packet being handled by the
controller, it can be concluded that the latter takes themajority
of time needed for the packet to be sent over, which means
that efficiency of the controller’s handling time is crucial for
the process of sending the packet to its destination.

When analyzing the results, one must take under consid-
eration, that in this environment, the times of propagation
in the domain were equal to zero. Authors begin with the
presentation of results for such a situation. Later on in this

section, a different set of results for situation involving an
existing distance between nodes are presented.

To validate the influence of the controller’s performance
on the variation of delay, the authors decided to check the
distribution of end-to-end delay values. The histograms of
this distribution are charted in Fig. 10, 11 and 12.

FIGURE 10. End-to-End delay distribution of all packets for ρlink = 0 and
different λcl .

FIGURE 11. End-to-End delay distribution of all packets for ρlink =

0.35 and different λcl .

Before delving into analysis of the histograms, some expla-
nation is required. The numbers assigned to the x-axis are the
ranges of end-to-end delays. Tab. 4 presents the values of the
ranges.

Most of the packets end-to-end delays have values of lower
than 250 µs. With the increase in link load the percent
decreases. With link load of 0 almost 100% of the pack-
ets have lowest possible delays, no matter the controller’s
workload, with 0.35 the number decreases to 95% and with
0.7 they reach 90%. With the decrease of that value increases
the number of packets with delays of higher values.

8274 VOLUME 12, 2024

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


S. Kaczmarek, J. A. Litka: Impact of SDN Controller’s Performance on Quality of Service

FIGURE 12. End-to-End delay distribution of all packets for
ρlink = 0.7 and different λcl .

TABLE 4. Types of traffic utilized in the paper.

For clarity, authors decided to implement a ‘‘zoom-in’’ into
some values of the packets’ delays, to show the percentage
of packets whose delays went above the value of 100 ms.
It is clearly visible, that the increase of the number of packets
with such delays increases when link load increases above 0.
In these cases, the number of packets with delays higher than
100 ms reach about 1% of all of the packets for 1250 requests
per second of controller’s workload.

To validate the results further, the authors decided to
present also the distribution for packets send only to the
controller. To see how many of them have delays above the
acceptable value of 100ms. This have been charted in Fig. 13,
14 and 15.

Packets that were analyzed belonged to flows representing
VoIP sessions with crucial limitations on acceptable delay
values. The packets that were sent over to the controller had
an increased delay overall. This becomes even more notice-
able the bigger the controller’s workload. This in conjunction
with the observations from charts in Fig. 7-9 paint a grim
picture. Even though the end-to-end delay may increase but
not break the acceptable values, the percentage of packets

that break the threshold is high enough. This might suggest
that with the increase in controller’s workload the percentage
might increase as well.

The more the percentage of packets handled by the
controller increases, the bigger the mean value of overall end-
to-end delay is going to be.

The physical limitations of the testbed did not allow the
authors to validate the measurements with higher workloads
for the controller. However, even with the obtained results it
is to note, that with the increase in the workload the potential
for breaching the acceptable values of IPTD is increasing
noticeably. To make sure that this assessment is correct, the
authors decided to validate how many packets sent to the
controller had delays above 1 and 100 ms and to check how
many overall packets with delays above 1 and 100 ms were
sent to the controller beforehand.

Firstly, authors calculated the number of packets that were
send to the controller. From this group packets with delays
larger than 1 ms have been selected. The latter number was
divided by the previous one and charted in Fig. 16. Fig 17
presents the similar done for delays above 100 ms.

It seems from Fig. 16 that most of the time the controller
imposes at least 1 ms of delay, as significant chunk of packets
handled by the controller have a delay higher than 1 ms.
The differences between different λcl do not influence the
percentages noticeably, as the percentage of packets with
delays higher than 1 ms depending on controller’s workload
oscillates around 80-90%.

The difference starts to be seen when the authors ana-
lyze delays of over 100 ms. From Fig. 17 authors conclude
that for low controller workloads the increase of a delay
above 100 ms is a rare occurrence. With its increase, the
increase in the number of packets with undesirable delay
is highly noticeable. A jump from 250 to 500 requests per
second leads to the increase in 20%, from 500 to 1000 to
another 20%.

The above proves, that packets with end-to-end delays out
of the question are mostly the effect of staying too long in
the controller. This is also a suggestion of what is the real
impact of the increase in controller’s workload on the end-to-
end delays in an SDN domain.

