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Abstract. Typical approaches to string comparing treats them as either differ-
ent or identical without taking into account the possibility of misspelling of the
word. In this article we present an approach we used for improvement of im-
perfect string matching that allows one to reconstruct potential string distortions.
The proposed method increases the quality of imperfect string matching, allow-
ing the lookup of misspelled words without significant impact on computational
effectiveness. The paper presents the proposed method, experimental data sets
and obtained results of comparison to state of the art methods.
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1 Introduction

The transformation performed by recognition memory from the space of perceptions
into a space of inner representations, allows one to put on the perceived things struc-
tures that organize the perception. This mechanism is also used on the linguistic level
where particular words should be selected from the stream of perception, which is a
prerequisite of language understanding. The recognition memory works for all differ-
ent modes of perception. On a visual level it reconstructs elements of the images, and
an on audio channel it allows to identify words.

In this article we focus on the aspect of recognition memory which allows the cor-
rection of string characters using the algorithm performing efficient imperfect string
matching. It should be stressed that this is only one of the tasks that recognition mem-
ory can perform, and its implementation can serve as an elementary block of a cognitive
system. The task of string recognition (or matching the string to the one stored in the
dictionary) is a very important element in information retrieval [1] systems so it will be
analysed also from that perspective. The task of imperfect string matching can also be
applied in spell checking, thus making its implementation very useful.

String comparison performed by machines is typically a binary process: two literals
are the same or not. The computers usually do not consider the strings as similar, but
only the same or different. While we are processing the natural language in written
form, where word misspellings are common, the selection of words, non-words and



their correspondences become an important issue. It should be noticed that selecting a
subset of words from the set of all possible character combinations is significant.

In retrieval systems, selecting the exact matches of the particular user query is not
sufficient, due to possible misspellings and also different inflections (not considering
semantics of the utterances). Other uses of presented methods include sequence analysis
systems such as comparing genomes [2].

2 Imperfect matching methods

Most of the approaches to imperfect string matching are based on metrics that describe
distances between two strings. The most intuitive was introduced by Hamming [3]. The
Hamming distance for two words of the same length is the number of places where they
differ. For text correction this measure is not very useful as it takes into account only
one possible typing error – change of a letter.

An improvement of the string matching algorithm has been proposed by Leven-
shtein [4]. The measure calculates a minimal number of operations, such as letter re-
moval or inserting that leads to transforming one string to another. Two same strings
will have a Levenshtein distance equal to 0. If they are different, minimal distance will
be 1 and the maximal will be the length of the longer string. The algorithm in its basic
form is a bit slow but it has been optimized and according to Exorbyte it allows one to
check 2.5 mln words in 10 seconds [5] and in that form it is used eg. in Yahoo! search
engine.

The Levenshtein distance has one serious drawback. It does not take into account
operation of changing two letters. Research indicates that this type of error is one of
the common misspellings that humans do (80 %) [6]. The measure was adopted to
take into account this additional operation. The modified distance is named Damerau-
Levenshtein. Despite the adding of one additional operation that does not seem to be
complicated, it strongly influence the computational effectiveness of the algorithm.

Aforementioned methods for string comparison are basic approaches for imper-
fect string matching [7]. Their advantage is not very complicated implementations.
The Hamming distance is fast but it is only limited to strings of the same length. The
Damerau-Levenshtein measure is known to have approximately 80% efficiency in mis-
spellings correction. The drawback of these methods is their limitation to the selected
number of basic operations on strings that not cover all possible errors humans can do.
E.g. semantically the Polish word pies (dog) is closer to the misspelled word pias than
wies (countryside), but using presented distances they have the same distance because
they have the same difference – a letter change.

The problems with measures based on editing distances have been compensated for
by using extended representations of the strings. One of the most popular approaches
are n-grams that are widely used in sequence analysis. An n-gram is an n–element sub-
sequence taken from a given sequence. Usually the n-grams are created by dividing the
original sequence on the pieces having equal n length that may overlap. The method
is similar to the approach used in Support Vector Machines where the increase of di-
mensions with a particular kernel allows one to separate objects that are not separable
in higher dimensions. The imperfect string matching based on n-grams representationD
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usually gives more precise results than the former presented approaches based on edit-
ing distances [8].

