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This paper deals with the implementation of arbitrary precision calculations into the open-source 
discrete element framework YADE published under the GPL-2+ free software license. This new capability 
paves the way for the simulation framework to be used in many new fields such as quantum 
mechanics. The implementation details and associated gains in the accuracy of the results are discussed. 
Besides the “standard” double (64 bits) type, support for the following high-precision types is 
added: long double (80 bits), float128 (128 bits), mpfr_float_backend (arbitrary precision) 
and cpp_bin_float (arbitrary precision). Benchmarks are performed to quantify the additional 
computational cost involved with the new supported precisions. Finally, a simple calculation of a chaotic 
triple pendulum is performed to demonstrate the new capabilities and the effect of different precisions 
on the simulation result.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The advent of a new era of scientific computing has been pre-
dicted in the literature, one in which the numerical precision re-
quired for computation is as important as the algorithms and data 
structures in the program [6,50,51,64]. An appealing example of 
a simple computation gone wrong was presented in the talk “Are 
we just getting wrong answers faster?” of Stadtherr in 1998 [85]. 
An exhaustive list of such computations along with a very detailed 
analysis can be found in [51].

Many examples exist where low-precision calculations resulted 
in disasters. The military identified an accumulated error in multi-
plication by a constant factor of 0.1, which has no exact binary 
representation, as the cause for a Patriot missile failure on 25 
February 1991, which resulted in several fatalities [12]. If more 
bits were used to represent a number, the explosion of an Ari-
ane 5 rocket launched by the European Space Agency on 4 June 
1996 could have been prevented [58,56,49,11] as it was a re-
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sult of an inappropriate conversion from a 64 bit floating point 
number into a 16 bit signed integer. Indeed, the 64 bit floating 
point number was too big to be represented as a 16 bit signed 
integer. On 14 May 1992 the rendezvous between the shuttle En-
deavour and the Intelsat 603 spacecraft nearly failed. The prob-
lem was traced back to a mismatch in precision [74,43]. More 
catastrophic failures related to the lack of precision are discussed 
in [74,43]. In 2012 it was predicted that most future technical 
computing will be performed by people with only basic training 
in numerical analysis or none at all [59,36,6,51]. High-precision 
computation is an attractive option for such users, because even 
if a numerically better algorithm with smaller error or faster 
convergence is known for a given problem (e.g. Kahan summa-
tion [36] for avoiding accumulating errors1), it is often easier and 
more efficient to increase the precision of an existing algorithm 
rather than deriving and implementing a new one [6,50] — a 
feat which is made possible by the work presented in this pa-
per. It shall however be noted that increasing precision is not 
the answer to all types of problems, as recently a new kind of 
a pathological systematic error of up to 14% has been discovered 

1 For n summands and ε Unit in Last Place (ULP) error, the error in regular sum-
mation is nε, error in Kahan summation is 2ε, while error with regular summation 
in twice higher precision is nε2. See proof of Theorem 8 in [36].
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Table 1
Selected modules and features in YADE.

cmake flag Description

High-precision support in present YADE version37.

(always on) Discrete Element Method [98,53].
(always on) Deformable structures [28,15,95].
ENABLE_CGAL Polyhedral particles, polyhedral particle breakage [29,34].
ENABLE_LBMFLOW Fluid-solid interaction in granular media with coupled

Lattice Boltzmann/Discrete Element Method [60].
ENABLE_POTENTIAL_PARTICLES Arbitrarily shaped convex particle described as a 2nd degree

polynomial potential function [14].

Selected YADE features with high-precision support.

ENABLE_VTK Exporting data and simulation geometry to ParaView [98]
(always on) Importing geometry from CAD/CAM software (yade.ymport) [98].
ENABLE_ASAN AddressSanitizer allows detection of memory errors, memory leaks,

heap corruption errors and out-of-bounds accesses [83].
ENABLE_OPENMP OpenMP threads parallelization, full support for double,

long double, float128 types8.

Modules under development for high-precision support.

ENABLE_MPI MPI environment for massively parallel computation [98].
ENABLE_VPN Thermo-hydro-mechanical coupling using virtual pore network [54,55].
ENABLE_NRQM Quantum dynamics simulations of diatomic molecules including

photoinduced transitions between the coupled states [46,45].
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in a certain type of Bernoulli map calculations which cannot be 
mitigated by increasing the precision of the calculations [13]. In 
addition, switching to high-precision generally means longer run 
times [44,31].

Nowadays, high-precision calculations find application in vari-
ous different domains, such as long-term stability analysis of the 
solar system [57,90,6], supernova simulations [39], climate mod-
eling [41], Coulomb n-body atomic simulations [8,33], studies of 
the fine structure constant [99,100], identification of constants 
in quantum field theory [16,7], numerical integration in experi-
mental mathematics [9,62], three-dimensional incompressible Eu-
ler flows [18], fluid undergoing vortex sheet roll-up [7], integer 
relation detection [4], finding sinks in the Henon Map [48] and 
iterating the Lorenz attractor [1]. There are many more yet un-
solved high-precision problems [86], especially in quantum me-
chanics and quantum field theory where calculations are done 
with 32, 230 or even 10000 decimal digits of precision [73,84,16]. 
Additionally Debian, a Linux distribution with one of the largest 
archives of packaged free software is now moving numerous nu-
merical computation packages such as Open MPI, PETSc, MUMPS, 
SuiteSparse, ScaLAPACK, METIS, HYPRE, SuperLU, ARPACK and oth-
ers into 64-bit builds [26]. In order to stay ahead of these efforts, 
simulations frameworks need to pave the way into 128-bit builds 
and higher.

The open-source dynamic simulation framework YADE [53,98]
is extensively used by many researchers all over the world with a 
large, active and growing community of more than 25 contributors. 
YADE, which stands for “Yet Another Dynamic Engine”, was ini-
tially developed as a generic dynamic simulation framework. The 
computation parts are written in C++ using flexible object models, 
allowing independent implementation of new algorithms and in-
terfaces. Python (interpreted programming language, which wraps 
most of C++ YADE code) is used for rapid and concise scene con-
struction, simulation control, postprocessing and debugging. Over 
the last decade YADE has evolved into a powerful discrete element 
modeling package. The framework benefits from a great amount of 
features added by the YADE community, for example particle fluid 
coupling [35,60,63], thermo–hydro-mechanical coupling [20,54,55], 
interaction with deformable membrane-like structures, cylinders 
and grids [28,15,95], FEM-coupling [47,32,38], polyhedral parti-
cles [14,29,34], deformable particles [40], brittle materials [81,27], 
quantum dynamics of diatomic molecules [46,45] and many oth-
2

ers. A more extensive list of publications involving the use of 
YADE can be found on the framework’s web page [94]. A list of 
selected available YADE modules and features is presented in Ta-
ble 1. Although its current focus is on discrete element simula-
tions of granular material, its modular design allows it to be easily 
extended to new applications that rely on high-precision calcula-
tions.

The present work deals with the implementation of high-
precision support for YADE which will open the way for YADE to 
be used in many new research areas such as quantum mechan-
ics [46,45], special relativity, general relativity, cosmology, quantum 
field theory and conformal quantum geometrodynamics [78,25]. 
The programming techniques necessary for such extension are pre-
sented and discussed in Section 2. Relevant tests and speed bench-
marks are performed in Sections 3 and 4. A simple chaotic triple 
pendulum simulation with high precision is presented in Section 5. 
Finally, conclusions are drawn and it is discussed how this new 
addition to the framework will enable research in many new di-
rections.

2. Implementation of arbitrary precision

2.1. General overview

Since the beginning of YADE [53], the declaration ‘using 
Real=double;’2 was used as the main floating point type with 
the intention to use it instead of a plain double everywhere in 
the code. The goal of using Real was to allow replacing its def-
inition with other possible precisions.3 Hence, the same strategy 
was followed for other types used in the calculations, such as vec-
tors and matrices. Per definition the last letter in the type name 
indicates its underlying type, e.g. ‘Vector3r v;’ is a 3D vector 
�v ∈ ˜Q3 ∈ R3, and Vector2i is a 2D vector of integers (where 
˜Q is a subset of rational numbers Q, which are representable 
by the currently used precision: ˜Q ∈ Q ∈ R; the name Real is 
used instead of Rational or FloatingPoint for the sake of 
brevity).

2 Originally YADE was written in C++03, hence, before the switch to C++17 it was 
‘typedef double Real;’.

3 See for example: https://answers .launchpad .net /yade /+question /233320.

https://answers.launchpad.net/yade/+question/233320
http://mostwiedzy.pl
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Fig. 1. Simplified dependency tree of the open-source framework YADE. External dependencies are marked in orange. The green boxes indicate parts of the framework that 
needed to be adapted for high-precision. Selected YADE modules which support high-precision are in the top row, dashed lines indicate modules under development (also 
see Table 1). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Table 2
List of high-precision types supported by YADE.

