
170 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 94 NR 2/2018

Robert SMYK1, Maciej CZYŻAK1

Gdańsk University of Technology (1)

doi:10.15199/48.2018.02.39

Implementation of multi-operand addition in FPGA
using high-level synthesis

Abstract. The paper presents the results of high-level synthesis (HLS) of multi-operand adders in FPGA using the Vivado Xilinx environment. The
aim was to estimate the hardware amount and latency of adders described in C-code. The main task of the presented experiments was to compare
the implementations of the carry-save adder (CSA) type multi-operand adders obtained as the effect of the HLS synthesis and those based on the
basic component being 4-operand adder with fast carry-chain available in FPGA’s implemented in Verilog. However, the HLS synthesis is simplifies
the design and prototyping process but the received results indicate that the circuit obtained as the result of such synthesis requires twice more
resources and is slower than its counterpart design using Verilog.

Streszczenie. W pracy zaprezentowano rezultaty syntezy wysokopoziomowej sumatorów wielo-operandowych w środowisku Vivado Xilinx. Celem
pracy była ocena złożoności sprzętowej i opóźnienia sumatorów uzyskanych poprzez opis w języku C. Głównym zadaniem przeprowadzonych
eksperymentów było porównanie implementacji sumatorów zachowujących przeniesienie otrzymanych w wyniku syntezy wysokopoziomowej i tych
implementowanych w języku Verilog wykorzystujących łańcuch szybkich przeniesień w FPGA. Uzyskane rezultaty wskazują, że wprawdzie synteza
wysokopoziomowa układów jest znacznie prostsza i pozwala na szybsze uzyskanie implementacji, jednak otrzymuje się struktury wymagające
dwukrotnie większych zasobów sprzętowych niż to ma miejsce w przypadku użycia języka Verilog. (Implementacja sumowania
wielooperandowego w FPGA przy zastosowaniu syntezy wysokopoziomowej).

Keywords: carry-save adders, generalized parallel counters, multi-operand addition, FPGA.
Słowa kluczowe: sumatory zachowujące przeniesienia, uogólnione liczniki równoległe, wielooperandowe sumowanie, FPGA.

Introduction
Multi-operand addition can be implemented in the most

direct way by using two-operand carry-propagate adder
(CPA) trees. But this approach is generally ineffective due
to large area and long delay. Much better results can be
obtained using compressor trees. Usually multi-operand
addition is realized in two phases where the number of
addends is compressed to two using a compressor tree and
next the CPA is applied. The two classical forms of
compressors are Wallace [1] and Dadda [2] trees. These
trees use 3-input 2-output counters being full adders (FA)
as carry-save adders (CSA) or 2-input 2-output counters.
Such approach became a standard in multipliers
constructed by application specific integrated circuit (ASIC)
designers. Early work on parallel compressors was also
presented by Gajski [3]. In the more general approach n-
input m-output generalized parallel counters (GPC) are
utilized for synthesis of high-speed compression trees.
Their number, form and internal connection allows to
roughly determine the area, delay and power consumption.
The GPC synthesis was already described by Dormido et.
al. [4]. The design perspective has changed with the
introduction of FPGAs with their architecture containing
LUTs, fast carry chains and DSP blocks [5,6,7]. The
realization of multi-operand addition based on the tree of
two-input ripple-carry adders became more viable but with
such an approach available LUTs would be used only
marginally. The use of modern 6-input LUTs gives much
wider possibilities of mapping GPCs onto LUTs. In the
direct approach a simple compressor that compresses six
bits to three can be built using three LUTs with the common
inputs but in such a case fast carry logic is not utilized. The
fundamental work on compression trees in FPGAs was
done by Parandeh-Afshar et. al. [8-12]. Their works also
contain the review of the state-of-the art of compression
trees. For the design of GPCs they used LUTs and short
carry chains with 2 to 3 FAs in series. Kumm and Zipf
[13,14] have examined initially GPCs from [15,16]. They
have also implemented GPCs from [8] but with improved
mappings and have proposed new GPCs. In order to verify
their results they synthesized for Xilinx Virtex 6 a
compression tree with eight 10-bit inputs. It turned out that

