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Abstract: Modelling of the continuum damage framework is developed for application in the

elasto-viscoplastic Chaboche constitutive model. A brief description of the basic variant of the

Chaboche model equations is given, followed by a discussion of the most important assumptions

necessary to obtain evolution of the continuum damage model and its application to the open

FE commercial program. A consistent presentation of the two proposed approaches is followed by

numerical examples.

Keywords: elasto-viscoplastic constitutive models, damage, finite element method

1. Introduction

The first order differential equations describing the evolution of viscous effects

and hardening was proposed in the 1960’s by Perzyna [1]. It is one of the oldest

modern elasto-viscoplastic models, still often used in material descriptions of many

engineering applications due to its simplicity related to a small number of material

parameters and a straightforward identification procedure. The Chaboche model is

an extension of Perzyna’s law [2]. In the basic variant of the Chaboche model seven

inelastic material parameters have to be specified (see e.g. [3]). These model equations

have been modified and developed many times (see e.g. [4], where several variants and

their practical engineering applications are presented).

The main goal of the present paper is to present an application of the

elasto-viscoplastic Chaboche model with isotropic damage evolution to the geometri-

cally non-linear finite element analysis of plate and shell structures in the MSC.Marc
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commercial code. The authors have taken advantage of the possibility of user-defined

subroutines application in this code and introduced two ways of damage implemen-

tation in the Chaboche model.

2. Introduction to continuum damage modelling

The constitutive equations used in the present study are based on additive

decomposition of strain rates for an isotropic material into the elastic, ε̇E , and inelastic

part, ε̇I , in the form of

ε̇= ε̇E+ ε̇I , (1)

where the dots denote differentiation with respect to time.

The relation between stress and strain rates is defined by the following equa-

tion [5]:

Ṡ =(1−D)D : ε̇E = D̃ :
(

ε̇− ε̇I
)

, (2)

where D is the elasticity tensor of the undamaged material, and D ∈ 〈0, 1) is the

damage scalar parameter. Isotropic damage evolution is assumed, with cracks and

cavities appearing during deformation distributed uniformly throughout the body’s

volume.

The concept proposed by Lemaitre [5] is used in the present paper to describe

isotropic damage evolution. It should be noted that the Lemaitre proposal of damage

evolution is not the only to be found in the literature (see e.g. Bonora [6], Chan-

drakanth [7] and [8], Dhar [9], Tai [10], Wang [11], Xiao [12], etc.). Lemaitre [5] has

assumed that damage evolution can be expressed by the equation:

Ḋ=

(

−Y

S

)s

ṗ, (3)

where S and s are the damage material parameters, while ṗ is the rate of equivalent

plastic strain, defined as:

ṗ=
√

ε̇
I : ε̇I . (4)

The Y function, called the damage strain energy release rate, is given by:

−Y =
1

2(1−D)
2
E

(

2

3
(1+ν)σ2eq+3(1−2ν)σ

2

H

)

, (5)

where E and ν are Young’s modulus and Poisson’s ratio of the undamaged material,

σeq and σH is the Huber-Mises equivalent and hydrostatic stress.

3. Chaboche model description

In the Chaboche model (see e.g. [2, 13]) the inelastic strain rate has the following

form:

ε̇
I =
3

2
ṗ
S ′−X ′

J (S ′−X ′)
, (6)

where J (a) =
√

3

2
a :a =

√

3

2
aijaij , while S

′ and X ′ are the deviatoric parts of the

stress and back stress tensors, respectively.
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The isotropic damage expressed by the scalar parameter is considered to be

0≤D< 1. The ṗ rate in the Chaboche model with damage is defined as follows [14]:

ṗ=

〈

(J (S ′−X ′)/(1−D))−R−k

K

〉n

, (7)

where k, D and K, n are the initial yield stress, the damage parameter and the

viscous material parameters. The angle brackets, 〈x〉, are referred to as the McCauley

brackets and are defined as 〈x〉= 1
2
(x+ |x|). The kinematic hardening tensor, X , and

the isotropic hardening scalar function, R, are defined in the differential form:

Ṙ= b(R1−R) ṗ , Ẋ =
2

3
a ε̇I−cX ṗ, (8)

where b, R1, a and c are hardening evolution material parameters.

The material parameters’ identification process for the Chaboche model with

damage has been described by Ammar and Dufailly [14]. They have specified the

elastic and inelastic material parameters for viscoplastic law and established the

damage material parameters in an iterative way.