The n-gram approach also allows one to save disk memory. The methods based on
editing distances require you to store a whole dictionary in memory. The n-grams ap-
proach can optimize memory usage by creating the all n-grams dictionary. It should be
noticed that the size of the dictionary is proportional to n. If n is considerably smaller
than average string length, it will take much less space. To optimize the n-grams ap-
proach and to create effective word representation it is required to store only references
to the proper n-grams that store only reference i.d. instead of whole strings, which is
known to be more efficient [8].

To compare the n-grams representations, usually two approaches are used: slower,
based on Marcov models that allows capturing the order of n-grams, and a faster method
that is based on comparison of sets, where order is omitted. Due to the effectiveness of
n-grams representations usage of Tversky index (known for set-theoretic approach for
string comparing) provide similar results to Marcov models [8].

The methods presented above are widely used. Among them open-source approaches
for string correction should be mentioned, namely Hunspell, Aspell, Ispell [9]. They can
be used both as stand alone applications, or by third party software. Ispell is based on
Damerau-Levenshtein metrics where the distance is not higher then 1 and it does not
take into account spelling rules. Its successor Aspell is optimized for over 70 languages.
It is also based on Damerau-Levenshtein metrics but contains optimisations and exten-
sions for improving the speed of comparisons by using cached list of elements called
soundslike. The Aspell has been integrated with many applications such as Notepad++,
the older version of Opera, Gedit, AbiWord. Hunspell is a spelling corrector and mor-
phological analyser. It has been enriched with an approach based on n-grams. It has
been integrated with Google Chrome, LibreOffice, LyX, Mozilla Firefox, Opera 10+.

3 Extension of n-grams: bi2quadro-grams

In our approach we use a different method of string representation than that typically
used with n-grams. We performed series of experiments comparing different combi-
nations of n-grams used for representation as well as a source word (given for assess-
ment) and target words (words stored in the dictionary). The experiments have shown
that much better results can be achieved if we use different representations of words
in the dictionary and source words. Typical approaches use the same n for source and
target word, typically n = 2. In our approach the dictionary words are represented with
quadro-grams and the source word is represented with bi-grams. As representations of
source and target words are different the key issue is the way of their comparison. We
can not compare source and target n-grams directly, as their n numbers are different.
Thus, the method for comparing different n-grams lengths is crucial here.

3.1 Different n-grams length

Having different n-grams length the calculation of the similarity metric is performed
within different dimensions. Thus, both n-grams – source and target should be mappedD
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into the same dimension, in other words their number should be equal. The number
ng of n-grams generated for a given string equals ng = length(string) − (n − 1).
The solution for performing comparison of n-grams with different lengths was to add
additional blank letters to the representation with bigger n, and perform the similarity
evaluation after mapping the bi-gram onto fragments of higher n-grams. In that way
each of bi-grams have their corresponding place in higher n-gram representation. In our
case we test tri- and quadro-grams.

Tri-gram representation is extended by adding one blank letter at the end of the last
gram, quadro-grams are extended by adding blank letter at the end of the last gram and
blank letter at the beginning of the first one. The example of partition of the strings for
comparing tri- and quadro-grams with bi-grams has been shown in Table 1.

Table 1. Example for dividing the string on bi/tri/quadro-grams.

string n-grams
klawiatura kl la aw wi ia at tu ur ra
klawiatura kla law awi wia iat atu tur ura ra_
klawiatura _kla klaw lawi awia wiat iatu atur tura ura_

3.2 Calculating n-grams similarity

The similarity between two strings can be expressed as a number of matched n-grams.
This value is in the range [0, source_bi-grams_number]. After normalization the strings
similarity represented with n-grams is expressed using Formula 1.

similarity =
number_of_matched_bi-grams

total_number_of_bi-grams
, (1)

In the results we presented we use distance between two strings that is calculated as
distance = 1− similarity.

The similarity between two n-grams having different n can be calculated by count-
ing the number of n-grams from the smaller n representation in the higher one. How-
ever, this approach gives good results only if the source and target words are the same.
If in the source word some errors appear, such as insertion of an additional letter, or
shifting of letters, the approach gave unintuitive results.

The examples in Tables 2 and 3 show such cases when a letter is removed or in-
serted. The examples also show that different similarity values can be achieved for
different n-gram sizes – the last column shows the number of n-grams matched.

What can be seen from the examples provided in Tables 2 and 3 in the case of
letter removal, using both tri-grams and quadro-grams representations for target word
gave identical results. In the case of letter insertion, using quadro-grams gave better
results than using bi- or tri-grams. However not all bi-grams of the source word could
be matched.