best efficiency was attained when 4:2 compressors and
ternary adders were used. The ternary adder based solution
required 49 LUTs and had a delay of 2.03ns whereas 4:2
compressor tree called for 65 LUTs with the delay of 1.52
ns. They compared their results with those obtained by
using FloPoCo [16]. In this case in dependence upon
design requirement they obtained one solution with 70
LUTs and the delay of 2.30ns and the other 145 LUTs with
the delay of 1.08ns. Further work was done by Khurshid
and Mir [17] which proposed a heuristic that mapped GPCs
onto minimum possible LUTs number by using the dual
output in Xilinx FPGAs. Their GPCs in certain cases had
the delays smaller by 10-15% than these from [8,13,14].
Also an original approach was proposed by Matsunaga [18-
20], where mapping of GPCs was formulated as the integer
linear programming (ILP) problem with speed and power as
optimisation goals. This approach resulted in 28% reduction
when compared to [9]. The reduction of GPC count leads to
the reduction of compression tree stages thereby the delay
and power consumption are reduced.

Principles of high level synthesis

The above syntheses can be performed using
behavioral or structural descriptions with hardware
description languages such as Verilog or VHDL. In general,
the design of complex digital systems using these
languages is laborious and difficult. In order to make the
design process faster and more effective the design method
has been introduced that makes uses of C/C++ languages
[21,22]. The digital system description in this case has the
form of a program in C/C++. However, the program must
have the form that could be translatable into the register
transfer level (RTL) form. For this reason only a subset of
type and grammar constructs are allowed. As the data
types in C/C++, the primitive types as unsigned char,
unsigned short int, unsigned int together with their signed
counterparts, and real types float and double can be
applied. The important feature of C/C++ version used in the
HLS is the availability of arbitrary precision integer and
floating-point types. Also the composite types as array,
struct and also statically determinable pointers can be used.
For C++ version classes and templates are acceptable.

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 94 NR 2/2018 171

This approach is termed the High Level Synthesis (HLS).
The digital system can be captured, simulated and
synthesized to the HDL (Hardware Description Language)
format and further to an FPGA implementation. The HLS
takes the complete system description and series of
directives that control the form of the implementation. The
HLS has many advantages as compared to VHDL or
Verilog. The principal advantage pertains to the shortening
of the time needed for system description and elaboration of
test-benches and faster testing. Other advantages result
from the fact the elaborated system description has the
form of a program. As such it can be modified in many ways
in order to obtain the description that would give after the
synthesis the FPGA subsystems with the needed
properties. These properties pertain mainly to the occupied
area, the latency or pipelining rate. We have only single
source program and we can have multiple implementations
by inserting compilation directives that control the form of
the targeted implementation. From the program point of
view it might denote the loop unrolling, loop pipelining (a
new iteration starts before the previous iteration is
complete), array partitioning or pipelining at the register
level. Array partitioning allows for various memory
distributions between RAMs and LUTs.

Basics of multi-operand addition

The basic case of multi-operand addition is three
operand addition. Such adder is termed sometimes the
ternary adder. There are two basic forms of such addition.
The first can be based on the tree of two binary adders as
shown in Fig. 1.

Fig.1. Three operand (ternary) adder

The delay when two independent adders are used eg.

Brent-Kung [23], is equal to)1()(
)3(

)(nBAnBAnsum ttt . In this

case we obtain the sum as one binary vector. In case of the
greater number of operands such solution seems to be
ineffective because of its delay. Alternatively we can use
the CSA structure as given in Fig. 2. When summing more
than three operands we can use the appropriate number of
such structures in the tree form and postpone the final two-
operand addition to the final stage.

Fig.2. 5-bit CSA adder

 At the output we obtain

(1)),,,,,0()(
0

)(
1

)(
2

)(
3

)(
4

)()(IIIIIII sssssSS

(2))0,,,,,()(
1

)(
2

)(
3

)(
4

)(
5

)()(IIIIIII cccccCC

 In this case the delay is equal to FAt . For construction of

larger multi-operand adders the more effective can be four-
operand CSA tree adder shown in Fig.3. This component
allows to construct a regular structure.