4. Description of the applied program and subroutines used

4.1. MSC.Marc

The MSC.Marc system has been used for the present numerical calculations.

It is a multipurpose finite element system of programs for advanced engineering

simulations. Its great advantage is the possibility to apply over 100 modifiable user

subroutines. The UVSCPL (viscoplastic modelling), USHELL (change of the element’s

thickness) and UACTIV (deactivation of finite elements) user subroutines [15] have

been applied in the present study.

The standard MSC.Marc system supports the Chaboche model, but not in its

variant with damage. The UVSCPL user-defined subroutine [15] has been used to

introduce the Chaboche model with continuous damage into the MSC.Marc system.

It should be noted that this routine enables very general description of viscoplastic

material laws, which can be included in both static and dynamic calculations. This

subroutine (without the USHELL and UACTIV routines) has also been successfully

applied by Ambroziak in paper [16] to implement the Chaboche model with damage.

4.2. Numerical concepts of the damage approach

Two calculation variants are studied in the present investigations. In one of

them, damage evolution is calculated according to the classic Chaboche-Lamaitre

equations given in Section 2. In the other, damage evolution is not directly used in

the Chaboche equations, but the change of the damage parameter generates change

in the element’s thickness. In this approach, the USHELL subroutine [15] is used to

change the thickness of an element. This user subroutine allows specification of the

shell elements’ thickness for each integration point at any moment of the calculations.

The main parts of the algorithms used in the computations are presented in Figures 1

and 2.
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∆X =
∆t

2
·

(

Ẋ t−∆t + Ẋ t

)

, Xt = Xt−∆t + ∆X

∆R =
∆t

2
·

(

Ṙt−∆t + Ṙt

)

, Rt = Rt−∆t + ∆R

∆D =
∆t

2
·

(

Ḋt−∆t + Ḋt

)

, Dt = Dt−∆t + ∆D

S
′

t , X
′

t , J (S ′

t −X
′

t ), J (S ′

t), tr (St), σeq, σH

ṗt =

〈 J(S ′

t
−X

′

t)
1−Dt

− Rt − k

K

〉

n

ε̇
I
t =

3

2
· ṗt ·

(S ′

t −X
′

t )

J (S ′

t −X ′

t )

Ẋ t =
3

2
· a · ε̇

I
t − c ·Xt · ṗt

Ṙt = b · (R1 − Rt) · ṗt

Yt =
σ2

eq

2 · (1 − Dt)
2
· E

·

(

2

3
· (1 + v) + 3 · (1 − 2 · v) ·

(

σH

σeq

)2
)

Ḋt =

(

Yt

S

)S

· ṗt

D̃t = (1 − Dt) ·D

∆ε
I
t = ε̇

I
t · ∆t

∆St = D̃t ·
(

∆εt − ∆ε
I
t

)

St+∆t = St + ∆St

UVSCPL

UACTIV

if (Dt ≥ Dcr) deactivate element

Figure 1. Flow graph of the main operations of the classical Chaboche-Lamaiter approach

with UVSCPL+UACTIV subroutines

In the traditional numerical calculations of the shell and plate structures,

the damage is also introduced by reduction of Young’s modulus of the undamaged

material:

Ẽ=E ·(1−D). (9)
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∆X =
∆t

2
·

(

Ẋ t−∆t + Ẋ t
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, Xt = Xt−∆t + ∆X
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∆t

2
·

(

Ṙt−∆t + Ṙt

)

, Rt = Rt−∆t + ∆R

S
′

t , X
′

t , J (S ′

t −X
′

t ) , J (S ′

t) , tr (St)

ṗt =

〈

J (S ′

t −X
′

t ) − Rt − k

K

〉n

ε̇
I
t =

3

2
· ṗt ·

(S ′

t −X
′

t )

J (S ′

t −X ′

t )

Ẋ t =
3

2
· a · ε̇

I
t − c ·Xt · ṗt

Ṙt = b · (R1 − Rt) · ṗt

∆ε
I
t = ε̇

I
t · ∆t

∆St = Dt ·
(

∆εt − ∆ε
I
t

)

St+∆t = St + ∆St

∆D =
∆t

2
·

(

Ḋt−∆t + Ḋt

)

Yt =
σ2

eq

2 · (1 − Dt)
2
· E

·

(

2

3
· (1 + v) + 3 · (1 − 2 · v) ·

(

σH

σeq

)2
)

Ḋt =

(

Yt

S

)S

· ṗt

Dt = Dt−∆t + ∆D

h̃t =
(

1 − D̄t

)

· h0

UVSCPL

USHELL

UACTIV

if (Dt ≥ Dcr) deactivate element

Figure 2. Flow graph of the approach with changing element thickness

with UVSCPL+USHELL+UACTIV subroutines
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212 A. Ambroziak et al.