Second checkup was concerned with how many packets
that break the 1 ms and 100 ms limits for end-to-end delays
were handled beforehand by the controller. Authors counted
all packets that had delays above 1 ms. Then from that group,
authors counted all packets that were send to the controller.
The latter value has been divided by the former (Fig. 18). The
same procedure has been conducted for packets with delays
above 100 ms (Fig. 19).
In Fig. 18 shows that for delays higher than 1 ms, the

increase in link workload imposes an adverse effect. In case
of the highest link workload, only a fifth of all packets with
delay above 1 ms were the ones handled by the controller.
This is even more prominent with results charted in Fig. 19.
A significant majority of packets with delay above 100 ms
were the ones handled by the controller.

VOLUME 12, 2024 8275

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


S. Kaczmarek, J. A. Litka: Impact of SDN Controller’s Performance on Quality of Service

FIGURE 13. End-to-End delay distribution of packets sent to the controller for ρlink = 0 and different λcl .

FIGURE 14. End-to-End delay distribution of packets sent to the controller for ρlink = 0.35 and different λcl .

FIGURE 15. End-to-End delay distribution of packets sent to the controller for ρlink = 0.7 and different λcl .

These suggest that controller does in fact influence the
delays of packets from certain flows in a manner that is highly
unwelcome.

A model that does not include the distances between net-
work entities is a far cry from the actual telecommunications
network. After all, distances between network elements and

8276 VOLUME 12, 2024

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


S. Kaczmarek, J. A. Litka: Impact of SDN Controller’s Performance on Quality of Service

FIGURE 16. Percentage of packets sent to the controller with te2e > 1 ms
for different ρlink and λcl .

FIGURE 17. Percentage of packets sent to the controller with
te2e > 100 ms for different ρlink and λcl .

FIGURE 18. Ratio of packets sent to the controller to all packets with
te2e > 1 ms for different ρlink and λcl .

their location in relation to each other may have an impact
on the time of propagation by the transmission systems in the
network.

FIGURE 19. Ratio of packets sent to the controller to all packets with
te2e > 100 ms for different ρlink and λcl .

Taking that into account, as seen in (4), it can be concluded
that with too far of the distance between the entities in this
network, the delay may increase. Especially if the controller
is too far, as the time of propagation from the switch to the
controller and vice versa are part of the equation (6) and (7).
This has already been analyzed in [38].

Authors have already committed to theoretical analysis
of that phenomena in previous sections of this paper (4).
With that in mind, the obtained results presented in previous
paragraphs have been evaluated again with inclusion of the
distances between SDN switches and the controller.

Network from Fig. 2, which the authors utilized in the emu-
lation process, have been adjusted by including the distances
between the SWn switches. Each inter-switch link has been
given a length of 100 km. Additionally, the links between the
SWn and CTRL controller has also been determined to have
a length of 100 km each. Each link is set to be an optical fiber
connection, which imposes a delay of 5 µs per kilometer.
With a length of 100 km for each link, every connection
between elements of this network will now add a total of
500 µs of propagation delay.

Adjusting the results to include the propagation delay has
been conducted thoroughly and with caution. First of all,
every single packet’s delay has been increased by 1.5 ms.
That is because, each packet had to travel through three inter-
switch links. Each such 100 km long link added 500 µs
of delay. Secondly, some of the packets have their delay
increased by additional 1 ms. These packets were selected
based on, whether they have been transferred to the controller
when there were no matching rules for them in the entry
switch SW1. This value came from the links between the
SW1 and the CTRL. A packet has to be sent to the controller
for handling and then returned to the switch it was sent from,
as seen in Fig. 3. As these links were also 100 km in length,
going through these connections once add 500 µs of delay.
In the described case each handled by the CTRL packet
traverses this connection twice.

VOLUME 12, 2024 8277

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


S. Kaczmarek, J. A. Litka: Impact of SDN Controller’s Performance on Quality of Service

FIGURE 20. End-to-End delay distribution of packets sent to the controller for ρlink = 0 and different λcl , including propagation.

FIGURE 21. End-to-End delay distribution of packets sent to the controller for ρlink = 0.35 and different λcl , including propagation.

FIGURE 22. End-to-End delay distribution of packets sent to the controller for ρlink = 0.7 and different λcl , including propagation.

Including the presented modifications to the results, the
authors provide how does the performance of the controller

influence Quality of Service with the time of propagation in
mind.

8278 VOLUME 12, 2024

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


S. Kaczmarek, J. A. Litka: Impact of SDN Controller’s Performance on Quality of Service

FIGURE 23. End-to-End delay distribution of all packets for ρlink = 0 and
different λcl , including propagation.