As the comparison of n-grams should take into account different possibilities of
spelling errors, we identify different types of matching:
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Table 2. Letter removal – comparison of bi-, tri- and quadro-grams.

n-gram type string n-grams matched n-grams
source string podstwka po od ds st tw wk ka 7
bi-grams podstawka po od ds st ta aw wk 4
tri-grams podstawka pod ods dst sta taw awk wka 6
quadro-grams podstawka _pod pods odst dsta staw tawk awka 6

Table 3. Letter insertion – comparison of bi-, tri- and quadro-grams.

n-gram type string n-grams matched n-grams
source string tabelica ta ab be el li ic ca 7
bi-grams tablica ta ab bl li ic ca a_ 2
tri-grams tablica tab abl bli lic ica ca_ a__ 2
quadro-grams tablica _tab tabl abli blic lica ica_ ca__ 5

– exact match: ab → abcd.
– shifted match ab → acbd.
– commutative match ab → cabd.
– reverse match.: ab → bacd.
– adding additional letter ab → abcx

The introduction of those matchings increases efficiency of the algorithm. E.g. in
case of letter removal the number of matched bi-grams increases (Table 4).

Table 4. Letter removal – comparison of bi-, tri- and quadro-grams.

n-gram type string n-grams matched n-grams
source string podstwka po od ds st tw wk ka 7
bi-grams podstawka po od ds st ta aw wk 4
tri-grams podstawka pod ods dst sta taw awk wka 7
quadro-grams podstawka _pod pods odst dsta staw tawk awka 7

Table 5. Weights for different types of matchings

Type of matching Symbol Weight
exact match ab 1, 0

shifted match bc, da 0, 8

commutative match ac, db 0, 8

reverse match ba, cb, ad, ca, bd 0, 1

adding additional letter x 0, 7

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


The introduction of different types of matching allows us to add weights to the simi-
larity measure that focus the similarity measure on the particular aspect of the matching.
Without the weights the results can be misleading. E.g. distance between „podstwka”
and „podstawka” will be 0 which is obviously not true. Thus each type of the aforemen-
tioned matchings was assigned a weight as presented in Table 5.

Taking weights into account gives more intuitive results. The example for a word
with a removed letter is presented in Table 6. Type, number of found corresponding
n-grams, and distance between the source and target word is presented in Table 7.

Table 6. Letter removal – example including weights.

n-gram type string n-grams matched n-grams
source word podstwka po od ds st tw wk ka 7

bi-grams podstawka
po od ds st ta aw wk

4
ab ab ab ab - - -

tri-grams podstawka
pod ods dst sta taw awk wka

7
ab ab ab ab ac bc bc

quadro-grams podstawka
_pod pods odst dsta staw tawk awka

7
ab ab ab ab ac bc bc

Table 7. Letter removal – distance including weights.

n-gram type string number of bi-grams distance
source word podstwka 7 –
bi-grams podstawka 4ab 1− 4 · 1/7 ≈ 0, 43

tri-grams podstawka 4ab, 1ac, 2bc 1− (4 · 1 + 1 · 0, 8 + 2 · 0, 8)/7 ≈ 0, 09

quadro-grams podstawka 4ab, 1ac, 2bc 1− (4 · 1 + 1 · 0, 8 + 2 · 0, 8)/7 ≈ 0, 09

In all cases, results obtained by using tri- and quadro-grams were better than when
using only bi-grams. For exact, shifted, commutative and reverse matchings the re-
sults obtained for tri- and quadro-grams were identical. When the source word had an
additional letter inserted, the usage of quadro-grams gave better results than bi- and tri-
grams representations. Such an example is presented in Table 8. Type, number of found
corresponding n-grams, and distance between the source and target word is presented
in Table 9.D
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Table 8. Letter insertion – example with weights.

n-gram type string n-grams matched n-grams
source word tabelica ta ab be el li ic ca 7

bi-grams tablica
ta ab bl li ic ca a_

2
ab ab x x - - -

tri-grams tablica
tab abl bli lic ica ca_ a__

2
ab ab x x - - -

quadro-grams tablica
_tab tabl abli blic lica ica_ ca__

5
ab ab x x da da da

The examples presented above indicate that the standard n-grams approach allows
you to precisely compare only identical words. This method does not take into account
possible spelling errors. Introduction of weighted types of matchings allows for recog-
nition of misspelled words based on their similarity to the correct ones. Thus, despite
having to map different dimensions of n-grams, obtained results show that by the intro-
duction of handling for spelling errors, quality of matching increases.