The authors propose that damage can be introduced by reduction of the

element’s initial thickness:

h=
(

1−D̄
)

·h0, (10)

where h0 is the element’s initial thickness (constant for the whole element).

This approach (reduction of the element’s thickness, USHELL) can only be used

in the MSC.Marc system with shell elements. It should be noted that the current value

of damage parameter Di is different at each integration point of the current element

in each layer i. As it is impossible to reduce the thickness of each layer of a finite

element in numerical calculations, the average value of damage parameter D̄ has been

calculated as:

D̄=
1

n

n
∑

i=1

Di. (11)

Finally, the current thickness of the damaged element at integration point has been

evaluated according to Equation (10).

Four-node isoparametric shell elements divided into several layers have been

used in the calculations. A 2×2 mesh of Gauss integration points has been applied

for integration. The Newmark integration in time scheme has been utilized in the

dynamic calculations, and the analysis has been focused on the evolution of damage

parameter D. A rapid increase of this parameter, even at a single integration point

in a single layer, can cause a numerical collapse of the calculations, even though the

structure itself is still able to carry larger load. To avoid this numerical disadvantage,

the authors have limited the maximum value of this parameter to Dcr =0.9.

The alternative method of extending the calculations’ range is deactivation of

finite elements with high degree of damage. It has been determined that if the value

of damage parameter D at all integration points of the element is greater than 0.5,

the element is deactivated by the UACTIV subroutine [15]. It is worth pointing out

that a deactivated element does not contribute to the load, mass, stiffness, or internal

force calculations. This subroutine in the MSC.Marc system is always called at the

beginning and at the end of each increment. Deactivation of finite elements alters

the plate mass, which is not a physical effect. The authors intend develop the model

further in order to eliminate this disadvantage.

Additionally, the re-meshing feature of the MSC.Marc system was utilised in

each case. From several re-meshing criteria, the equivalent plastic strain criteria were

selected. The element in which the equivalent plastic strain reached the value of 0.05

was subdivided into 4 elements. Only a single level of division was assumed, which

means that elements from the first division could not be divided any more. This

approach creates additional nodes but, unlike the nodes of the original mesh, they

are not independent. Their translations and rotations are calculated on the basis of

nodes of the virgin mesh.

Vanishing of elements can lead to a situation, when no element is attached to

a certain node. If this happens to a node from the virgin mesh, the calculations will be

broken due to this node’s rigid movement. The opposite is the case with re-meshing

nodes. As they are linked to the nodes of the original mesh, their displacements can

be calculated even with no element attached. To avoid the problem of the original
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5
m

5m

x

y

z

u, v, w, rx, ry = 0

(u, v, w = 0)
u, v, w, rx, ry = 0

(u, v, w = 0)

(u, ry, rz = 0)

(u, rx, rz = 0)

Figure 3. Geometry of a plate and its finite element mesh

mesh nodes’ separation, weak spring supports can be added, which will have negligible

influence on vibrations, but will protect a node against large rigid movement.

5. Numerical examples

Geometrically non-linear numerical calculations of the square plate presented

in Figure 3 are performed. Due to the symmetry of the plate’s geometry and loading,

a quarter of the plate is discretized by a four-node thin-shell element (Element

139 [17]). Shell elements of total initial thickness h0 = 0.01m are divided into five

layers. The following material parameters are taken for the Chaboche model with

damage (INCO alloy at 627̊ C from [14]): E = 162.0GPa, ν = 0.3, k = 501.0MPa,

b=15.0, R1=−165.4MPa, a=80.0GPa, c=200.0, n=2.4, K =12790.0(MPa·s)
1/n,

S=4.48MPa, s=3.0. The mass density is ρ=7900kg/m3.

The loading (uniformly distributed pressure pmax = 1.5MPa) is increasing

linearly from p(t= 0.0s) = 0 to p(t≥ 0.01s) = pmax and then remains constant. The

non-linear equations of motion are integrated by the Newmark algorithm [18] with

a time step of ∆t=2.66·10−4 s. Two variants of boundary conditions are investigated:

hinged and clamped plate edges.