Discussing them require comparison with previously
charted histograms, that did not include the propagation
delays.

Firstly, the authors provide histograms for the end-to-end
delays of packets that have been sent to the controller for
handling. These are provided in Fig. 20, 21 and 22.

Fig. 20, 21 and 22 provide the same data as Fig. 13, 14
and 15, but with the inclusion of the effect of distance on the
delays. Before the inclusion, the charts had a 3-modal shape
with most of the values concentrating in the range from 2 to
10 ms. After the addition of propagation time the shape of the
distribution changed to 2-modal.

In both situations we notice that around 10% of the
packets sent to the controller have an end-to-end delay of
above 100 ms, which is considered to be the threshold of
acceptance when it comes to VoIP connections [36], [37],
[38], [39], [40], [41].

To complete the analysis, authors provide the same charts
but for all packets, no matter whether they were sent to the
controller, or not. They are presented in Fig. 23, 24 and 25.

As in the case of distribution of packets sent to the con-
troller, here as well the shape of the distribution changed,
this time by moving the values from ranges 0 to 250 µs
into 2 to 5 ms. This combined with the previously existing
values in this ranges lead to a concentration of values on a
level of over 90%. However, in case of the values increasing
beyond 100ms, the total number of such packets is miniscule,
no matter if the propagation is, or is not included in the
results.

Above suggests that for the given range of controller work-
loads the overall quality of VoIP connection should not be
impacted in the long run, still there is a number of packets
whose delays exceed the acceptable values, when they have
to be handled by the controller.

In the next section authors provide their conclusion on the
matter experimented on in this section.

FIGURE 24. End-to-End delay distribution of all packets for ρlink =

0.35 and different λcl , including propagation.

FIGURE 25. End-to-End delay distribution of all packets for ρlink =

0.7 and different λcl , including propagation.

V. CONCLUSION
The designed environment fulfilled the required criteria when
it came to conducting the experiments. With the use of hybrid
emulated/physical approach a number of results have been
obtained. As mentioned in Section III, the testbed stores
results in CSV and PCAP file formats, allowing for their
further analysis on other research platforms.

The results provided in charts from the previous section
give an insight on how the controller performance impacts
the flow in context of keeping up with the Quality of Service.

Results were provided only for VoIP connections, as in
the case of data and VOD flows, only a single instance
of requiring handling by the controller has occurred. The
authors conclude that for the modern SDN network based on
OpenFlow protocol, the given time-resolution for the times
of storing a flow in the switch are enough to not influence
QoS for flows that are long living and have short, lower
than 1 s intervals in-between the packets. The controller

VOLUME 12, 2024 8279

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


S. Kaczmarek, J. A. Litka: Impact of SDN Controller’s Performance on Quality of Service

workload impacts such a flow only at the beginning of the
flow emergence in the network.

Results for VoIP streams are more interesting. In case of
telephone connections there might be instances in which an
intermission between two packets occurring might be beyond
1 s. In such cases the flow has to be reinstalled. Of course, this
might be mitigated by prolonging the timer for keeping the
flow inside of the flow table. This allows for the flow to exist
in the flow table for a longer time than necessary. However,
in a highly utilized network with a lot possible sources,
destinations and service types, a number of such flows might
increase drastically. Network’s operator has to include that in
a modern network there is a high volatility when it comes
to streams ending, emerging and reinstating. With that a
problem of storing the instructions for flow handling in a
somehow limited space of the flow tables emerges [42].
The next paragraphs will focus on the phenomena observed

and noted by the authors.
First of all, the increase of the controller’s workload always

leads to the increase of average end-to-end delay. The higher
the workload is, the higher the expected value of the delay,
as seen in Fig. 7, as expected. This issue with SDN architec-
ture is still a crucial point of concern [15].

Secondly, the distance between the controller and the
switches has a significant effect on the delay imposed by
the controller, as seen in Fig. 20-25. Not only does it increase
themean end-to-end delay value, but it also changes the shape
of the distribution of end-to-end delays for all the packets
forwarded in the network.

Thirdly, from the distribution charts it is clearly visible that
there exists a threshold for both controller’s workload and
the distance between the switch and the controller, as seen in
Fig. 20-25 and with accordance to (6) and (7). Crossing the
thresholds lead to mean values exceeding the limits imposed
by conforming to QoS requirements.

