
TASK QUARTERLY 17 No 1–2, 109–117

IMPLEMENTATION OF THE BOUNDARY

ELEMENT METHOD

TO TWO-DIMENSIONAL HEAT TRANSFER

WITH THERMAL BRIDGE EFFECTS

MICHAŁ T. LEWANDOWSKI

Faculty of Technical Physics and Applied Mathematics,
Gdansk University of Technology,

Narutowicza 11/12, 80-233 Gdansk, Poland
mlewand88@gmail.com

(Received 26 February 2013; revised manuscript received 9 April 2013)

Abstract: The work presents an application of the boundary element method applied to

a two-dimensional conductive heat transfer. The algorithm of the method is explained and

its advantages are outlined. Green’s function as a fundamental solution for Poisson’s equation

in two dimensions was used and the direct approach was applied. The presented results concern

building construction elements as typical cases of thermal bridges. Some properties of the

boundary element method which give new possibilities were considered. For instance, forcing

selected values of temperature on inner edges of the considered domain or local increasing of the

temperature field resolution. The simulations were performed with the author’s own algorithm.

Keywords: heat transfer, boundary element method (BEM), temperature field, thermal bridge,

Green’s function

1. Introduction

In recent years there has been a trend to build energy-efficient or even

passive houses where the energy usage should be minimized with the thermal

comfort estimated at an optimal level. It is mainly achieved by appropriate

thermal insulation and installation of heating systems based on renewable sources

of energy. It is important to avoid or minimize the thermal bridge effect. Therefore,

proper construction of building elements is essential and this can be obtained by

detailed analysis of heat transfer in places where a thermal bridge can exist.

Generally in building engineering it can be assumed that temperature does

not change in one direction, simplifying the problem to a two-dimensional heat

transfer [1]. The temperature distribution in building elements is also important

to predict areas where vapor condensation may occur [2].
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It would be quite difficult and time-consuming to carry out an in-depth anal-

ysis of the heat transfer balance of a building. Appropriate standards have been

developed to simplify the process and to determine how to perform calculations.

A thermal bridge is a place of significant attention where standard guidelines may

fail. Disregarding the thermal bridge can considerably underestimate the heat loss

through the considered element. Then, heat transfer can be found by numerical

calculations and heat transfer coefficients for particular examples are presented in

thermal bridge catalogues [3]. Commercial software which is used for such purpose

is mainly based on traditional mesh numerical methods such as the finite element

method (FEM), the finite difference method (FDM) or the finite volume method

(FVM).

The present work is concerned with the boundary element method in heat

transfer through building construction elements which are typical thermal bridges.

2. Theory

The steady-state two-dimensional heat transfer is expressed by Poisson’s

equation:

λ

(

∂2T (xp,yp)

∂x2p
+
∂2T (xp,yp)

∂y2p

)

+qv(xp,yp)= 0 (1)

where λ is the thermal conductivity, (xp,yp) are the coordinates of point p, qV
is the heat source function and T is the temperature. A fundamental solution

(Green’s function) was used in the following form:

T ∗
(

~ξ,~p
)

=
1

2πλ
ln
1

r
(2)

where ~p = (xp,yp), ~ξ = (xξ,yξ) are the points belonging to the considered do-

main Ω, and r=
√

(xp−xξ)2+(yp−yξ)2 is the distance between the two points.

The direct approach was adopted to derive an integral formulation of a par-

tial differential Equation (1). The weighted residual method was implemented [4]:
∫∫

Ω

[

λ~∇2T (~p)+qV (~p)
]

T ∗
(

~ξ
)

dΩ=0 (3)

Subsequently, having in mind the definition of the directional derivative and using

the Dirac delta function properties and Green’s second identity, the boundary

integral equation can be written as:

B(~ξ)T (~ξ)+

∮

Γ

q(~p)T ∗
(

~ξ,~p
)

dΓ=

∮

Γ

T (~p)q∗
(

~ξ,~p
)

dΓ+

∫∫

Ω

qV (~p)T
∗
(

~ξ,~p
)

dΩ (4)

where B
(

~ξ
)

is a coefficient dependent on the boundary shape, q is the heat flux

density normal to the edge Γ (q∗ is derived from T ∗). Assuming that there are

no heat sources, the smooth edge (B
(

~ξ
)

= 1
2
) divided into N elements, integrals

in Equation (4) can be substituted by the sums of integrals over all the boundary

tq117r-e/110 5II2014 BOP s.c., http://www.bop.com.pl

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Implementation of the Boundary Element Method to Two-Dimensional Heat... 111

elements indexed from j=0 to j=N . Thus, for certain edge node ξi, Equation (4)

takes the following form:

1

2
T
(

~ξi
)

+

N
∑

j=1

qj

∫

Γj

T ∗
(

~ξi,~p
)

dΓj =

N
∑

j=1

Tj

∫

Γj

q∗
(

~ξi,~p
)

dΓj (5)

There will be a system of N such boundary equations (one per each edge node,

Figure 1a), where either temperature T or heat flux density q are unknown values.

