
J Supercomput
https://doi.org/10.1007/s11227-018-2356-z

Improving all-reduce collective operations for
imbalanced process arrival patterns

Jerzy Proficz1

© The Author(s) 2018

Abstract Two new algorithms for the all-reduce operation optimized for imbalanced
process arrival patterns (PAPs) are presented: (1) sorted linear tree, (2) pre-reduced
ring as well as a new way of online PAP detection, including process arrival time
estimations, and their distribution between cooperating processes was introduced. The
idea, pseudo-code, implementation details, benchmark for performance evaluation and
a real case example for machine learning are provided. The results of the experiments
were described and analyzed, showing that the proposed solution has high scalability
and improved performance in comparison with the usually used ring and Rabenseifner
algorithms.

Keywords All-reduce · Pre-reduced ring · Sorted linear tree · Process arrival pattern ·
MPI

1 Introduction

Collective communication [2] is frequently used by the programmers and designers
of parallel programs, especially in high-performance computing (HPC) applications
related to scientific simulations and data analysis, including machine learning cal-
culations. Usually, collective operations, e.g., implemented in MPI [6], are based on
algorithms optimized for the simultaneous entering of all participants into the oper-
ation, i.e., they do not take into consideration possible differences in process arrival
times (PATs); thus, in real environment, where such imbalances are ubiquitous, they

B Jerzy Proficz
j.proficz@task.gda.pl

1 Centre of Informatics - Tricity Academic Supercomputer and NetworK (CI TASK),
Gdansk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233 Gdańsk, Poland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-018-2356-z&domain=pdf
http://orcid.org/0000-0003-2975-9339

J. Proficz

Fig. 1 Example of a process arrival pattern with the process #1 delayed, where P is the number of
cooperating processes, ai , fi and ei are, respectively, arrival, finish and elapsed times of process i for the
performed collective communication operation

can have significant performance issues. It is worth to note that well-performing algo-
rithms for the balanced times work poorly in the opposite case [11].

Figure 1 presents an example of a typical execution of a distributed program, where
after the computation phase all processes exchange data with each other using some
kind of collective communication operation, e.g., all-reduce.We can observe that even
for the same computation volume, different processes arrive at the communication
phase in different time, in the example processes 1 is the slowest. Sometimes such
differences can be observed in the communication, where the data exchange time is
shorter for process 1 than for the other processes.

As a contribution of this paper, we present two new algorithms for the all-reduce
operation, optimized for imbalanced process arrival patterns (PAPs): sorted linear tree
(SLT) and pre-reduced ring (PRR). We described their idea, pseudo-code, implemen-
tation details, benchmark for their evaluation as well as a real case example related
to machine learning. Additionally we introduced a new way of online PAP detection,
including PAT estimations and their distribution among cooperating processes.

The following section presents the related works in the subject, the next one
describes the used computation and communication model, Sect. 4 presents the pro-
posed algorithms, Sect. 5 provides the evaluation of the algorithms using a benchmark,
Sect. 6 shows a real case example of the algorithms’ utilization, and the last section
presents the final remarks.

2 Related works

We grouped the related works into three areas: the all-reduce operation in general, i.e.,
the review of the currently used algorithms in different implementations of MPI [6],
then we describe the current state of the art in process arrival patterns (PAPs), and
finally we present the works related to process arrival times (PATs) online monitoring
and estimation.

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Improving all-reduce collective operations for…

Table 1 All-reduce algorithms implemented in OpenMPI [4] and MPICH [3]

Selection criteria OpenMPI MPICH

Short messages Recursive doubling [20] Recursive doubling [20]

Long messages Ring [20] or segmented ring [4] Rabenseifner [19]

Noncommutive reduce operation Nonoverlapping [4] Recursive doubling [20]

Others Basic linear [4], segmented linear tree [4]

2.1 All-reduce operation

All-reduce operation is one of the most common collective operations used in HPC
software [11]. We can define it as a reduction in a vector of numbers using a defined
operation, e.g., sum, which needs to be cumulative, and then distribution of the result
into all participating processes, in short: all-reduce = reduce + broadcast. There are
plenty of all-reduce algorithms; Table 1 summarizes the ones used in two currently
most popular, open source MPI implementations: OpenMPI [4] and MPICH [3].