Fourth, no matter the type of the flow, the workload of the
controller or the link loads, the first packet of the flow will
always be delayed. The value of the delay depends on the
controller’s workload and increases with it, as seen in Fig. 9.

Finally, for higher controller’s workload an undesired phe-
nomenon occurs in which a second packet of the flow enters
the controller for handling while the previous packet is still
being handled. With too much of a controller’s workload the
effect increases in scope, leading to avalanche effect in which
the delay from handling of a packet increases the delay of the
following packets.

The overall end-to-end delay does seem to be impacted by
the controller’s workload. This is even more of a complex
issue, as the flow might expire even though the telephone
connection did not end. The pauses of more than 1 second
might occur during a single connection due to the nature
of a human conversation, as defined in the ITU-T recom-
mendation [36]. After each of such pauses a necessity to
re-establish the flow rule emerge, which adds to the end-to-
end delay by repeating the process of being handled by the

controller. These events may lead to an unpleasant experience
of unstable phone connection. It is also imported to highlight
that the impact on the end-to-end delay is minimal in the
observed range of the values, with the visible increase of
it dependent on the increase of controller’s workload it is
assured that there is a threshold beyond which the controller’s
workload starts to impose a noticeable delay.

Listed problems might be mitigated by implementing
appropriate resource control mechanism into the SDN archi-
tecture. A complete solution would require the controller
to recognize flows of high priority that require expediate
handling. In other words, a solution would be to imple-
ment a class-based handling in the SDN controller, akin
to network traffic classes commonly associated with Next
Generation Networks. Additionally, a number of rules in the
controller should work as a guideline when installing the
rules in the network. These should include recognizing
the type of traffic belonging to a flow or sources and recip-
ients of traffic that pose higher requirements on the delay
values.

With all of the above summarized a field for following
research can be established, that includes following experi-
mentation.

First of all, as the authors noted, the observed behavior of
the controller’s workload might impact an altogether differ-
ent type of flows, which are the short-living time-constraint
flows. A number of IoT devices produce such traffic flows,
where they require a fast handling, being sent to the recipient
without much of a delay, but also sending a rather small
amount of information in just a few packets [43].
Secondly, a wider range for the tested parameters should

be incorporated, this is not trivial, as there are constrains from
the hardware at the disposal. However, it would be possible
to implement the testbed in a simulator. This would allow
increasing the range for the variables influencing the results,
as well as to mitigate issues coming from constrains derived
from physical environment.

Thirdly, an attempt at an implementation of the resource
control mechanisms might be due to be conducted to test
whether would they influence positively the mean end-to-
end delays for flows that have rigid requirements on QoS.
Resource control mechanisms may be implemented in either
the controller or the switches. Solutions may include, to name
just a few: controller monitoring the packet-in events to
distinguish the priority of the flows sent to be handled by
the controller; switches keeping a backup of a flow rule for
flows that require expediate handling and have a tendency to
re-emerge further down the timeline.

Authors are aware of the limitations imposed by the
testbed. Even though it is emulating an environment as
close to a real-life telecommunications network as possible,
additional adjustments can be provided. Most of them are
the effects of the limiting nature of the hardware utilized
in the framework. More powerful computer devices would
allow to expand on the range of conditions validated in

8280 VOLUME 12, 2024

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


S. Kaczmarek, J. A. Litka: Impact of SDN Controller’s Performance on Quality of Service

the experiments (like controller’s workload), or the band-
width of links used in interconnections between the switches.
Authors note that the research conducted in this limited
workspace still provides a valuable insight into the nature
of SDN controller’s performance when faced with dealing
with real-life teletraffic use cases. Most papers concerned
with controller’s performance simplify their work by utilizing
requests pipeline that do not emulate the real-life occurrences.
When it comes to providing a valid solution for a telecom-
munications network, engineers should opt for solutions that
have been tested for environments that handle teletraffic.
In a manner of fact, results presented in this paper provide
exactly such insight. What is more the environment is easily
portable, so it can be moved to a different hardware suite.
Upgrading the hardware opens the doors for advancing the
research.

The conclusion of the authors is that the controller does
in fact influence the QoS parameters in the tested range
of parameters. However, the noticeable influence is more
nuanced that simple delay values of the packets. In case of
VoIP flows it was indicated that the first packet of the flow
is delayed in a significant matter, which increases with the
increase of workload of the controller. In case of data or
VOD flows this might not lead to a significant decrease in
the quality of the service, but it might influence negatively a
specific type of streams. Them being streams that are short
lived, yet requiring an expedite forwarding through the net-
work. A use case that fits this description is traffic from IoT,
the reasoning behind this argumentation being provided in the
previous section of this paper.