Implementing appropriate boundary conditions allows us to solve the system, and

integrals
∫

Γj

T ∗
(

~ξi,~p
)

dΓj and
∫

Γj

q∗
(

~ξi,~p
)

dΓj can be determined using Gaussian

quadratures. Finally, when all the boundary values are known, the temperature

at any chosen point (Figure 1b) in the interior of the considered domain can be

calculated with the following formula:

T
(

~ξi
)

=

N
∑

j=1

Tj

∫

Γj

q∗
(

~ξi,~p
)

dΓj−

N
∑

j=1

qj

∫

Γj

T ∗
(

~ξi,~p
)

dΓj (6)

(a) (b)

Figure 1. Graphical scheme of boundary integral equation (a) and integral equation for

domain interior (b)

It is also possible to consider a domain consisting of several homogenous

sub-domains. In such a case the procedure for every sub-domain is the same as

explained above.

Assuming the continuity condition of temperature Ta = Tb and heat flux

density qa=−qb for the joint edges, the systems of equations for every sub-domain

can be joined. The system of equations can be written in a matrix form, and then,

the integrals of the same node must be stored in the same column.

3. Block scheme of the algorithm

Calculations were carried out in a program written in the C++ language

according to the following algorithm:

1) Define the functions of the integrals;
2) Define the function which assigns coordinates of points ξ on the boundary
when calculating the boundary integrals;

tq117r-e/111 5II2014 BOP s.c., http://www.bop.com.pl

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


112 M. T. Lewandowski

3) Define the function which assigns coordinates of points p on the boundary
when calculating integrals in the interior of the domain;

4) Assign the input data (thermal conductivity and boundary conditions);
5) Calculate the boundary integrals;
6) Form the main matrix of the system;
7) Calculate the values of the right hand side matrix;
8) Solve the system of equations using Gaussian elimination;
9) Assign the results to the appropriate edges and form tables with all the
boundary values;

10) Calculate the temperature values in the domain interior.

4. Results

4.1. Corner

Four rectangular subdomains were used to create a shape of a corner of

a wall as shown in Figure 2. A perfect contact between the subdomains was

assumed. Such a structure allows simulating various scenarios. The two basic

scenarios are: a wall without insulation and a wall with insulation. The boundary

conditions for the following examples were taken from [5], so that the results could

be compared.

Figure 2. Domain simulating corner geometry
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15 nodes were assigned for a wall thickness: 5 for the outer part and 10

for the inner part. The outer and inner edges consisted of 30 and 15 nodes,

respectively. First, a corner of a simple 15cm brick wall (λ = 0.77 W
m·K
) was

simulated. In order to force on the inner edges (no. 10, 16 and 15 in Figure 2) the

same boundary conditions (Dirichlet type) as on the outer ones, a very high value

of λ3 and λ4 have been assigned (domain 3 and 4 would show no heat resistance).

In the second case a 5cm layer of styrofoam insulation (λ=0.04 W
m·K
) was

added. The temperature fields inside the domain and values of the heat flux

density in both cases are presented in Figure 3 and Figure 4, respectively.

In some figures isotherms seem to cross the outer boundary of the domain,

what would be unphysical. This is due to an approximation in graphical post-

processing software [6] and that the temperature on the boundary is not displayed.

The heat rate for 1m of the wall height was estimated as Q̇=115.132W for

the first case and 7.6 times smaller value for insulated wall Q̇=15.02W (If straight

30cm section of a wall would be considered, those values would be respectively

97.02W and 9.13W).

(a) (b)

Figure 3. The temperature field of a corner of a brick wall (λ=0.77 W
m·K
) without insulation

(a) and with 5cm styrofoam insulation (λ=0.04 W
m·K
) (b)

Thanks to the applied geometry of the domain a few more scenarios were

considered and their results are shown in Figure 5.

4.2. Corner in higher resolution

One of the main advantages of the BEM is that the temperature at each

point of the domain is estimated independently, based on the values of all the

boundary conditions. It means that in the case where knowledge of the detailed

temperature field in one specific area is significant, there is no need to create

a dense mesh in a whole domain but only there where it is needed. However,

when approaching the boundary, the resolution of the boundary elements should

be increased to avoid large error.

As an example of such procedure, the resolution of a domain (Figure 6)

1cm deep and long on the inner side of the uninsulated corner of a brick wall,
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Figure 4. Heat flux density obtained for boundary nodes on the inner edge of the corner

with and without insulation. Nodes are numbered 1 to 30 beginning from the right side

of edge no. 9 to top of edge no. 1 in Figure 2

was increased. Two cases were considered – firstly when boundary elements, 1cm

long, were imposed on the boundary, and secondly when the length was 0.1cm.