Type Total bits Decimal places Exponent bits Significant bits Notes

float 32 6 8 24 only for testing
double 64 15 11 53 hardware accelerated
long double† 80 18 15‡ 64 hardware accelerated
boost float128§ 128 33 15 113 may be hardware accelerated
boost mpfr§ N N log10(2) — — MPFR library as wrapped by Boost
boost cpp_bin_float§ N N log10(2) — — uses Boost only, but is slower

† The specifics of long double depend on the particular compiler and hardware; the values in this table correspond to the most common x86 platform and the g++
compiler.
‡ All types use 1 bit to store the sign and all types except long double have an implicit first bit=1, hence here the sum 15 + 64 �= 80.
§ The complete C++ type names for the Boost high-precision types are as follows: boost::multiprecision::float128, boost::multiprecision::
mpfr_float_backend and boost::multiprecision::cpp_bin_float.
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In the presented work, the goal to use high precision is 
achieved by using the C++ operator overloading functionality and 
the boost::multiprecision library. A simplified dependency 
diagram of YADE is shown in Fig. 1. The layered structure of YADE 
remains nearly the same as in the original paper by Kozicki and 
Donzé [53]. It is built on top of several well established libraries 
(marked with orange in Fig. 1) as discussed in Section 2.3. Some 
changes were necessary in the structure of the framework (marked 
with green in Fig. 1) as highlighted in Section 2.5. The top row in 
Fig. 1 indicates selected YADE modules with respective citations 
listed in Table 1. It should be noted that YADE relies on many ex-
ternal libraries to expand its functionality which can result in a 
demanding server setup.

The Boost library [24] provides convenient wrappers for other 
high-precision types with the perspective of adding more such 
types in the future.4 The new supported Real types are listed in 
Table 2. A particular Real type can be selected during compilation 
of the code by providing a cmake argument either REAL_PRECI-
SION_BITS or REAL_DECIMAL_PLACES.5

The process of adding high-precision support to YADE was di-
vided into several stages which are described in the subsections 
below.6

4 At the time of writing, the quad–double library with 62 decimal places (pack-
age libqd-dev) is in preparation, see: https://github .com /boostorg /multiprecision /
issues /184.

5 See http://yade -dem .org /doc /HighPrecisionReal .html for detailed documentation.
6 Also see the consolidated merge request: !383.
3

2.2. Preparations

To fully take advantage of the C++ Argument Dependent Lookup 
(ADL), the entire YADE codebase was moved into namespace 
yade,7 thus using the C++ standard capabilities to modularize the 
namespaces for each software package. Similarly, the libraries used 
by YADE such as Boost [24], CGAL [93] and EIGEN [37] reside in 
their respective boost, CGAL and Eigen namespaces. After this 
change, all potential naming conflicts between math functions or 
types in YADE and these libraries were eliminated.

Before introducing high precision into YADE it was assumed 
that Real is actually a Plain Old Data (POD) double type. It was 
possible to use the old C-style memset, memcpy, memcmp and
memmove functions which used raw-memory access. However, by 
doing so the modern C++ structure used by other high-precision 
types was completely ignored. For example, the MPFR type may 
reserve memory and inside its structure store a pointer to it. Try-
ing to set its value to zero by invoking memset (which sets that 
pointer to nullptr) leads to a memory leak and a subsequent 
program failure. In order to make Real work with other types, 
this assumption had to be removed. Hence, memset calls were re-
placed with std::fill calls, which when invoked with a POD 
type reduce to a (possibly faster) version of memset optimized 
for a particular type in terms of chunk size used for writing to 
the memory. In addition, C++ template specialization mechanisms 
allow for invoking with a non-POD type which then utilizes the 
functionality provided by this specific type, such as calling the spe-

7 See: !284.

https://github.com/boostorg/multiprecision/issues/184
https://github.com/boostorg/multiprecision/issues/184
http://yade-dem.org/doc/HighPrecisionReal.html
https://gitlab.com/yade-dev/trunk/-/merge_requests/383
https://gitlab.com/yade-dev/trunk/-/merge_requests/284
http://mostwiedzy.pl
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cific constructors. All places in the code which used these four 
raw-memory access functions were improved to work with the 
non-POD Real type.8 For similar reasons one should not rely on 
storing an address of the nth component of a Vector3r or Vec-
tor2r.9

Next, all remaining occurrences of double were replaced with
Real10 and the high-precision compilation and testing was added 
to the gitlab Continuous Integration (CI) testing pipeline, which 
guarantees that any future attempts to use double type in the 
code will fail before merging such changes into the main branch. 
Next the Real type was moved from global namespace into yade
namespace11 to eliminate any potential problems with namespace 
pollution.12

2.3. Library compatibility

In order to be able to properly interface YADE with all other li-
braries it was important to make sure that mathematical functions 
(see Table 4) are called for the appropriate type. For example, the 
EIGEN library would have to call the high-precision sqrt func-
tion when invoking a normalize function on a Vector3r in 
order to properly calculate vector length. Several steps were neces-
sary to achieve this. First, an inline redirection13 to these functions 
was implemented in namespace yade::math in the file Math-
Functions.hpp. Next, all invocations in YADE to math functions 
in the std namespace were replaced with calls to these func-
tions in the yade::math namespace.14 Functions which take only
Real arguments may omit math namespace specifier and use 
ADL instead. Also some fixes were done in EIGEN and CGAL,15 al-
though they did not affect YADE directly since it was possible to 
workaround them.

The C++ type traits is a template metaprogramming technique 
which allows one to customize program behavior (also called poly-
morphism) depending on the type used [2,67,89,96]. This decision 
is done by the compiler (conditional compilation) due to inspecting 
the types in the compilation stage (this is called static polymor-
phism). Advanced C++ libraries provide hooks (numerical traits) 
to allow library users to inform the library about the used preci-
sion type. The numerical traits were implemented in YADE for the 
libraries EIGEN and CGAL16 as these were the only libraries sup-
porting such a solution at the time of writing this paper. EIGEN 
and CGAL are fully compatible and aware of the entire high-
precision code infrastructure in YADE. Similar treatment would be 
possible for the Coinor [77,61] library (used by the class Poten-
tialBlock) if it would provide numerical traits. Additionally, an 

8 See: !381, with one exception which is yet to be evaluated and hence mpfr
and cpp_bin_float types work with OpenMP, but do not take full advantage of 
CPU cache size in class OpenMPArrayAccumulator.

9 See: !406.
10 These changes were divided into several smaller merge requests: !326, !376, 

!394; there were also a couple of changes such as MatrixXd → MatrixXr and
Vector3d → Vector3r.
11 See: !364.
12 Usually such errors manifest themselves as very unrelated problems, which are 

notoriously difficult to debug, e.g. due to the fact that an incorrect type (with the 
same name) is used; see: #57 and https://bugs .launchpad .net /yade /+bug /528509.
13 The recommended practice in such cases is to use the Argument Dependent 

Lookup (ADL) which lets the compiler pick the best match from all the avail-
able candidate functions [2,67,89,96]. No ambiguity is possible, because such situ-
ations would always result in a compiler error. This was done by employing the 
C++ directives using std::function; and using boost::multipreci-
sion::function; for the respective function and then calling the function 
unqualified (without namespace qualifier) in the MathFunctions.hpp file.
14 See: !380, !390, !391, !392, !393, !397.
15 See: https://gitlab .com /libeigen /eigen /-/issues /1823 and https://github .com /

CGAL /cgal /issues /4527.
16 See files EigenNumTraits.hpp, CgalNumTraits.hpp and !412.
4

OpenGL compatibility layer has been added by using inline conver-
sion of arguments from Real to double for the OpenGL functions 
as OpenGL drawing functions use double.17 The VTK compat-
ibility layer was added using a similar approach. Virtual func-
tions were added to convert the Real arguments to double18

in classes derived from the VTK parent class (such as vtkDou-
bleArray).

The LAPACK compatibility layer was provided as well, this time 
highlighting the problems of interfacing with languages which do 
not support static polymorphism. The routines in LAPACK are writ-
ten in a mix of Fortran and C, and have no capability to use 
high-precision numerical traits like EIGEN and CGAL. The only way 
to do this (apart from switching to another library) was to down-
convert the arguments to double upon calling LAPACK routines 
(e.g. a routine to solve a linear system) then up-converting the 
results to Real. This was the first step to phase out YADE’s de-
pendency on LAPACK. With this approach the legacy code works 
even when high precision is enabled although the obtained re-
sults are low-precision.19 Additionally, this allows one to test the 
new high-precision code against the low-precision version when 
replacing these function calls with appropriate function calls from 
another library such as EIGEN in the future. Fortunately, only two 
YADE modules depend on LAPACK: potential particles and the flow 
engine [21]. The latter also depends on CHOLMOD, which also sup-
ports the double type only, hence it is not shown in Table 1. 
Nevertheless, a similar solution as currently implemented for LA-
PACK can be used in the future to remove the current dependency 
on CHOLMOD.

2.4. Double, quadruple and higher precisions

Sometimes a critical section of the computations in C++ would 
work better if performed in a higher precision1. This would also 
guarantee that the overall results in the default precision are cor-
rect. The RealHP<N> types serve this purpose. In analogy to
float and double types used on older systems, the types Re-
alHP<2>, RealHP<4> and RealHP<N> correspond to double, 
quadruple and higher multipliers of the Real precision selected 
during compilation, e.g. with REAL_DECIMAL_PLACES5, respec-
tively. A simple example where this can be useful is solving a sys-
tem of linear equations where some coefficients are almost zero. 
The old rule of thumb to “perform all computation in arithmetic with 
somewhat more than twice as many significant digits as are deemed sig-
nificant in the data and are desired in the final results” works well in 
many cases [50]. Nevertheless, maintaining a high quality scien-
tific software package without being able to use, when necessary, 
arithmetic precision twice as wide can badly inflate costs of de-
velopment and maintenance [50]. On the one hand, there might 
be additional costs for the theoretical formulation of such tricky 
single-precision problems. On the other hand, the cost of extra de-
mand for processor cycles and memory when using RealHP<N>
types is picayune when compared with the cost of a numerically 
adept mathematician’s time [51]. Hence, the new RealHP<N>
makes high and multiple-precision simulations more accessible to 
the researcher community.