REFERENCES
[1] D. Kreutz, F. M. V. Ramos, P. E. Veríssimo, C. E. Rothenberg,

S. Azodolmolky, and S. Uhlig, ‘‘Software-defined networking: A compre-
hensive survey,’’ Proc. IEEE, vol. 103, no. 1, pp. 14–76, Jan. 2015, doi:
10.1109/JPROC.2014.2371999.

[2] R. Horvath, D. Nedbal, and M. Stieninger, ‘‘A literature review on chal-
lenges and effects of software defined networking,’’ Proc. Comput. Sci.,
vol. 64, pp. 552–561, Oct. 2015, doi: 10.1016/j.procs.2015.08.563.

[3] Internet Protocol Aspects—Quality of Service and Network Performance,
document ITU-T Rec. Y.1541, 2006.

[4] R. Narisetty, L. Dane, A. Malishevskiy, D. Gurkan, S. Bailey, S. Narayan,
and S. Mysore, ‘‘OpenFlow configuration protocol: Lmplementation
for the of management plane,’’ in Proc. 2nd GENI Res. Educ. Exp.
Workshop, Salt Lake City, UT, USA, Mar. 2013, pp. 66–67, doi:
10.1109/GREE.2013.21.

[5] M. Beshley, M. Seliuchenko, O. Panchenko, O. Zyuzko, and I. Kahalo,
‘‘Experimental performance analysis of software-defined network switch
and controller,’’ in Proc. 14th Int. Conf. Adv. Trends Radioelecrtron-
ics, Telecommun. Comput. Eng. (TCSET), Lviv, Ukraine, Feb. 2018,
pp. 282–286, doi: 10.1109/TCSET.2018.8336203.

[6] S. Asadollahi and B. Goswami, ‘‘Experimenting with scalability of flood-
light controller in software defined networks,’’ in Proc. Int. Conf. Electr.,
Electron., Commun., Comput., Optim. Techn. (ICEECCOT), Mysuru,
India, Dec. 2017, pp. 288–292, doi: 10.1109/ICEECCOT.2017.8284684.

[7] L. Mamushiane, A. Lysko, and S. Dlamini, ‘‘A comparative
evaluation of the performance of popular SDN controllers,’’ in
Proc. Wireless Days (WD), Dubai, UAE, Apr. 2018, pp. 54–59, doi:
10.1109/WD.2018.8361694.

[8] I. Z. Bholebawa, R. K. Jha, and U. D. Dalal, ‘‘Performance analysis
of proposed network architecture: OpenFlow vs. traditional network,’’
Int. J. Comput. Sci. Inf. Secur., vol. 14, pp. 30–39, Mar. 2016, doi:
10.6084/m9.figshare.3153850.

[9] F. Laassiri, M. Moughit, and N. Idboufker, ‘‘Evaluation of the QoS param-
eters in different SDN architecture using Omnet 4.6++,’’ in Proc. 18th Int.
Conf. Sci. Techn. Autom. Control Comput. Eng. (STA), Monastir, Tunisia,
Dec. 2017, pp. 690–695, doi: 10.1109/STA.2017.8314976.

[10] T. Das, V. Sridharan, andM. Gurusamy, ‘‘A survey on controller placement
in SDN,’’ IEEE Commun. Surveys Tuts., vol. 22, no. 1, pp. 472–503,
1st Quart., 2020, doi: 10.1109/COMST.2019.2935453.

[11] A. Bianco, P. Giaccone, A. Mahmood, M. Ullio, and V. Vercellone, ‘‘Eval-
uating the SDN control traffic in large ISP networks,’’ in Proc. IEEE
Int. Conf. Commun. (ICC), London, U.K., Jun. 2015, pp. 5248–5253, doi:
10.1109/ICC.2015.7249157.

[12] B.-y. Yu, G. Yang, and C. Yoo, ‘‘Comprehensive prediction models of
control traffic for SDN controllers,’’ in Proc. 4th IEEE Conf. Netw.
Softwarization Workshops (NetSoft), Montreal, QC, Canada, Jun. 2018,
pp. 262–266, doi: 10.1109/NETSOFT.2018.8460111.

[13] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and
S. Banerjee, ‘‘DevoFlow: Scaling flow management for high-performance
networks,’’ in Proc. ACM SIGCOMM Conf., Aug. 2011, pp. 254–265, doi:
10.1145/2018436.2018466.