Fig.3. 5-bit 4-operand CSA adder

 As an example we consider the use of this component
for synthesis of 8-operand n-bit adder. Such structure is
shown in Fig.4.

Fig.4. 8-operand CSA tree based on 4-bit adder CSA trees

At the output of the 8-operand CSA tree we obtain two
vectors

(3)),,,,,,()(
0

)(
1

)(
2

)(
3

)(
4

)(
5

)(
5

)()(IVIVIVIVIVIVIIIIVIV sssssscSS

(4))0,,,,,()(
1

)(
2

)(
3

)(
4

)(
5

)(
6

)()(IVIVIVIVIVIVIVIV ccccccCC

 This form (Fig. 1-3) or Dadda trees can be used for
multi-operand addition in ASICs. The implementation of
such structure in FPGAs does not make use of its specific
features when we directly map FAs onto LUTs. The more
effective way is to use basic components in Configurable
Logic Blocks (CLB) as LUTs and specialized fast carry
chains included within FPGAs to accelerate carry
generation. The communication between LUT slices is
organized using the crossbar system that introduces certain
delay. In order to shorten the delay the specific vertical
carry propagation in columns of LUTs is used. This allows
to avoid the FPGA general communication system by
crossbars. The direct mapping of the structure from Fig. 2
would require the simulation of individual FAs using LUTs.
That would be ineffective because the existing carry chains
in the FPGA structure would not be exploited. Their
utilization calls for the modification of the structure to the
form given in Fig. 5. In such a case instead of simulating
directly the second layer of FAs, we can use the fast carry
chain (Fig. 6-7).

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

172 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 94 NR 2/2018

Fig.5. 4-operand n-bit CSA type adder modified for fast carry chain
use

Fig.6. Xilinx FPGA realization of the 4-operand n-bit CSA type
adder (based on Fig. 5)

Fig.7. FPGA post-synthesis implementation of 4:2 compressor with
the fast carry-chain

HLS synthesis of 4-operand adders
The aim of the presented experiments was to check the

influence of the form of the adder description in C/C++ code
in the HLS environment on the resulting adder architecture
and to estimate hardware amount and latency of four-
operand adders. Also the goal was to examine the structure
of the circuit obtained as a result of the synthesis. These
syntheses have been performed in order to get to know the
form of the synthesized adders. It pertains before all to
whether carry chains are used or other components. For
this purpose two adder configurations have been
implemented: one level 4:1 adder, two-level adder 4:2:1
adder. The HLS description of these adders is given in Fig.
8.

Fig.8. HLS code for 4:1 and 4:2:1 adder configuration

It was stated that if we exclude the use of DSP48 blocks
only LUTs are used without fast carry chains.

The main task of the presented experiments is to
compare the implementations of the CSA type multi-
operand adders obtained as the effect of the HLS synthesis
and those based on the basic component being 4-operand
adder that uses the fast carry-chain available in FPGA’s.
The CSA from Fig. 3 has been implemented algorithmically
by generating the connection network as the loop in the
HLS code of the circuit. The HLS C-Code of the 4:2 CSA
has about 45 lines. The basic components used for Verilog
and HLS synthesis were different. The block used for
Verilog synthesis makes use of the fast carry chain within
the basic four-operand adder. In case of HLS synthesis the
direct mapping of this structure into the program code would
make it necessary to simulate the carry chain at the
software level. But it is known as it was stated that HLS
synthesis does not make use of this carry chain in this case.
Thus such approach would introduce hardware overhead
due to the utilization of additional LUTs to simulate the carry
chain.

The results of the HLS synthesis performed for target
device 6vlx240tff1156 are given in Table 1. It is worth to
remark that before the HLS synthesis we have to assume
the maximum acceptable delay as a imposed project datum
that must be preserved in the design generated by the HLS
synthesizer. It is seen that the latency in both cases is
smaller than the assumed clock cycle equal to nstclk 10 .

4:2 CSA requires the largest hardware amount and has the
greatest latency. 4:1 adder calls for the smallest hardware
amount and 2:2 adder has the smallest latency. This leads
to the conclusion that probably in the case of four-operand
adders the automatic HLS generation of adder structures
may give better results than the algorithmic simulation of
the CSA at the bit level.