In both cases there were 300 points spaced by 0.1cm. For that reason, huge errors

occurred (Figure 7a) close to the edges in the first case (also the inner one between

the sub-domains). They were higher between boundary nodes. Such errors were

not observed in the second case (Figure 7b). For comparison, a full map from

Figure 3a was built of 400 nodes spaced 1cm between each other, that is, where

the temperature was represented by only 3 nodes, now there were 300 nodes –

what means that the resolution was increased 100 times. The result was obtained

by increasing the number of boundary elements only 10 times.

4.3. Partly insulated wall

Dirichlet boundary conditions were assigned in the previous examples,

however, they are not very realistic in building engineering problems. Therefore, in

the present case, the Neuman boundary condition was applied. A 1m long segment

of a 25cm thick brick wall (λ = 0.77 W
m·K
) with an insulation layer, 50cm long

and 10cm thick (λ= 0.04 W
m·K
) was considered. Tout =−22

◦C and heat transfer

coefficient αout=23
W
m2·K
, and Tin=20

◦C and αin=8.1
W
m2·K

were assumed on the

outer and inner sides, respectively.

The numerically obtained heat flux value (for 1m of wall height) was

Q̇ = 57.718W. Simple analytical calculations give a smaller incorrect value:

q1 =
42

0.12+0.325+0.04
= 86.6W

m2
and q2 =

42

0.12+0.325+2.5+0.04
= 14.07W

m2
therefore
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(a) (b)

(c) (d)

Figure 5. Temperature field of a corner of a: (a) brick wall (λ=0.77 W
m·K
) without insulation

where one edge is being cooled and another heated with q=1000 W
m2
; (b) uniform wall where

domain no. 1 was “removed”; (c) brick wall with styrofoam insulation and the upper inner

edge being heated with q=400 W
m2
; (d) brick wall where only one side was insulated

Q̇c = 0.5m ·86.6
W

m2
·1m+0.5m ·14.07W

m2
·1m = 50.335W. The difference between

the values is ∆Q̇= 7.383W. In Figure 8 a deviation from parallel isotherms is

clearly noticed, what proves that one-dimensional heat transfer assumption is not

applicable. In such cases a two dimensional thermal bridge should be considered

and numerical calculations are of much help.

5. Conclusions

The presented examples of heat transfer in building construction elements

well reflect the considered problem. The results obtained with the boundary

element method correspond to the results obtained with other methods and

are not characterized by a significant error. A clear advantage of the method

is that, for a flat area, it is only an edge that is discretized and what comes

after, there are fewer variables in the system of equations. The final solution

in the form of a temperature field in the internal domain is determined only

by the boundary values of temperature and heat flux density. Thus, the point
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(a) (b)

Figure 6. (a) Selected fragment of the corner, (b) selected fragment zoomed, where red

squares indicate interior nodes and blue ones boundary nodes used to estimate the field

temperature of the whole corner. The shaded green squares indicate a domain of 300 inner

nodes (100 for each square) describing the field temperature of a chosen detail what

corresponds to three red nodes

(a) (b)

Figure 7. Results of field temperature for a small, 1cm wide, domain of a corner of 10cm

brick wall without insulation. Calculations were carried out without (a) and with (b)

increased number of boundary elements

coordinates and their quantity can be chosen freely. It means that if knowledge

of the temperature field in a particular region in the inner domain is needed with

a higher resolution, this can be easily done without any interference with the

solving equation. However, when approaching the edge closer than the size of

a constant boundary element, the error dramatically increases. Nevertheless, this

can be expiated by an increasing number of boundary elements and solving the

equation once more without considering all the inner domains which are not of

interest.

On the other hand, it should be noted that the mathematical theory of the

boundary element method is much more complicated than other competing mesh
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Figure 8. Temperature field for partly insulated wall

methods, hence, more effort and time will be required to familiarize with it. In

the case of the present work, assigning coordinates to the corresponding points

in order to determine geometries of new shapes was a laborious task. Therefore,

some kind of a preprocessor would be much of help.

Moreover, it would be worth checking out the functionality of the method

in the case of domains with more complex geometries than presented here.

A constant boundary element was used, but other types (linear and parabolic) are

also available and give more possibilities [4]. However, in the case of a constant

boundary element there is no ambiguity in corners or places of contact with

different boundary conditions, as values are assigned to points allocated in the

centre of the constant boundary element and not on the edge.

In the case of domains with simple geometries the use of traditional mesh

methods would be undoubtedly simpler. Nevertheless, the boundary element

method is worth of interest and it may bring excellent results where mesh methods

encounter difficulties.
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