Table 9. Letter insertion – distance with weights.

n-gram type string number of bi-grams distance
source word tabelica 7 –
bi-grams tablica 2ab, 2x 1− (2 · 1 + 2 · 0, 7)/7 ≈ 0, 51

tri-grams tablica 2ab, 2x 1− (2 · 1 + 2 · 0, 7)/7 ≈ 0, 51

quadro-grams tablica 2ab, 3da, 2x 1− (2 · 1 + 3 · 0, 8 + 2 · 0, 7)/7 ≈ 0, 17

3.3 Different word lengths
Bi-grams matching allows string comparison when for each bi-gram of source word
we have a corresponding bi-gram available for the target word. If a target word is
shorter than the source one, some of bi-grams cannot be matched. In that case last
grams from the target word will not be compared, and thus they do not influence the
results. It results in the cases where comparing the word klawiatora with klawiatura
or klawiaturaaaaa gives the same result which is not acceptable.

To compensate for this we added a penalty for a difference in word length between
target and source one. The penalty is calculated as presented by Formula 2. It is then
added to the distance, thus increasing it for every additional letter.

penalty =
length_of_source_word− length_of_target_word

10
(2)

The difference between lengths has been divided by 10 to be normalized into [0, 1].
We assume that the difference in lengths of source and target words is smaller than 10.
The penalty allows one to eliminate the words that are similar to the source one in the
n-grams located at the beginning, but which are longer.D
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4 The experiments

For the experiments presented in this paper two open-source dictionaries were used:

– LibreOffice dictionary – 50 911 words,
– Open Source English words dictionary of 153 222 words [10]

They contains together 162 463 different words, as 41 670 were found in both dictio-
naries. From those dictionaries a corpora containing 1000 correct words. This corpora
was then modified to include 10%, 20%, ... , 100% of misspelled words. As a set of
target words we use three publicly available dictionaries: wikipedia, aspell and trec.

Five different approaches to correct distorted words were tested and compared with
bi2quadro measure. The results for 1000-word corpora have been presented in Figure 1.

Fig. 1. Quality tests for different approaches to imperfect matching.

The quality of the algorithm depends on the degree of correctness of the corpora.
For corpora that included only properly spelled words for all cases the proposed mea-
sure reaches 100% of correctness which indicates that it does not introduce noise to
the dictionary. In all other cases, where test corpora contained erroneous words, our
proposed measure achieved better results than other measures. It also behaves better
than the one used by Google, that has been tested by providing sample strings into the
Google search box and comparing the recommendation of correction returned by search
engine.

The proposed measure was also tested using the wikipedia, aspell and trec corpora.
The results have been computed using an F-measure and presented in Figure 2. Once
again, bi2quadro-grams measure achieved better results than other widely used mea-
sures obtaining an average score around 90%.D
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Fig. 2. Quality tests for different measures using wikipedia, aspell and trec corpora.

The proposed approach is also competitive in terms of performance. As in other
approaches the time needed to perform word lookup is directly related to the size of
the corpora. The proposed measure is only slightly slower than the standard n-grams
approach, about 2-times slower than Hamming measure and faster than Levenshtein
and Damerau-Levenshtein approach while yielding better results (Figure 3).

5 Conclusions

The proposed method of bi2quadro-grams achieves better results than other widely used
approaches. The proposed measure achieved almost 90% accuracy, outperforming other
known metrics like Hamming, Levenshtein or n-grams measures. The proposed metric
also outperforms widely used dictionaries found in Microsoft Word in terms of time.
For the dictionary of 162 463 words, the lookup took only 10 ms, whereas Word needed
over 15 ms. Bi2quadro-grams also usually produces only one word as a result. Most
of the widely-used dictionaries present lengthy lists of words for the user to choose
from. As such, the proposed metric could be used in any word lookup and correction
applications, yielding better results than most of the available solutions while preserving
the computational time.

The presented approach we plan to use in our search engine http://kask.
eti.pg.gda.pl/BetterSearch aiming at improving information retrieval from
Wikipedia. The module that allows you to correct the keywords entered by the user
should improve precision of the search. Beside information retrieval, this system offers
additional functionalities that allows one to go beyond keyword-based search [11].
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Fig. 3. Performance tests for different measures using wikipedia, aspell and trec corpora.
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