The support for higher precision multipliers was added in 
YADE20 in such a way that RealHP<1> is the Real type from Ta-
ble 2 and every higher number N is a multiplier of the Real

17 See: !412 and file OpenGLWrapper.hpp. If the need for drawing on screen 
with precision higher than double arises (e.g. at high zoom levels) it will be rec-
tified in the future.
18 See: !400 and VTKCompatibility.hpp. If the VTK display software will 

start supporting high precision, this solution can be readily improved.
19 See: !379 and LapackCompatibility.cpp.
20 See: !496.

https://gitlab.com/yade-dev/trunk/-/blob/master/lib/high-precision/MathFunctions.hpp
https://gitlab.com/yade-dev/trunk/-/blob/master/lib/high-precision/MathFunctions.hpp
http://yade-dem.org/doc/yade.wrapper.html?highlight=potentialblock#yade.wrapper.PotentialBlock
http://yade-dem.org/doc/yade.wrapper.html?highlight=potentialblock#yade.wrapper.PotentialBlock
https://gitlab.com/yade-dev/trunk/-/merge_requests/381
https://gitlab.com/yade-dev/trunk/-/blob/de1f035d30611e7c40ac69b6e947a874732e61be/lib/base/openmp-accu.hpp#L20
https://gitlab.com/yade-dev/trunk/-/merge_requests/406
https://gitlab.com/yade-dev/trunk/-/merge_requests/326
https://gitlab.com/yade-dev/trunk/-/merge_requests/376
https://gitlab.com/yade-dev/trunk/-/merge_requests/394
https://gitlab.com/yade-dev/trunk/-/merge_requests/364
https://gitlab.com/yade-dev/trunk/-/issues/57
https://bugs.launchpad.net/yade/+bug/528509
https://gitlab.com/yade-dev/trunk/-/blob/7c8d1b0e6896745c53b71d91d5fb072badc58774/lib/high-precision/MathFunctions.hpp#L65
https://gitlab.com/yade-dev/trunk/-/merge_requests/380
https://gitlab.com/yade-dev/trunk/-/merge_requests/390
https://gitlab.com/yade-dev/trunk/-/merge_requests/391
https://gitlab.com/yade-dev/trunk/-/merge_requests/392
https://gitlab.com/yade-dev/trunk/-/merge_requests/393
https://gitlab.com/yade-dev/trunk/-/merge_requests/397
https://gitlab.com/libeigen/eigen/-/issues/1823
https://github.com/CGAL/cgal/issues/4527
https://github.com/CGAL/cgal/issues/4527
https://gitlab.com/yade-dev/trunk/-/blob/master/lib/high-precision/EigenNumTraits.hpp
https://gitlab.com/yade-dev/trunk/-/blob/master/lib/high-precision/CgalNumTraits.hpp
https://gitlab.com/yade-dev/trunk/-/merge_requests/412
https://gitlab.com/yade-dev/trunk/-/merge_requests/412
https://gitlab.com/yade-dev/trunk/-/blob/master/lib/opengl/OpenGLWrapper.hpp
https://gitlab.com/yade-dev/trunk/-/merge_requests/400
https://gitlab.com/yade-dev/trunk/-/blob/master/lib/compatibility/VTKCompatibility.hpp
https://gitlab.com/yade-dev/trunk/-/merge_requests/379
https://gitlab.com/yade-dev/trunk/-/blob/master/lib/compatibility/LapackCompatibility.cpp
https://gitlab.com/yade-dev/trunk/-/merge_requests/496
http://mostwiedzy.pl
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precision. All other types follow the same naming pattern: Vec-
tor3rHP<1> is the regular Vector3r and Vector3rHP<N>
uses the precision multiplier N. A similar concept is used for CGAL 
types (e.g. CGALtriangleHP<N>). One could then use an EIGEN 
algorithm for solving a system of linear equations with a higher
N using MatrixXrHP<N> to obtain the result with higher pre-
cision. Then, after the critical code section, one could potentially 
continue the calculations in the default Real precision. On the 
Python side the mathematical functions for the higher precision 
types are accessible via yade.math.HP2.*. By default only the
RealHP<2> is exported to Python. One can export to Python all 
the higher types for debugging purposes by adjusting #define 
YADE_MINIEIGEN_HP in the file RealHPConfig.hpp.

On some occasions it is useful to have an intuitive up-
conversion between C++ types of different precisions, say for 
example to add RealHP<1> to RealHP<2>. The file Upconver-
sionOfBasicOperatorsHP.hpp serves this purpose. After in-
cluding this header, operations using two different precision types 
are possible and the resultant type of such operation will always 
be the higher precision of the two types. This header should be 
used with caution (and only in .cpp files) in order to still be able 
to take advantage of the C++ static type checking mechanisms. 
As mentioned in the introduction, this type checking whether a 
number is being converted to a fewer digits representation can 
prevent mistakes such as the explosion of the rocket Ariane 5 
[58,56,49,11].

2.5. Backward compatibility with older YADE scripts

In the present work, preserving the backward compatibility 
with existing older YADE Python scripts was of prime importance. 
To obtain this the MiniEigen Python library had to be incorpo-
rated into YADE’s codebase. The reason for this was the following:
python3-minieigen was a binary package, precompiled using
double. Thus any attempt of importing MiniEigen into a YADE 
Python script (i.e. using from minieigen import *) when 
YADE was using a non-double type resulted in failure. This, com-
bined with the new capability in YADE to use any of the current 
and future supported types (see Table 2) would place a require-
ment on python3-minieigen that it either becomes a header-
only library or is precompiled with all possible high-precision 
types. It was concluded that integrating its source directly into 
YADE is the most reasonable solution. Hence, old YADE scripts that 
use supported modules37 can be immediately converted to high 
precision by switching to yade.minieigenHP. In order to do so, 
the following line:

from minieigen import *

has to be replaced with:

from yade.minieigenHP import *

Respectively import minieigen has to be replaced with im-
port yade.minieigenHP as minieigen, the old name as 
minieigen being used for the sake of backward compatibility 
with the rest of the script.

Python has native support21 for high-precision types using the
mpmath Python package. However, it shall be noted that although 
the coverage of YADE’s basic testing and checking (i.e. yade --
test and yade --check) is fairly large, there may still be some 
parts of Python code that were not yet migrated to high precision 
and may not work well with the mpmath module. If such prob-

21 See: ToFromPythonConverter.hpp file.
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lems occur in the future, the solution is to put the non compliant 
Python function into the py/high-precision/math.py file.22

A typical way of ensuring correct treatment of Real in 
Python scripts is to initialize Python variables using yade.math.
Real(arg). If the initial argument is not an integer and not 
an mpmath type then it has to be passed as a string (e.g.
yade.math.Real(’9.81’)) to prevent Python from convert-
ing it to double. Without this special initialization step a mistake 
can appear in the Python script where the default Python floating-
point type double is for example multiplied or added to the
Real type resulting in a loss of precision.23

3. Testing

It should be noted that it is near to impossible to be absolutely 
certain about the lack of an error in a code [51]. Therefore, to 
briefly test the implementation of all mathematical functions avail-
able in C++ in all precisions, the following test was implemented in 
_RealHPDiagnostics.cpp and run by using the Python script 
testMath.py. Each available function was evaluated 2 × 107

times with on average evenly spaced pseudo-random argument in 
the range (−100, 100). These 2 ×107 evaluations were divided into 
two sets. The first 107 evaluations were performed with uniformly 
distributed pseudo-random numbers in the range (−100, 100). The 
second 107 evaluations were done by randomly displacing a set 
of 107 equidistant points in the range (−100, 100), where each 
point was randomly shifted by less than ±0.5 of the distance be-
tween the points. This random shift was to lower the chances of 
duplicate calculations on the same argument after adjusting to the 
function domain. The 2 × 107 arguments were subsequently mod-
ified to match the domain argument range of each function using 
simple operations, such as abs(•) or fmod(abs(•),2)-1. The 
obtained result for each evaluation was then compared against its 
respective RealHP<4> type with four times higher precision. Care 
was taken to exactly use the same argument for a higher preci-
sion function call. The arguments were randomized and adjusted 
to the function domain range in the lower precision RealHP<1>, 
then the argument was converted to the higher precision by us-
ing static_cast, thereby ensuring that all the extra bits in the 
higher precision are set to zero.