[14] M. Yu, J. Rexford, M. J. Freedman, and J. Wang, ‘‘Scalable flow-
based networking with DIFANE,’’ ACM SIGCOMM Comput. Commun.
Rev., vol. 40, no. 4, pp. 351–362, Aug. 2010, doi: 10.1145/1851275.
1851224.

[15] B. Isyaku, M. S. M. Zahid, M. B. Kamat, K. A. Bakar, and F. A. Ghaleb,
‘‘Software defined networking flow table management of OpenFlow
switches performance and security challenges: A survey,’’ Future Internet,
vol. 12, no. 9, pp. 147–176, Aug. 2020, doi: 10.3390/fi12090147.

[16] Traffic Flow Types for Testing Quality of Service Parameters on Model
Networks, document ITU-T Rec. Q.3925, 2012.

[17] C. Metter, M. Seufert, F. Wamser, T. Zinner, and P. Tran-Gia, ‘‘Analyt-
ical model for SDN signaling traffic and flow table occupancy and its
application for various types of traffic,’’ IEEE Trans. Netw. Service Man-
age., vol. 14, no. 3, pp. 603–615, Sep. 2017, doi: 10.1109/TNSM.2017.
2714758.

[18] Y. Liu, Y. Li, Y. Wang, Y. Zhang, and J. Yuan, ‘‘On the resource
trade-off of flow update in software-defined networks,’’ IEEE Commun.
Mag., vol. 54, no. 6, pp. 88–93, Jun. 2016, doi: 10.1109/MCOM.2016.
7498093.

[19] U.S. Naval Research Laboratory. Multi-Generator (MGEN) Network
Test Tool. Accessed: Nov. 21, 2023. [Online]. Available: https://www.nrl.
navy.mil/Our-Work/Areas-of-Research/Information-Technology/NCS/
MGEN/

[20] The Tcpdump Group. TCPDUMP & LIBPCAP. Accessed: Nov. 21, 2023.
[Online]. Available: https://www.tcpdump.org/

[21] Mininet Project Contributors.Mininet. Accessed: Nov. 21, 2023. [Online].
Available: http://mininet.org/

[22] S. A. Shah, J. Faiz, M. Farooq, A. Shafi, and S. A. Mehdi, ‘‘An archi-
tectural evaluation of SDN controllers,’’ in Proc. IEEE Int. Conf.
Commun. (ICC), Budapest, Hungary, Jun. 2013, pp. 3504–3508, doi:
10.1109/ICC.2013.6655093.

[23] A. Shalimov, D. Zuikov, and D. A. Zimarina, ‘‘Advanced study of
SDN/OpenFlow controllers,’’ in Proc. Central Eastern Eur. Softw. Eng.
Conf., 2013, pp. 1–6.

[24] M. Jarschel, F. Lehrieder, Z. Magyari, and R. Pries, ‘‘A flexible
OpenFlow-controller benchmark,’’ in Proc. Eur. Workshop Softw.
Defined Netw., Darmstadt, Germany, Oct. 2012, pp. 48–53, doi:
10.1109/EWSDN.2012.15.

[25] M. Jarschel, C. Metter, T. Zinner, S. Gebert, and P. Tran-Gia, ‘‘OFCProbe:
A platform-independent tool for OpenFlow controller analysis,’’ in Proc.
IEEE 5th Int. Conf. Commun. Electron. (ICCE), Danang, Vietnam,
Jul. 2014, pp. 182–187, doi: 10.1109/CCE.2014.6916700.

[26] Y. Zhao, L. Iannone, and M. Riguidel, ‘‘On the performance of SDN
controllers: A reality check,’’ in Proc. IEEE Conf. Netw. Function Vir-
tualization Softw. Defined Netw. (NFV-SDN), San Francisco, CA, USA,
Nov. 2015, pp. 79–85, doi: 10.1109/NFV-SDN.2015.7387410.

[27] P. Isaia and L. Guan, ‘‘Performance benchmarking of SDN exper-
imental platforms,’’ in Proc. IEEE NetSoft Conf. Workshops (Net-
Soft), Seoul, South Korea, Jun. 2016, pp. 116–120, doi: 10.1109/
NETSOFT.2016.7502456.

[28] S. Mallon, V. Gramoli, and G. Jourjon, ‘‘Are today’s SDN controllers
ready for primetime?’’ in Proc. IEEE 41st Conf. Local Comput. Netw.
(LCN), Dubai, United Arab Emirates, Nov. 2016, pp. 325–332, doi:
10.1109/LCN.2016.60.