Table 1. HLS synthesis results for 4-operand 5-bit adders

Adder
configuration

LUTs
Input data

latency [clk]
Clk timing

[ns]
4:1 4-operand 48 1 6,72
2:2 4-operand 61 1 5,78

In the Table 2 and in Table 3 the synthesis results of 4-

operand CSA type adder trees with wordlengths
n=4,8,16,32 bits are shown. The ratio of the used LUTs in
both cases falls off when the adder length increases. Thus
the HLS synthesis may be more profitable for long adders.
As mentioned above the process of the HLS synthesis

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 94 NR 2/2018 173

requires the imposition of the maximum delay and this
imposed value influences the synthesis process and
resulting latency and the number of used components.

Table 2. Verilog synthesis results of 4-operand CSA type adder
trees with the dedicated fast carry chain with wordlengths
n=4,8,16,32 bit

Component n=4 n=8 n=16 n=32
FD 40 80 160 320
IBUF 16 32 64 129
OBUF 9 17 33 65
LUT2 12 24 48 96
LUT4 4 8 16 32
CARRY4 1 2 4 8
Timing parameters
Min. period
[ns]

1.098 1.098 1.098 1.098

Max freq
[MHz]

910.7 910.7 910.7 910.7

Table 3. HLS synthesis results for 4-operand CSA type adders with
operand wordlengths n=8,16,32

Component n=8 n=16 n=32
FD 128 152 184
LUT 156 211 297
Timing parameters
Min. period 6.56ns 6.56ns 6.56ns

As it can be seen from Table 4 for the greater number of

operands and wordlengths of operands the results become
convergent. However, there is difference in LUTs but the
delay of the HLS synthesized adder is only two times
greater.

Table 4. Comparison of 8-operand 16-bit CSA type adders
synthesized with HLS and Verilog

Component HLS Verilog
FD 687 448
LUT 787 192
CARRY4 0 12
Timing parameters
Min. period 6.56ns 3.27ns

Conclusions

We have analysed the design of multi-operand adders in
FPGAs using the HLS in Xilinx Vivado environment. The
obtained results indicate that the circuit obtained as a result
of the HLS synthesis requires more resources and is slower
than its counterpart design using Verilog. It seems profitable
to elaborate a basic component used in the construction in
the multi-operand CSA type adders that utilizes the specific
properties of the FPGA such as fast carry chain as an
element of the basic component which would be used in
ASIC solution. For example, for 8-operand 16-bit CSA type
adder synthesized with HLS we obtained 787 LUTs and the
delay 6.56ns for 8-operand 16-bit CSA type adder
synthesized in Verilog we obtained 192 LUTs and 3.27ns.
The numbers of LUTs cited here include various types of
LUTs from 2-input to 6-input so when recalculated into
equivalent 6-input LUTs their number would be remarkably
smaller if we consider the equivalence of the memory sized
used. The data given in literature does not usually
differentiate LUTs with respect to their number of inputs.

Authors: dr inż. Robert Smyk, Faculty of Electrical and Control
Engineering, Gdansk University of Technology, ul. G. Narutowicza
11/12, 80-233 Gdańsk, E-mail: robert.smyk@pg.edu.pl,
dr hab. inż. Maciej Czyżak, Faculty of Electrical and Control
Engineering, Gdansk University of Technology, ul. G. Narutowicza
11/12, 80-233 Gdańsk, Poland, E-mail: maciej.czyzak@pg.edu.pl

REFERENCES
[1] Wallace C. S., A Suggestion for a Fast Multiplier, IEEE

Transactions on Electronic Computers, 13 (1964), No. 1, 14-17
[2] Dadda L., Some schemes for fast serial input multipliers, Alta

Frequenza, 53 (1965), No. 34, 349-356
[3] Gajski D. D., Parallel Compressors, IEEE Transactions on

Computers, C-29 (1980), No. 5, 393-398
[4] Dormido S., Canto M., Synthesis of Generalized Parallel