The difference expressed in terms of Units in the Last Place 
(ULP) [51] was calculated. The obtained errors are listed in Ta-
ble 4. During the tests a bug in the implementation of the tgamma
function for boost::multiprecision::float128 was dis-
covered but it was immediately fixed by the Boost developers.24

Some other bug reports25 instigated a discussion about possible 
ways to fix the few problems found with the cpp_bin_float
type which can be seen in the last column of Table 4. A smaller 
version of this test, with only 2 ×104 pseudo-random evaluations26

was then added to the standard yade --test invocation.
Finally, an AddressSanitizer [83,10] was employed to addition-

ally check the correctness of the implementation in the code and 
to quickly locate memory access bugs. Several critical errors were 
fixed due to the reports of this sanity checker. This tool is now 
integrated into the Continuous Integration (CI) pipeline for the 
whole YADE project to prevent introduction of such errors in the 
future [10] (make_asan_HP job in the GitLab CI pipeline).

22 See also: !414.
23 See: !604 and commit 494548b82d, where a small change in the Python script 

enabled it to work for high precision.
24 See: https://github .com /boostorg /math /issues /307.
25 See: https://github .com /boostorg /multiprecision /issues /264 and https://github .

com /boostorg /multiprecision /issues /262.
26 Because this test is time consuming it is not possible to run the test involving 

2 × 107 evaluations in the GitLab CI pipeline after each git push.

https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/RealHPConfig.hpp
https://gitlab.com/yade-dev/trunk/-/blob/master/lib/high-precision/UpconversionOfBasicOperatorsHP.hpp
https://gitlab.com/yade-dev/trunk/-/blob/master/lib/high-precision/UpconversionOfBasicOperatorsHP.hpp
https://gitlab.com/yade-dev/trunk/blob/master/lib/high-precision/ToFromPythonConverter.hpp
https://gitlab.com/yade-dev/trunk/blob/master/py/high-precision/math.py
http://yade-dem.org/doc/yade.math.html#yade.math.Real
http://yade-dem.org/doc/yade.math.html#yade.math.Real
https://gitlab.com/yade-dev/trunk/-/blob/master/py/high-precision/_RealHPDiagnostics.cpp
https://gitlab.com/yade-dev/trunk/-/blob/master/py/tests/testMath.py
https://gitlab.com/yade-dev/trunk/-/blob/57e3849a62135ceb1b12f61ffdfd2cb1065825a3/.gitlab-ci.yml#L243
https://gitlab.com/yade-dev/trunk/-/merge_requests/414
https://gitlab.com/yade-dev/trunk/-/merge_requests/604
https://gitlab.com/yade-dev/trunk/-/commit/494548b82d84ac6467e3a07d3c36e7201247194f
https://github.com/boostorg/math/issues/307
https://github.com/boostorg/multiprecision/issues/264
https://github.com/boostorg/multiprecision/issues/262
https://github.com/boostorg/multiprecision/issues/262
http://mostwiedzy.pl
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Fig. 2. Snapshots of the benchmark yade --stdperformance -j16 with mpfr 150 at different time steps: (a) t = 0 s, (b) t = 0.3 s (3,000 iterations), (c) t = 0.4 s (4,000 
iterations), (d) t = 0.7 s (7,000 iterations). The particles are colored by kinetic energy.
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4. Benchmark

A benchmark27 yade --stdperformance -j16 (16 Open-
MP threads [23,71]) on a PC with two Intel E5-2687W v2 @ 
3.40 GHz processors (each of the two having 8 cores resulting 
in a total of 16 cores or 32 threads if hyperthreading is enabled) 
was performed to assess performance of higher precision types. 
The benchmark consists of a simple gravity deposition of spheri-
cal particles into a box, a typical simulation performed in YADE. 
A spherical packing with 10,000 spheres is released under gravity 
within a rectangular box. The spheres are allowed to settle in the 
box (Fig. 2). The simulation runs for 7,000 iterations and the per-
formance is reported in terms of iterations per wallclock seconds. 
This standardized test (hence --stdperformance in the name) 
is constructed in such a way that almost all the computation hap-
pens on the C++ side, only the calculation of the wallclock time is 
done in Python. Obviously doing more calculations in Python will 
make any script slower. Hence, any calculation in Python should 
be kept to a minimum.

Since the benchmark results strongly depend on other pro-
cesses running on the system, the test was performed at highest 
process priority after first making sure that all unrelated processes 
are stopped (via pkill -SIGSTOP command). The benchmark 
was repeated at least 50 times for each precision type and com-
piler settings. The average calculation speed x̄ (in iterations per 
seconds) was determined for each precision type and data points 
not meeting the criterion 2σ < xi − x̄ < 2σ (σ is the standard de-
viation) were considered outliers. On average 4% of data points per 
bar was removed, the largest amount removed was 10% (5 data 
points) on two occasions. Hence, each bar in Fig. 3 represents the 
average of at least 45 runs using 7,000 iterations each.

A summary of all the benchmark results is shown in Fig. 3
along with the relevant standard deviations. The performance is 
indicated in terms of iterations per seconds. The tests were per-
formed28,30 for the seven different precision types (Fig. 3A–G) 
listed in Table 3 for three different optimization settings: default
cmake settings (Fig. 3a), with SSE vectorization enabled (Fig. 3b), 
and with maximum optimizations offered by the compiler but 
without vectorization29 (Fig. 3c). The lack of significant improve-
ment in the third case (Fig. 3c) shows that the code is already well 

27 See: !388, !491 and the file: examples/test/performance/check-
Perf.py.
28 Also see https://gitlab .com /yade -dev /trunk /-/tree /benchmarkGcc.
29 The test with SSE and maximum optimizations was also performed but the 

results were simply additive, thus they were not included here. Also sometimes 
they produced the following error due to memory alignment problems: http://
eigen .tuxfamily.org /dox -devel /group __TopicUnalignedArrayAssert .html, because the 
operands of an SSE assembly SIMD instruction set must have their addresses to 
be a multiple of 32 or 64 bytes, and the compiler could not always guarantee this.
6

Table 3
The high-precision types used in the benchmark and corresponding speed perfor-
mance relative to double.

Type Decimal places Speed relative to double

float 6 1.01× faster
double 15 —
long double 18 1.4× slower
boost float128† 33 4.7× slower
boost mpfr‡ 62 13.5× slower
boost mpfr 150 19.1× slower
boost cpp_bin_float 62 24.2× slower

† Except for clang which does not yet32 support float128.
‡ For future comparison with libqd-dev, see footnote4.

optimized and the compiler cannot optimize it any further, except 
for long double and float128 types and the gcc compiler 
where a 2% speed gain can be observed (Fig. 3Cc and Dc versus Ca 
and Da). It is interesting to note that the clang compiler system-
atically produced a code that runs about 4 to 9% faster than the
gcc or icpc compilers. Intel compiler users should be careful, 
because the -fast switch might result in a performance loss of 
around 2 to 10%, depending on particular settings (Fig. 3c). Code 
vectorization (using the SSE assembly instruction set, an experi-
mental feature, Fig. 3b) provides about 1 to 3% speed gain, however 
this effect is often smaller than the σ error bars. Enabling in-
tel hyperthreading (HT) did not affect the results more than the 
standard deviation error of the benchmark. The float128 results 
for the intel compiler stand out with a 5% speed gain (Fig. 3D). 
However, not all mathematical functions are currently available for 
this precision in icpc and to get this test to work a crippled 
branch30 was prepared for the tests with some of the mathe-
matical functions disabled. The missing mathematical functions31

were not required for these particular calculations to work. The
clang compiler does not support32 float128 type yet. The av-
erage speed difference between each precision is listed in Table 3. 
The run time increase with precision in the MPFR library is roughly 
O(N log(N)) (where N is the number of digits used) but it is ap-
plication specific and strongly depends on the type of simulation 
performed [44,31].

It shall be noted that currently YADE does not fully take advan-
tage of the SSE assembly instructions (cmake -DVECTORIZE=1) 
because Vector3r is a three component type, while a four com-
ponent class Eigen::AlignedVector333 is suggested in the 

30 See https://gitlab .com /yade -dev /trunk /-/tree /benchmarkIntel.
31 See changes in MathFunctions.hpp in commit 3b07475e38 in bench-
markIntel branch.
32 See https://github .com /boostorg /math /issues /181.
33 Four double components in Eigen::AlignedVector3 use 256 bits which 

matches SSE operations, the fourth component is unused and set to zero.

https://gitlab.com/yade-dev/trunk/-/merge_requests/388
https://gitlab.com/yade-dev/trunk/-/merge_requests/491
https://gitlab.com/yade-dev/trunk/-/blob/3e9a209234b7f23241d5f4bdef1b586056e97582/examples/test/performance/checkPerf.py#L40
https://gitlab.com/yade-dev/trunk/-/blob/3e9a209234b7f23241d5f4bdef1b586056e97582/examples/test/performance/checkPerf.py#L40
https://gitlab.com/yade-dev/trunk/-/tree/benchmarkGcc
http://eigen.tuxfamily.org/dox-devel/group__TopicUnalignedArrayAssert.html
http://eigen.tuxfamily.org/dox-devel/group__TopicUnalignedArrayAssert.html
https://gitlab.com/yade-dev/trunk/-/tree/benchmarkIntel
https://gitlab.com/yade-dev/trunk/-/commit/3b07475e38173e45ab9baddb3688e7ebf93df4ef
https://gitlab.com/yade-dev/trunk/-/tree/benchmarkIntel
https://gitlab.com/yade-dev/trunk/-/tree/benchmarkIntel
https://github.com/boostorg/math/issues/181
http://mostwiedzy.pl
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J. Kozicki, A. Gladky and K. Thoeni Computer Physics Communications 270 (2022) 108167

Fig. 3. Benchmark results† yade --stdperformance -j16 for seven different precision types, with hyperthreading disabled‡ and enabled (HT); for gcc version 9.3.0, 
clang version 10.0.1-+rc4-1, and intel icpc compiler version 19.0.5.281 20190815: (a) default cmake settings; (b) with SSE vectorization enabled via cmake 
-DVECTORIZE=1; (c) with maximum optimizations offered by the compiler (gcc, clang: -Ofast -fno-associative-math -fno-finite-math-only -fsigned-
zeros§ and additionally for native: -march=native -mtune=native; intel icpc -fast§) but without vectorization. † On a PC with two Intel E5-2687W v2 @ 
3.40 GHz processors with 16 cores and 32 threads. ‡ Via command echo off > /sys/devices/system/cpu/smt/control or by a BIOS setting (HT is also known 
as intel SMT). § The extra three flags are used by CGAL; in intel compilers -fast enforces all processor model native optimizations.
7
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Table 4
Maximum error after 2 × 107 function evaluations expressed in terms of Units in the Last Place (ULP)†, calculated by the absolute value of boost::math::float_dis-
tance‡ between functions from C++ standard library or boost::multiprecision when compared with its respective RealHP<4> (having four times higher precision)§.