VOLUME 12, 2024 8281

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://dx.doi.org/10.1109/JPROC.2014.2371999
http://dx.doi.org/10.1016/j.procs.2015.08.563
http://dx.doi.org/10.1109/GREE.2013.21
http://dx.doi.org/10.1109/TCSET.2018.8336203
http://dx.doi.org/10.1109/ICEECCOT.2017.8284684
http://dx.doi.org/10.1109/WD.2018.8361694
http://dx.doi.org/10.6084/m9.figshare.3153850
http://dx.doi.org/10.1109/STA.2017.8314976
http://dx.doi.org/10.1109/COMST.2019.2935453
http://dx.doi.org/10.1109/ICC.2015.7249157
http://dx.doi.org/10.1109/NETSOFT.2018.8460111
http://dx.doi.org/10.1145/2018436.2018466
http://dx.doi.org/10.1145/1851275.1851224
http://dx.doi.org/10.1145/1851275.1851224
http://dx.doi.org/10.3390/fi12090147
http://dx.doi.org/10.1109/TNSM.2017.2714758
http://dx.doi.org/10.1109/TNSM.2017.2714758
http://dx.doi.org/10.1109/MCOM.2016.7498093
http://dx.doi.org/10.1109/MCOM.2016.7498093
http://dx.doi.org/10.1109/ICC.2013.6655093
http://dx.doi.org/10.1109/EWSDN.2012.15
http://dx.doi.org/10.1109/CCE.2014.6916700
http://dx.doi.org/10.1109/NFV-SDN.2015.7387410
http://dx.doi.org/10.1109/NETSOFT.2016.7502456
http://dx.doi.org/10.1109/NETSOFT.2016.7502456
http://dx.doi.org/10.1109/LCN.2016.60
http://mostwiedzy.pl


S. Kaczmarek, J. A. Litka: Impact of SDN Controller’s Performance on Quality of Service

[29] O. Salman, I. H. Elhajj, A. Kayssi, and A. Chehab, ‘‘SDN con-
trollers: A comparative study,’’ in Proc. 18th Medit. Electrotech. Conf.
(MELECON), Lemesos, Cyprus, Apr. 2016, pp. 1–6, doi: 10.1109/MEL-
CON.2016.7495430.

[30] D. Suh, S. Jang, S. Han, S. Pack, M.-S. Kim, T. Kim, and C.-G. Lim,
‘‘Toward highly available and scalable software defined networks for
service providers,’’ IEEE Commun. Mag., vol. 55, no. 4, pp. 100–107,
Apr. 2017, doi: 10.1109/MCOM.2017.1600170.

[31] I. Z. Bholebawa and U. D. Dalal, ‘‘Performance analysis of
SDN/OpenFlow controllers: POX versus floodlight,’’ Wireless Pers.
Commun., vol. 98, no. 2, pp. 1679–1699, Jan. 2018, doi: 10.1007/s11277-
017-4939-z.

[32] A. Nguyen-Ngoc, S. Raffeck, S. Lange, S. Geissler, T. Zinner, and
P. Tran-Gia, ‘‘Benchmarking the ONOS controller with OFCProbe,’’ in
Proc. IEEE 7th Int. Conf. Commun. Electron. (ICCE), Hue, Vietnam,
Jul. 2018, pp. 367–372, doi: 10.1109/CCE.2018.8465731.

[33] L. Zhu, M. M. Karim, K. Sharif, C. Xu, F. Li, X. Du, and M. Guizani,
‘‘SDN controllers: A comprehensive analysis and performance evaluation
study,’’ ACM Comput. Surv., vol. 53, no. 6, pp. 1–40, Dec. 2020, doi:
10.1145/3421764.

[34] D. Lunagariya and B. Goswami, ‘‘A comparative performance analysis of
stellar SDN controllers using emulators,’’ in Proc. Int. Conf. Adv. Electr.,
Comput., Commun. Sustain. Technol. (ICAECT), Bhilai, India, Feb. 2021,
pp. 1–9, doi: 10.1109/ICAECT49130.2021.9392391.

[35] S. Bhardwaj and S. N. Panda, ‘‘Performance evaluation using RYU SDN
controller in software-defined networking environment,’’ Wireless Pers.
Commun., vol. 122, no. 1, pp. 701–723, Jan. 2022, doi: 10.1007/s11277-
021-08920-3.