5.1. Case 1: a hinged plate

Screenshots of vertical displacement for the plate’s quarter are presented in

Figures 4 and 5. In the early stage of vibrations, re-meshing of the elements occurs,

starting from the plate’s edges – an effect of inertia of the middle part of the

plate in dynamic calculations. Then, due to evolution of the damage parameters,

elements close to the symmetry line elements are deactivated. Subsequently, the

“crack” runs diagonally across the plate and, finally, the middle part of the plate
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214 A. Ambroziak et al.

Figure 4. Hinged plate: damage analysis with subroutines UVSCPL+UACTIV (t1=7.2 ·10
−3 s,

t2=1.12 ·10
−2 s, t3=9.52 ·10

−2 s, t4=1.048 ·10
−1 s, t5=1.123 ·10

−1 s, t6=1.147 ·10
−1 s)

is separated and moves rigidly. The history of the plate’s damage is similar for both

approaches, the only difference being that the separated part of the plate is smaller

in the change of thickness concept. As the first deactivated element is the only one

attached to the middle node of the plate, being a virgin mesh node, an additional

weak spring has been attached to the plate in the Z axis’ direction to eliminate rigid

movement.
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Figure 5. Hinged plate: damage analysis with subroutines UVSCPL+USHELL+UACTIV

(t1=6.933 ·10
−3 s, t2=1.12 ·10

−2 s, t3=9.44 ·10
−2 s, t4=1.043 ·10

−1 s,

t5=1.077 ·10
−1 s, t6=1.144 ·10

−1 s)

Vertical displacement of the middle point is shown as a function of time in

Figure 6. Response according to both approaches is the same until the disappearance

of the element attached to this node.

5.2. Case 2: a clamped plate

Analysis similar to that of the hinged plate has been performed for a clamped

plate (see Figures 8 and 9). In this case, the evolution of inelastic strains begins at
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216 A. Ambroziak et al.

Figure 6. Time functions of the middle point vertical vibrations for the hinged plate

Figure 7. Time functions of the middle point damage evolution for the hinged plate

the plate’s edges; therefore, the edge finite elements are re-meshed first, following

which, the middle part of the plate’s quarter is re-meshed. Additionally, elimination

of damaged elements begins close to the clamped edges. In the classical approach,

elements in the middle of the edge are eliminated first, wherefrom elimination

progresses towards the plate’s corners, so that finally almost the entire plate is

separated (Figure 8, t5=2.907·10
−2 s). However, in the change of thickness approach,

elements close to plate’s corners are deactivated first, and damage progresses along the

edge to its centre. The ultimately separated part is very similar to the other approach.

The time-displacement functions for the plate’s middle point are also insensitive to

the approach (Figure 10).
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Figure 8. Clamped plate: damage analysis with subroutines UVSCPL+UACTIV

(t1=9.333 ·10
−3 s, t2=1.173 ·10

−2 s, t3=1.76 ·10
−2 s, t4=2.267 ·10

−2 s,

t5=2.64 ·10
−2 s, t6=2.907 ·10

−2 s)

6. Conclusions

Numerical examples have been presented in the framework of the first-order

shear deformation and geometrically non-linear shell theory, under the small-strain

assumption. The obtained results encourage the authors to continue the research

on the basis of extended experimental data. The present work is the first step of

a comprehensive investigation of damage evolution.
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218 A. Ambroziak et al.

Figure 9. Clamped plate: damage analysis with subroutines UVSCPL+USHELL+UACTIV

(t1=9.333 ·10
−3 s, t2=1.147 ·10

−2 s, t3=8.16 ·10
−2 s, t4=1.04 ·10

−1 s,

t5=1.059 ·10
−1 s, t6=1.075 ·10

−1 s)

The applied numerical improvements have extended the range of performed

analysis in comparison with the approach where calculations collapse when damage

function D has a value close to 1 at a single integration point. Both approaches

have generally produced similar answers, in spite of the different physical meaning

of the two types of calculations. Re-meshing of the original finite element mesh due

to dependency of new nodes can also increase the calculations’ range. In dynamic
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Figure 10. Time functions of the middle point vertical vibrations for the clamped plate

Figure 11. Time functions of the middle point damage evolution for the clamped plate

calculations, separated elements of the structure are capable of rigid movements,

which can be traced by non-linear dynamic algorithms.
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