Type and number of decimal places

float double long double float128 mpfr cpp_bin_float

Decimal places 6 15 18 33 62 150 62
Significand bits 24 53 64 113 207 500 207

+ 0 0 0 0 0 0 0
- 0 0 0 0 0 0 0
* 0 0 0 1 0 0 0
/ 0 0 0 1 0 0 0

sin 1 1 1 1 0 0 6.43 × 107

cos 1 1 1 1 0 0 6.69 × 107

tan 1 0 2 1 0 0 7.64 × 107

sinh 2 2 3 2 0 0 125
cosh 2 1 2 1 0 0 125
tanh 2 2 3 2 0 0 9

asin 1 0 1 1 0 0 106
acos 1 0 1 1 0 0 13526
atan 1 0 1 1 0 0 8
asinh 2 2 3 3 0 0 16
acosh 2 2 3 3 1 1 17
atanh 2 2 3 3 0 0 23
atan2 1 0 1 2 0 0 10

log 1 1 1 1 0 0 17
log10 2 2 1 1 0 0 32
log1p 1 1 1 2 0 0 17
log2 1 1 1 2 0 0 25
logb 0 0 0 0 0 0 0

exp 1 1 1 1 0 0 125
exp2 1 1 1 1 0 0 5
expm1 1 1 2 2 0 0 125

pow 1 1 1 1 0 0 118
sqrt 0 0 0 1 0 0 0
cbrt 1 3 1 1 0 0 3
hypot 0 1 1 2 2 2 2

erf 1 1 1 1 0 0 21
erfc 3 4 3 3 0 0 22496
lgamma 6 8 7 7 0 0 70843
tgamma 7 7 7 7 0 0 10661

fmod 0 0 0 0 0 0 0
fma 0 0 0 1 0 0 1.95 × 105

† Also see [51]; please note that to obtain the number of incorrect bits one needs to take a log2(•) of the value in the table.
‡ This test was performed with gcc version 9.3.0 and Boost library version 1.71.
§ See file https://gitlab .com /yade -dev /trunk /-/blob /master /py /high -precision /_RealHPDiagnostics .cpp for implementation details. This test (with fewer evaluations) can be 
executed using testMath.py and is a part of the yade --test suite (file py/tests/testMath.py, function testRealHPErrors).
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EIGEN library but it is not completely functional yet. In the future, 
this class can be improved in EIGEN and then used in YADE.

5. Simulation

5.1. Problem description

A simple simulation of a triple elastic pendulum system was 
performed to check the effect of high precision in practice. Triple 
pendulums are considered highly chaotic as they provide an irreg-
ular and complex system response [3]. Numerical modeling of such 
systems can show the benefits of using high precision. A single 
thread was used (i.e. yade -j1) during the simulations to avoid 
numerical artifacts arising from different ordering of arithmetic op-
erations performed by multiple threads. This allowed focusing on 
high precision and eliminating the non-deterministic effect of par-
allel calculations (e.g. arithmetic operations performed in a differ-
ent order result in a different ULP error in the last bits [36,76,41]) 
and to have a completely reproducible simulation.
8

The numerical setup of the model represents the chain consist-
ing of three identical elastic pendulums (see attached Listing 1 and 
on gitlab). The pendulums are represented by a massless elastic 
rod (a long-range normal interaction) and mass points. The latter 
are modeled using spheres with radius r = 0.001 m and density 
ρ = 1 kg/m3, noting that the masses of the spheres are lumped 
into a point. The rods are modeled by a normal interaction using 
cohesive interaction physics. The length of the chain is L = 0.1 m. 
Each rod is 1/30 m long and the normal stiffness of the inter-
action is k = 100 N/m. The strength (i.e. cohesion) is set to an 
artificial high value (107 N/m2) so that the chain cannot break. 
Hence, the behavior of the rods can be assumed purely elastic. The 
initial position of the chain is α = −20◦ relative to the horizon-
tal plane (see Fig. 4a, t = 0 s). Gravity g = 9.81 m/s2 is acting on 
the chain elements as they are moving. The process was simulated 
with time steps �t equal to 10−5 s, 10−6 s, 10−7 s, and 10−8 s. 
The results obtained using different precision are discussed in the 
following subsections. First, the evolution of the angles in the pen-
dulum movement is discussed with �t = 10−5 s. Second, the effect 
of damping is shown with �t = 10−5 s. Then the effect of using 

https://gitlab.com/yade-dev/trunk/-/blob/master/py/high-precision/_RealHPDiagnostics.cpp
https://gitlab.com/yade-dev/trunk/-/tree/master/examples/triple-pendulum
http://mostwiedzy.pl
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Fig. 4. Numerical simulation of the triple pendulum with 15 (double), 33 (float128) and 150 (mpfr) decimal places. The snapshots are captured at the following times: 
(a) t = 0 s, (b) t = 0.1 s, (c) t = 0.25 s, (d) t = 2.5 s, (e) t = 3 s, (f) t = 5 s, (g) t = 5.25 s, (h) t = 6 s, and (i) t = 7 seconds. The lines are showing the positions of the 
connected rods. Only three precisions from Table 5 are shown for clarity.
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various time steps �t is discussed. Finally, the total energy conser-
vation is examined for various time steps.

5.2. Pendulum movement

Numerical damping was not used in this simulation series to 
avoid any energy loss and for the purity of the numerical results. 
The simulations were carried out with the different precisions 
listed in Table 5 and a time step of �t = 10−5 s. Angles between 
the two rods were constantly monitored and saved with a period 
of 10−4 s for further analysis and comparison. After the simulation 
was performed and the data was gathered, the Pearson correla-
9

Table 5
The high-precision types used in the simulation and corresponding correlation du-
ration ts for �t = 10−5.

Type Decimal places Correlation duration ts

float 6 1.1 seconds
double 15 2.5 seconds
long double 18 3.1 seconds
boost float128 33 5.1 seconds
boost mpfr 62 9.9 seconds
boost cpp_bin_float 62 9.9 seconds

http://mostwiedzy.pl
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1 # The script is tested with yade_2021.01a
2 from yade import plot, qt, math
3
4 # initialize all floating point variables with Real(arg) to avoid precision loss
5 from yade.math import toHP1 as Real
6 # after release yade_2021.01a math.toHP1 has an alias Real, same with radiansHP1
7 if(math == sys.modules[’math’]): raise RuntimeError("Python math obscures yade.math")
8
9 ### set parameters ###

10 L = Real(’0.1’) # length [m]
11 n = 4 # number of nodes for the length [-]
12 r = L/100 # radius [m]
13 g = Real(’9.81’) # gravity
14 inclination = math.radiansHP1(20) # Initial inclination of rods [degrees]
15 color = [1, 0.5, 0] # Define a color for bodies
16
17 O.dt = Real(’1e-05’) # time step
18 damp = Real(’1e-1’) # damping. It is interesting to examine damp = 0
19
20 O.engines = [ # define engines, main functions for simulation
21 ForceResetter(),
22 InsertionSortCollider([Bo1_Sphere_Aabb()],
23 label=’ISCollider’, avoidSelfInteractionMask=True),
24 InteractionLoop(
25 [Ig2_Sphere_Sphere_ScGeom6D()],
26 [Ip2_CohFrictMat_CohFrictMat_CohFrictPhys(
27 setCohesionNow=True, setCohesionOnNewContacts=False)],
28 [Law2_ScGeom6D_CohFrictPhys_CohesionMoment()]
29 ),
30 NewtonIntegrator(gravity=(0, -g, 0), damping=damp, label=’newton’),
31 ]
32
33 # define material:
34 O.materials.append(CohFrictMat(young=1e5, poisson=0, density=1e1,
35 frictionAngle=math.radiansHP1(0), normalCohesion=1e7,
36 shearCohesion=1e7, momentRotationLaw=False, label=’mat’))
37
38 # create spheres
39 nodeIds = []
40 for i in range(0, n):
41 nodeIds.append(O.bodies.append(sphere([i*L/n*math.cos(inclination),
42 i*L/n*math.sin(inclination), 0], r, wire=False, fixed=False,
43 material=’mat’, color=color)))
44
45 # create rods
46 for i, j in zip(nodeIds[:-1], nodeIds[1:]):
47 inter = createInteraction(i, j)
48 inter.phys.unp = -(O.bodies[j].state.pos-O.bodies[i].state.pos).norm() + \
49 O.bodies[i].shape.radius+O.bodies[j].shape.radius
50
51 O.bodies[0].dynamic = False # set a fixed upper node
52 qt.View() # create a GUI view
53 Gl1_Sphere.stripes = True # mark spheres with stripes
54 rr = qt.Renderer() # get instance of the renderer
55 rr.intrAllWire = True # draw wires
56 rr.intrPhys = True # draw the normal forces between the spheres.