[36] Artificial Conversational Speech, document ITU-T Rec. P.59, 1993.
[37] Atlassian. Project Floodlight Documentation. Accessed: Nov. 21, 2023.

[Online]. Available: https://floodlight.atlassian.net/wiki/spaces/floodlight
controller/overview/

[38] A. Sallahi and M. St-Hilaire, ‘‘Optimal model for the controller placement
problem in software defined networks,’’ IEEE Commun. Lett., vol. 19,
no. 1, pp. 30–33, Jan. 2015, doi: 10.1109/LCOMM.2014.2371014.

[39] International Telephone Connections and Circuits—General Recommen-
dations on the Transmission Quality for an Entire International Telephone
Connection, document ITU-T Rec. G.114, 2003.

[40] Internet Protocol Data Communication Service—IP Packet Transfer and
Availability Performance Parameters, document ITU-TRec. Y.1540, 2007.

[41] Network Performance Objectives for IP-Based Services, document ITU-T
Rec. Y.1541, 2011.

[42] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, ‘‘On the effect of
forwarding table size on SDN network utilization,’’ in Proc. IEEE Conf.
Comput. Commun. (IEEE INFOCOM), Toronto, ON, Canada, Apr. 2014,
pp. 1734–1742, doi: 10.1109/INFOCOM.2014.6848111.

[43] A. Pekar, J. Mocnej, W. K. G. Seah, and I. Zolotova, ‘‘Application domain-
based overview of IoT network traffic characteristics,’’ ACM Comput.
Surv., vol. 53, no. 4, pp. 1–33, Jul. 2020, doi: 10.1145/3399669.

SYLWESTER KACZMAREK received the M.Sc.
degree (Hons.) in electronics engineering and the
Ph.D. (Hons.) and D.Sc. degrees in switching and
teletraffic science from the Gdańsk University of
Technology (GUT), Poland, in 1972, 1981, and
1994, respectively.

From 1972 to 1981, he was an Assis-
tant Professor with the Faculty of Electronics,
Telecommunications and Informatics (FETI),
GUT. From 1981 to 1994, he was an Assistant

Professor, and from 1994 to 2005, he was anAssociate Professor. Since 2005,
he has been a Professor with FETI. From 2007 to 2018, he was the Head
of the Teleinformation Networks Department, FETI. His research interests
include IPQoS, GMPLS,ASON and SDNnetworks, switching, QoS routing,
teletraffic, and multimedia services. His current research interests include
the developing and applicability of VoIP, IMS/NGN, and SDN technologies.
So far, he has published two monographs, more than 270 articles. Among
his promoted students, there are 294 engineers and M.Scs., and seven
Ph.Ds. He participates and directs projects and research-development grants.
Among his distinctions, there is also the TPC membership of conferences,
such as ITNAC, KRiT, and SoftCOM.

JACEK ANDRZEJ LITKA received the M.Sc.
degree in electronics and telecommunications
from the Faculty of Electronics, Telecommunica-
tions and Informatics (FETI), Gdańsk University
of Technology (GUT), in 2014.

Since 2018, he has been an Assistant with the
Department of Teleinformation Networks, FETI.
He teaches classes focused on different subject of
telecommunication technologies, including princi-
ples of transmission, network architectures, digital

signal processing, and the security of information systems. His research
interest concentrates on the subject of network performance and software
defined networks, which are directly connected with his works on a disser-
tation in the field of information and telecommunication technology. Aside
from didactic and research work, he has experience in translating English
informatics handbooks, he is an active participant in department’s research
projects and spearheads department’s modernization processes.

8282 VOLUME 12, 2024

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://dx.doi.org/10.1109/MELCON.2016.7495430
http://dx.doi.org/10.1109/MELCON.2016.7495430
http://dx.doi.org/10.1109/MCOM.2017.1600170
http://dx.doi.org/10.1007/s11277-017-4939-z
http://dx.doi.org/10.1007/s11277-017-4939-z
http://dx.doi.org/10.1109/CCE.2018.8465731
http://dx.doi.org/10.1145/3421764
http://dx.doi.org/10.1109/ICAECT49130.2021.9392391
http://dx.doi.org/10.1007/s11277-021-08920-3
http://dx.doi.org/10.1007/s11277-021-08920-3
http://dx.doi.org/10.1109/LCOMM.2014.2371014
http://dx.doi.org/10.1109/INFOCOM.2014.6848111
http://dx.doi.org/10.1145/3399669
http://mostwiedzy.pl