Counters, IEEE Transactions on Electronic Computers, C-30
(1981), No. 9, 699-703

[5] Altera, Stratix-IV device handbook, 2015
[6] Xilinx, Virtex-5 family overview lx, lxt, and sxt platforms, Xilinx

Inc, San Jose, Calif, USA, 2010
[7] Xilinx, Virtex-6 FPGA data sheets, Xilinx Inc, San Jose, Calif,

USA, 2010
[8] Parandeh-Afshar H., Neogy A., Brisk P., Ienne P., Compressor

tree synthesis on commercial high-performance FPGAs, ACM
Transactions on Reconfigurable Technology and Systems, 4
(2011), No. 4, art. no. 39

[9] Parandeh-Afshar H., Neogy A., Brisk P., Ienne P., Efficient
synthesis of compressor trees on fpgas, In Proceedings of the
2008 Asia and South Pacific Design Automation Conference,
ASPDAC ’08, IEEE Computer Society Press, Los Alamitos, CA,
USA, 2011, 138-143

[10] Parandeh-Afshar H., Neogy A., Brisk P., Ienne P., Exploiting
fast carrychains of FPGAs for designing compressor trees,
Proceedings of the 19th International Conference on Field
Programmable Logic and Applications, 2009, 242-249

[11] Parandeh-Afshar H., Neogy A., Brisk P., Ienne P., Improving
synthesis of compressor trees on FPGAs via integer linear
programming, Proceedings of the Design, Automation and Test
Conference in Europe (DATE '08), 2008, 1256-1261

[12] Parandeh-Afshar H., Closing the gap between FPGA and
ASIC: Balancing flexibility and efficiency, PhD thesis, ÉCOLE
POLYTECHNIQUE FÉDÉRALE DE LAUSANNE, 2012

[13] Kumm M., Zipf P., Efficient high speed compression trees on
Xilinx FPGAs, Methoden und Beschreibungssprachen zur
Modellierung und Verifikation von Schaltungen und
Systemen(MBMV '14), 2014

[14] Kumm M., Zipf P., Pipelined compressor tree optimization
using integer linear programming, Proceedings of the 24th
International Conference on Field Programmable Logic and
Applications, 2014, 1-8

[15] Brunie N., de Dinechin F., Istoan M., Sergent G., Illyes K.,
Popa B., Arithmetic core generation using bit heaps, 3rd
International Conference on Field Programmable Logic and
Applications, Porto, Portugal, 2013, 1-8

[16] De Dinechin F., FloPoCo project, [web page]
http://http://flopoco.gforge.inria.fr/, Accessed on 28 Aug. 2017

[17] Khurshid B., Mir R.N., High Efficiency Generalized Parallel
Counters for Xilinx FPGAs, EEE 22nd International Conference
on High Performance Computing (HiPC), 2015, 40-46

[18] Matsunaga T., Kimura S., Matsunaga Y., Power and delay
aware synthesis of multi-operand adders targeting LUT-based
FPGAs, Proceedings of the 17th IEEE/ACM International
Symposium on Low Power Electronics and Design (ISLPED
’11), 2011, 217-222

[19] Matsunaga T., Kimura S., Matsunaga Y., Multi-operand adder
synthesis targeting fpgas, IEICE Transactions on
Fundamentals of Electronics, Communications and Computer
Sciences, 94 (2011), No. 12, 2579-2586

[20] Matsunaga T., Kimura S., Matsunaga Y., An exact approach
for gpc-based compressor tree synthesis, IEICE Transactions
on Fundamentals of Electronics, Communications and
Computer Sciences, E96-A (2013), No. 12, 2553-2560

[21] Xilinx, Vivado design suite user guide : High-level synthesis,
ug871, IXilinx Inc, San Jose, Calif, USA, 2014

[22] Cony J. et al., High-level synthesis for FPGAs: from
prototyping to deployment, IEEE Trans. Comput. Aided Des.
Integr. Circuits Syst., 30 (2011), No. 4, 473-491

[23] Brent, R.P., Kung, H.T., A Regular Layout for Parallel Adders,
IEEE Transactions on Computers, C-31 (1982), No. 3, 260-264

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