Listing 1: The triple pendulum simulation script.
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tion coefficient [88] was calculated for all data sets. The simulation 
with 150 decimal places (type mpfr 150) was used as the ref-
erence solution as it has the highest number of decimal places. 
The product of the two angles between the three rods was used 
as an input parameter for the calculation of the correlation co-
efficient. The data for the correlation was placed in chunks with 
each having 500 elements (10−4 s ×500 = 0.005 s of the simula-
tion). Then the scipy.stats.pearsonr function from SciPy
[97] was employed for the calculation of the Pearson correlation 
coefficient p. For further reference, the point in time when the cor-
relation p between two simulations falls below p < 0.9 is marked 
as ts . The latter corresponds to the time from the start of the simu-
lation until the correlation is lost and in the following it is denoted 
correlation duration.

Fig. 4 shows snapshots of the evolution of the movement for 
three different precisions. At the beginning of the simulation the 
angles between the rods are the same. However, from a certain 
10
point in time onward the angles are starting to differ. Indeed, at 
t = 2.5 s (Fig. 4d), the green line (15 decimal places, type double) 
has clearly another state compared to the other two with 33 and 
150 decimal places (types float128 and mpfr 150 respectively). 
The snapshot at t = 5.25 s (Fig. 4g) demonstrates the beginning 
of the deviation of the simulation with 33 decimal places (type
float128). Thereafter all the pendulums are moving very dif-
ferently and no correlation is observed. It can be concluded that 
using higher precision increases the time when accurate calcula-
tion results are obtained which is also reflected by the correlation 
duration ts listed in Table 5.

Fig. 5 presents the correlation coefficient as a function of time. 
The graphs provide a more accurate representation of the point in 
time when the correlation disappears. One can see that there is a 
positive linear correlation with p = 1 at the beginning of the sim-
ulations. This means initially the rods are moving identically. The 
lowest precision curve float is starting to jump between corre-

http://mostwiedzy.pl
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Fig. 5. Pearson correlation coefficient p as a function of time t between the results obtained with mpfr 150 and the following different precisions: (a) float; (b) double; 
(c) long double; (d) float128; (e) mpfr 62; (f) cpp_bin_float 62. Note that the timescales on both figures are different. The black dashed lines mark the threshold 
p = 0.9 which is used to calculate the correlation duration ts .
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lation values of p = 1 and p = −1 at around t = 1.1 s (Fig. 5a), 
which means that no visible correlation is observed any more. 
For all the higher precision simulations the drop off happens later 
and progressively with increasing precision as summarized in Ta-
ble 5.

Type double and long double have a correlation of p < 0.9
after 2.5 s (Fig. 5b, comparing 15 with 150 decimal places) and 
3.1 s (Fig. 5c, 18 vs. 150 decimal places) respectively. The same 
tendency is seen from Boost float128 type (Fig. 5d, 33 vs. 150 
decimal places) which deviates at approximately 5.1 s. Both simu-
lations with 62 decimal places start to deviate at around 9.9 s. This 
clearly demonstrates that the level of precision, i.e. the number of 
decimal places, has an influence on the accuracy of the simula-
tion results. Sometimes the decrease of the correlation happens 
suddenly and sometimes it starts to decrease slowly before it de-
creases rapidly. It can clearly be seen that the simulations with 
higher precision are showing better results and are closer to the 
reference solution calculated with 150 decimal places. Neverthe-
less, higher precision requires much more time for the simulation 
and more computing resources.

5.3. Effect of damping

To study the importance of precision in combination with other 
parameters, the same simulations as in Section 5.2 were carried 
out with a numerical damping coefficient equal to 5 · 10−3. Nu-
merical damping is generally applied to dissipate energy. In this 
particular test case, numerical damping can be interpreted as the 
slowing down of the pendulum oscillation. The global damping 
mechanism was used, as described in the original DEM publica-
tion of Cundall and Strack [22]. Global damping acts on the ab-
solute velocities of the simulation bodies and is implemented in 
the NewtonIntegrator class in the source code of YADE. Global 
damping slows down all affected bodies based on their current ve-
locities.

The damping coefficient was chosen so that an effect of differ-
ent precisions can be seen on the whole system. If the damping 
coefficient is too high (> 10−1), the system loses its whole energy 
very quickly and no visible differences are seen. Too small damp-
ing coefficients (< 10−3) lead to very slow energy dissipation.

Fig. 6 shows the development of the angle between the first 
and the second rod of the pendulum during the simulation with 
11
Fig. 6. Development of angle α between first and second rods as a function of time 
t for different precisions with a global damping coefficient equal to 5 · 10−3. Curves 
are showing smoothed data for better visibility (main plot) and raw data for the 
inset; (a) float; (b) double; (c) long double; (d) float128; (e) mpfr 62; 
(f) cpp_bin_float 62. (g) mpfr 150.

a global damping coefficient equal to 5 · 10−3. One can clearly see 
the differences in simulation results based on different precisions. 
The float precision simulation (blue curve, Fig. 6a) indicates 
the largest deviation from all other simulations. Higher precisions 
gradually provide results that are closer to the simulation with the 
highest precision (boost mpfr 150 decimal places).

Since the angle between rods is oscillating rapidly, as can be 
seen on the inset in Fig. 6, the raw data was smoothed using the 
Savitzky–Golay filter [79] for better visibility. The filter removes 
most of the noise, and there are no visible differences between
cpp_bin_float, mpfr 62 and mpfr 150. The three curves are 
basically overlapping each other.

5.4. Effect of time step �t

The time step �t is one of the most important parameters in-
fluencing the simulation results. Hence, simulations with time step 

http://yade-dem.org/doc/yade.wrapper.html?highlight=newtonintegrator#yade.wrapper.NewtonIntegrator
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Fig. 7. Correlation duration ts as a function of different precisions and a time 
step �t . Each curve is compared to the mpfr 150 simulation using the same �t; 
(a) �t = 10−5 s; (b) �t = 10−6 s; (c) �t = 10−7 s; (d) �t = 10−8 s.

values of 10−5 s, 10−6 s, 10−7 s, and 10−8 s were performed 
with different precisions. The values for the correlation duration 
were recorded and plotted in Fig. 7 for all precisions and time 
steps considered. It can be clearly seen that the correlation dura-
tion increases with increasing precision. This highlights once more 
that higher precision is required for higher confidence. It can also 
be seen that generally the correlation duration increases with de-
creasing time step. This is due the fact that a smaller time step 
results in a smaller integration error (e.g. the leapfrog integration 
scheme used in YADE has the error proportional to �t2 per iter-
ation). This tendency is also marked on the figure with a black 
arrow pointing in the direction of the smaller time step �t . The 
opposite result is observed for float. This is because 6 decimal 
places are not enough to work with �t = 10−8 s. It shall be noted 
that the implementation of a more precise time integration scheme 
is out of the scope of the current paper. In the current symplec-
tic leapfrog integration scheme, as implemented in the present 
version of NewtonIntegrator, the positions and velocities are 
leapfrogging over each other. There is no jump-start option which 
would allow to start the simulation with both position and velocity 
defined at t = 0. This means that the initial velocities are declared 
at t = −�t

2 and initial positions at t = 0 or initial velocities are de-
clared at t = 0 and initial positions at t = �t

2 . Which of these two 
it is, is only a formal choice,34 since both interpretations are valid. 
Therefore a more detailed comparison between the time steps is 
not carried out as the initial conditions for each simulation with a 
different �t differ slightly, i.e. the starting velocity declared in the 
script is interpreted as being defined at t = − 10−5

2 or at t = − 10−8

2 , 
thus resulting in slightly different simulations36.

5.5. Energy conservation

In the following, the total energy in the system is analyzed 
for different precisions and time step values of 10−5 s, 10−6 s, 
10−7 s, and 10−8 s. No numerical damping is considered. The total 
energy in the system is calculated as the sum of the elastic en-
ergy in the interactions and the kinetic and potential energy of the 
mass points (i.e. spheres). As already pointed out in the previous 
section, the symplectic leapfrog integration scheme is used. This 

34 See also: https://gitlab .com /yade -dev /trunk /-/merge _requests /555 #note _
462560944 and checks/checkGravity.py.
12
means that velocities and positions are not known at the same 
time. Hence, the velocities needed for an accurate calculation of 
the kinetic energy are taken as an average of the velocities from 
the current and the next iteration. All numerical results are com-
pared to the reference solution which was calculated using 150 
decimal places, similar as in the previous sections.

Fig. 8 shows two typical results obtained from the study using 
a time step of �t = 10−6 s. The results obtained with the other 
time steps have a similar trend and are not included for brevity. 
The top graphs show the evolution of the energy balance where 
each energy component is divided by the total reference energy to 
give an energy ratio. The total reference energy is calculated using 
150 decimal places. The total energy ratio should be equal to 1 
throughout the simulation. The bottom graphs show the absolute 
error in total energy calculated as the absolute difference between 
the total energy given by a specific precision and the constant total 
energy calculated using 150 decimal places.

The results obtained using float are depicted in Fig. 8a. It can 
be seen that the absolute error in total energy starts to increase 
drastically after about 4 s. This is much later than the correla-
tion duration. From the energy plot it can also be seen that energy 
is continuously added to the system from this time onward. This 
makes the simulation not only incorrect but also unstable. A dif-
ferent observation can be drawn from Fig. 8b where the results 
of a typical simulation with float128 are shown. It can be seen 
that the energy balance is stable and the absolute error is several 
order of magnitudes smaller. In addition, the absolute error does 
not have an increasing trend. Instead, it bounces around, i.e. it in-
creases initially and decreases thereafter, and never goes above a 
certain threshold value. This is also a reflection of the symplectic 
leapfrog integration scheme. It should be noted that the results for
double, long double, mpfr 62 and cpp_bin_float 62 are 
very similar to Fig. 8b and, hence, not shown for brevity.

Fig. 9 summarizes the results for all precisions and all time 
steps. As noted previously, a detailed comparison between dif-
ferent time steps does not make sense because of the different 
initial velocities. Nevertheless, a qualitative comparison is valid. 
It can be seen that the maximum absolute error in energy bal-
ance for float is many orders of magnitudes larger than for the 
other precisions (note that the vertical axis uses logarithmic scale). 
The data also indicates that the error is almost constant for all 
other precisions. This clearly highlights the effectiveness and reli-
ability of the symplectic leapfrog integration scheme implemented 
in YADE. However the error is many orders of magnitude larger 
than the ULP error of the higher precision types. For example 
to achieve maximum absolute error of 10−30 [J] for float128, 
further decreasing the time step is not practical. Different ap-
proaches, such as higher order symplectic methods, have to be 
employed [68,69]36. Like in previous section, a smaller time step 
results in a smaller absolute error (this tendency is indicated by 
the black arrow), except for float where 6 decimal places are 
not enough to work with the smaller time steps.

6. Conclusions and future perspectives

The obtained results show that using high precision has a pro-
nounced influence on the simulation results and the calculation 
speed. Higher precisions provide more accurate results and reduce 
numerical errors which in some fields can be beneficial. It can 
also be concluded that high precision is essential for research of 
highly chaotic systems (Fig. 5). Nevertheless, increasing the num-
ber of decimal places in the code leads to a higher CPU load and 
raises the calculation times (Fig. 3, Table 3).

Updating an existing software with a large codebase to bring 
the flexibility of arbitrary precision can be a challenging and error-
prone process which might require drastic refactoring. A good test 

http://yade-dem.org/doc/yade.wrapper.html?highlight=newtonintegrator#yade.wrapper.NewtonIntegrator
https://gitlab.com/yade-dev/trunk/-/merge_requests/555#note_462560944
https://gitlab.com/yade-dev/trunk/-/merge_requests/555#note_462560944
https://gitlab.com/yade-dev/trunk/-/blob/e43c3fb4b90485a879051b0a60dd2dd1c1b2a357/scripts/checks-and-tests/checks/checkGravity.py#L51
http://mostwiedzy.pl
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Fig. 8. Evolution of energy balance plotted as energy ratios and corresponding absolute error compared to the mpfr 150 simulation for precisions (a) float and 
(b) float128.
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Fig. 9. Maximum absolute error in energy balance during the first 16 s as a function 
of different precisions and for different time steps �t . Each curve is compared to 
the mpfr 150 simulation using the same �t; (a) �t = 10−5 s; (b) �t = 10−6 s; 
(c) �t = 10−7 s; (d) �t = 10−8 s. Note that the axis for the maximum absolute 
error is in log scale.

coverage of the code (unit and integration tests: the Continuous 
Integration pipeline in YADE) is highly recommended before be-
ginning of such refactoring to ensure code integrity [10]. Also the 
employment of AddressSanitizer [83] is highly desirable to prevent 
heavy memory errors such as heap corruptions, memory leaks, and 
out-of-bounds accesses.

Simulations with the triple pendulum show that the results are 
starting to be different after a few seconds of the simulation time 
because of different precisions. The higher the precision the longer 
the results remain true to the highest precision tested. The same 
effect, within each precision (Fig. 7 and Fig. 9), occurs when using 
smaller time steps �t , because it has a smaller time integration 
error per iteration. Applying damping can significantly smooth this 
effect (Fig. 6).

The new high-precision functionality added to YADE does not 
negatively affect the existing computational performance (i.e. sim-
ulations with double precision), because the choice of precision 
is done at compilation time and is dispatched during compilation 
via the C++ static polymorphism template mechanisms [89,96].
13
Concluding this work, the main modules of YADE now fully sup-
port two aspects of arbitrary precision (see Table 1 and Fig. 1):

1. Selecting the base precision of Real from Table 2 (which is 
an alias for RealHP<1>).

2. Using RealHP<N> in the critical C++ sections of the numeri-
cal algorithms (Section 2.4)1.

These new arbitrary precision capabilities can be used in several 
different ways in the management of numerical error [5]:

3. To periodically test YADE computation algorithms to check if 
some of them are becoming numerically sensitive.

4. To determine how many digits in the obtained intermediate 
and final results are reliable.

5. To debug the code in order to find the lines of code which pro-
duce numerical errors, using the method described in details 
in chapter 14 of [51].

6. To fix numerical errors that were found by changing the criti-
cal part of the computation to use a higher precision type like
RealHP<2> or RealHP<4> as suggested in [50].

The current research focus is to:

7. Add quantum dynamics calculations to YADE using the time 
integration algorithm which can have the error smaller than 
the numerical ULP error of any of the high-precision types: the 
Kosloff method [91,52,80,92] based on the rapidly converging 
Chebychev polynomial expansion of an exponential propaga-
tor.35

8. Add unit systems support, because there are also software er-
rors related to unit systems, for example in 10 November 1999 
the NASA’s Mars Climate Orbiter was lost in space because of 
mixing SI and imperial units [87,74,43].

Possible future research avenues, opened by the present work, in-
clude:

9. Add more precise time integration algorithms. The problems 
mentioned in Section 5.4 are well known. Albeit symplectic 

35 Since that algorithm is Taylor–free, there is no meaning to the term “order of 
the method” [92,80].

http://mostwiedzy.pl
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integrators are particularly good [75,90], a better time inte-
gration method with smaller �t will be able to fully take 
advantage of the new high-precision capabilities (Section 5.5
and Fig. 9). There are three possible research directions:
(a) Use the Boost Odeint library [24] with higher order 

methods1,.36

(b) Use the work on time integrators by Omelyan et al. [68,
69]. These approaches suggest that it is potentially possi-
ble to decrease the run time more than 50-fold with the 
same computation effort upon switching to long dou-
ble, float128 or higher types. The algorithms focus on 
reducing the truncation errors and eliminating errors in-
troduced by the computation of forces. Such a smaller er-
ror allows to use a larger time step which will more than 
compensate the speed loss due to high-precision calcula-
tions. Of course, the standard considerations for the time 
step [17,70] would have to be re-derived.

(c) Investigate whether the exponential propagator approach 
presented in [80] or in [72,82] could be used in YADE as a 
general solution for ODEs, similarly to [69,42,19,75,65,30], 
regardless if that is a classical or a quantum dynamics sys-
tem.

10. Enhance all auxiliary modules of YADE for the use of high pre-
cision.37

11. Use the interval computation approach to reduce problems 
with numerical reproducibility in parallel computations by 
using boost::multiprecision::mpfi_float as the 
backend for RealHP<N> type [76,66].

12. Use different rounding modes to run the same computation 
for more detailed testing of numerical algorithms [51].

Overall, based on the presented work, the architecture of YADE 
now offers an opportunity to adjust its precision according to the 
needs of its user. A wide operating system support and simple 
installation procedure enable forming multidisciplinary teams for 
computational physics simulations in the Unified Science Environ-
ment (USE) [64]. This will expand the spectrum of tasks that can 
be solved, improve the results and reduce numerical errors. Of 
course, this option not only complicates the architecture and the 
source code, but also imposes a restriction on the choice of a pro-
gramming language.
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[45] P. Jasik, J. Franz, D. Kȩdziera, T. Kilich, J. Kozicki, J.E. Sienkiewicz, J. Chem. Phys. 
154 (2021) 164301, https://doi .org /10 .1063 /5 .0046060.

[46] P. Jasik, J. Kozicki, T. Kilich, J.E. Sienkiewicz, N.E. Henriksen, Phys. Chem. Chem. 
Phys. 20 (2018) 18663–18670, https://doi .org /10 .1039 /c8cp02551g.

[47] J.F. Jerier, B. Hathong, V. Richefeu, B. Chareyre, D. Imbault, F.V. Donze, P. Dore-
mus, Powder Technol. 208 (2011) 537–541, https://doi .org /10 .1016 /j .powtec .
2010 .08 .056.

[48] M. Joldes, V. Popescu, W. Tucker, ACM SIGARCH Comput. Archit. News 42 
(2014) 63–68, https://doi .org /10 .1145 /2693714 .2693726.

[49] J.M. Jézéquel, B. Meyer, Computer 30 (1997) 129–130, https://doi .org /10 .1109 /
2 .562936, http://se .ethz .ch /~meyer /publications /computer /ariane .pdf.

[50] W. Kahan, On the cost of floating-point computation without extra-precise 
arithmetic, https://people .eecs .berkeley.edu /~wkahan /Qdrtcs .pdf, 2004.

[51] W. Kahan, How futile are mindless assessments of roundoff in floating-point 
computation?, https://people .eecs .berkeley.edu /~wkahan /Mindless .pdf, 2006.

[52] R. Kosloff, Quantum Molecular Dynamics on Grids, Department of Physical 
Chemistry and the Fritz Haber Research Center, 1997, https://scholars .huji .ac .
il /sites /default /files /ronniekosloff /files /wayat .pdf.

[53] J. Kozicki, F. Donzé, Comput. Methods Appl. Mech. Eng. 197 (2008) 
4429–4443, https://doi .org /10 .1016 /j .cma .2008 .05 .023.

[54] M. Krzaczek, M. Nitka, J. Kozicki, J. Tejchman, Acta Geotech. 15 (2019) 
297–324, https://doi .org /10 .1007 /s11440 -019 -00799 -6.

[55] M. Krzaczek, M. Nitka, J. Tejchman, Int. J. Numer. Anal. Methods Geomech. 45 
(2020) 234–264, https://doi .org /10 .1002 /nag .3160.

[56] G.L. Lann, The Ariane 5 Flight 501 Failure - a Case Study in System Engi-
neering for Computing Systems, Technical Report. Research Report, RR-3079, 
INRIA, 1996, inria-00073613, https://hal .inria .fr /inria -00073613, 2006.

[57] J. Laskar, M. Gastineau, Nature 459 (2009) 817–819, https://doi .org /10 .1038 /
nature08096.

[58] J.L. Lions, L. Lübeck, J.L. Fauquembergue, G. Kahn, W. Kubbat, S. Levedag, L. 
Mazzini, D. Merle, C. O’Halloran, Ariane 5 flight 501 failure, Technical Report. 
Report by the inquiry board, 1996, https://esamultimedia .esa .int /docs /esa -x -
1819eng .pdf.

[59] E. Loh, G.W. Walster, Reliab. Comput. 8 (2002) 245–248, https://doi .org /10 .
1023 /A :1015569431383.

[60] F. Lominé, L. Scholtès, L. Sibille, P. Poullain, Int. J. Numer. Anal. Methods Ge-
omech. 37 (2011) 577–596, https://doi .org /10 .1002 /nag .1109.

[61] R. Lougee-Heimer, IBM J. Res. Dev. 47 (2003) 57–66, https://doi .org /10 .1147 /
rd .471.0057.

[62] M. Lu, B. He, Q. Luo, Supporting extended precision on graphics processors, 
19–26, https://doi .org /10 .1145 /1869389 .1869392, 2010.

[63] R. Maurin, J. Chauchat, B. Chareyre, P. Frey, Phys. Fluids 27 (2015) 113302, 
https://doi .org /10 .1063 /1.4935703.

[64] C. McCurdy, H.D. Simon, W.T. Kramer, R.F. Lucas, W.E. Johnston, D.H. Bailey, 
Comput. Phys. Commun. 147 (2002) 34–39, https://doi .org /10 .1016 /S0010 -
4655(02 )00200 -X.

[65] R.I. McLachlan, G.R.W. Quispel, N. Robidoux, Phys. Rev. Lett. 81 (1998) 
2399–2403, https://doi .org /10 .1103 /PhysRevLett .81.2399.

[66] J.P. Merlet, Jacobian, Manipulability, Condition Number and Accuracy of Paral-
lel Robots, Springer, Berlin Heidelberg, 2007, pp. 175–184.

[67] S. Meyers, Effective Modern C++: 42 Specific Ways to Improve Your Use of 
C++11 and C++14, 1st ed., O’Reilly Media, Inc., 2014.

[68] I. Omelyan, I. Mryglod, R. Folk, Comput. Phys. Commun. 146 (2002) 188–202, 
https://doi .org /10 .1016 /S0010 -4655(02 )00451 -4.

[69] I.P. Omelyan, Phys. Rev. E 74 (2006), https://doi .org /10 .1103 /PhysRevE .74 .
036703.

[70] I.P. Omelyan, A. Kovalenko, J. Chem. Theory Comput. 8 (2011) 6–16, https://
doi .org /10 .1021 /ct200157x.

[71] OpenMP Architecture Review Board, OpenMP application program interface 
version 5.1, https://www.openmp .org /specifications/, 2021.

[72] Y. Orimo, T. Sato, A. Scrinzi, K.L. Ishikawa, Phys. Rev. A 97 (2018), https://
doi .org /10 .1103 /PhysRevA.97.023423.

[73] K. Pachucki, M. Puchalski, Phys. Rev. A 71 (2005), https://doi .org /10 .1103 /
PhysRevA.71.032514.

[74] I. Peterson, Fatal Defect: Chasing Killer Computer Bugs, Mckay, David, 1996.
[75] G.R.W. Quispel, G.S. Turner, J. Phys. A, Math. Gen. 29 (1996) L341–L349, 

https://doi .org /10 .1088 /0305 -4470 /29 /13 /006.
[76] N. Revol, P. Theveny, IEEE Trans. Comput. 63 (2014) 1915–1924, https://doi .

org /10 .1109 /TC .2014 .2322593.
[77] M.J. Saltzman, COIN-OR: An Open-Source Library for Optimization, Springer 

US, 2002.
[78] E. Santamato, F. De Martini, Found. Phys. 45 (2015) 858–873, https://doi .org /

10 .1007 /s10701 -015 -9912 -7.
[79] A. Savitzky, M.J.E. Golay, Anal. Chem. 36 (1964) 1627–1639.
[80] I. Schaefer, H. Tal-Ezer, R. Kosloff, J. Comput. Phys. 343 (2017) 368–413, 

https://doi .org /10 .1016 /j .jcp .2017.04 .017.
[81] L. Scholtès, F.V. Donzé, J. Mech. Phys. Solids 61 (2013) 352–369, https://doi .

org /10 .1016 /j .jmps .2012 .10 .005.
[82] A. Scrinzi, Comput. Phys. Commun. 270 (2022) 108146, arXiv:2101.08171.
[83] K. Serebryany, D. Bruening, A. Potapenko, D. Vyukov, AddressSanitizer: A Fast 

Address Sanity Checker, 2012, p. 28.
[84] M. Siłkowski, K. Pachucki, J. Chem. Phys. 152 (2020) 174308, https://doi .org /

10 .1063 /5 .0008086.
[85] M.A. Stadtherr, High performance computing: are we just getting wrong an-

swers faster?, https://www3 .nd .edu /~markst /cast -award -speech .pdf, 1998.
[86] T.P. Stefański, IEEE Antennas Propag. Mag. 55 (2013) 344–353.
[87] A.G. Stephenson, L.S. LaPiana, D.R. Mulville, P.J. Rutledge, F.H. Bauer, D. Folta, 

G.A. Dukeman, R. Sackheim, P. Norvig, Mars Climate Orbiter, Phase I Report, 
Technical Report, Mishap Investigation Board, 1999, http://sunnyday.mit .edu /
accidents /MCO _report .pdf.

[88] S.M. Stigler, Stat. Sci. 4 (1989) 73–79, https://doi .org /10 .1214 /ss /1177012580.
[89] B. Stroustrup, Programming: Principles and Practice Using C++ (2nd Edition), 

2nd ed., Addison-Wesley Professional, 2014.
[90] G.J. Sussman, J. Wisdom, Science 257 (1992) 56–62, https://doi .org /10 .1126 /

science .257.5066 .56.
[91] H. Tal-Ezer, R. Kosloff, J. Chem. Phys. 81 (1984) 3967–3971.
[92] H. Tal-Ezer, R. Kosloff, I. Schaefer, J. Sci. Comput. 53 (2012) 211–221, https://

doi .org /10 .1007 /s10915 -012 -9583 -x.
[93] The CGAL Project, CGAL User and Reference Manual. 5.0.2 ed., CGAL Editorial 

Board, 2020, https://doc .cgal .org /5 .0 .2 /Manual /packages .html.
[94] Yade publications, in: The Yade Project, https://www.yade -dem .org /doc /

publications .html, 2020.
[95] K. Thoeni, C. Lambert, A. Giacomini, S. Sloan, Comput. Geotech. 49 (2013) 

158–169, https://doi .org /10 .1016 /j .compgeo .2012 .10 .014.
[96] D. Vandevoorde, N.M. Josuttis, D. Gregor, C++ Templates: The Complete Guide 

(2nd Edition), 2nd ed., Addison-Wesley Professional, 2017.
[97] P. Virtanen, R. Gommers, T.E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, 

E. Burovski, P. Peterson, W. Weckesser, J. Bright, S.J. van der Walt, M. Brett, 
J. Wilson, K. Jarrod Millman, N. Mayorov, A.R.J. Nelson, E. Jones, R. Kern, E. 
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