The basic linear algorithm performs linear reduce (flat tree: the root process gath-
ers and reduces all data from the other processes) followed by the broadcast without
any message segmentation [4]. Segmented linear tree creates pipeline between the
participating processes, where the data are split into segments and sent from pro-
cess 0 to 1 to 2 … to P − 1. The nonoverlapping algorithm uses default reduce
followed by the broadcast; these operations are not overlapping: the broadcast is
performed sequentially after the reduce, even if both use segmentation and some seg-
ments are ready after the reduce [4]. Recursive doubling (a.k.a. butterfly and binary
split) is performed in rounds; in every round each process exchanges and reduces
its data with another, corresponding process, whose rank changes round by round,
after log2 P rounds (P is the total number of participating processes); all data are
reduced and distributed to the processes [20]. Ring is also performed in rounds, the
data are divided into P segments, and each process sends one segment per round
(the segment index depending on the round number and the process rank) to the next
process (the processes are usually ordered according to their ranks). At the begin-
ning, there are performed P − 1 rounds, where a segment delivery is followed by its
data reduction; thus, after these rounds, each process has exactly one segment fully
reduced and needs to forward it to other processes. This is performed during next
P − 1 rounds, where the data are gathered, i.e., the processes transfer the reduced
segments; thus, the final result is delivered to all processes [20]. Figure 2 presents
an example of a ring execution. Segmented ring is similar to the ring, but after the
segmentation related to process number, an additional one is performed for pipeline
effect between corresponding processes [4]. In the Rabenseifner algorithm, the reduc-
tion is performed in two phases, first the scatter and reduction of data are executed
(using recursive doubling on divided data), and then, the data gathering takes place
(using recursive halving on gathered data), where the reduced data come back to all
processes [19].

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

J. Proficz

Fig. 2 Example of a ring
algorithm execution, showing
data distribution between the
processes (one square
corresponds to one data
segment), a solid arrow
represents send and reduce a
data segment, an empty arrow
represents send and override a
data segment, and τ is the time
of transfer and
reduction/overriding of a data
segment

2.2 Imbalanced process arrival times

Not much work has been done for imbalanced process arrival patterns analysis. To the
best of our knowledge, the following four papers cover the research performed in this
area.

Faraj et al. [11] performed advanced analysis of process arrival patterns (PAPs)
observed during execution of typical MPI programs. They executed a set of tests
proving that the differences between process arrival times (PATs) in operations of the
collective communication are significantly high and they influence the performance of
the underlying computations. The authors defined a PAP to be imbalanced for a given
collective operation with a specific message length when its imbalance factor (a ratio
between the highest difference between the arrival times of the processes and time
of the simple (point-to-point) message delivery between each other) is larger than 1.
The authors provided examples of typical HPC benchmarks, e.g., NAS, LAMMPS or
NBODY, where imbalance factor, during their execution in a typical cluster environ-
ment, equals 100 or even more. They observed that, such behavior usually cannot be
controlled directly by the programmer, and the imbalances are going to occur in any
typical HPC environment. The authors proposed a mini-benchmark for testing various
collective operations and found out the conclusion that the algorithms which perform
better with balanced PAPs tend to behave worse when dealing with imbalanced ones.
Finally, they proposed solution: their self-tuning framework—STAR-MPI [10], which
includes a large set of various implementations of collective operation and can be used
for different PAPs, with automatic detection of themost suitable algorithm. The frame-
work efficiency was proved by an example of tuned all-to-all operations, where the
performance of the set of MPI benchmarks was significantly increased.

As a continuation of the above work, Patarasuk et al. proposed a new solution
for broadcast operation used in MPI application concerning imbalanced PAPs of
the cooperating processes [17]. The authors proposed a new metric for the algo-
rithm performance: competitive ratio—PERF(r), which describes the influence of the

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Improving all-reduce collective operations for…

imbalanced PATs for the algorithm execution, regarding the behavior for its worst-case
PAT. They evaluated well-known broadcast algorithms, using the above metric, and
presented two new algorithms, which have constant (limited) value of the metric. The
algorithms are meant for large messages and use the subsets of cooperating processes
to accelerate the overall process: the data are sent to the earliest processes first. One
of the algorithms is dedicated for nonblocking (arrival_nb) and other for blocking
(arrival_b) message-passing systems. The authors proposed a benchmark for algo-
rithms evaluation, which introduces random PAPs and measures their impact on the
algorithm performance. The experiments were performed using two different 16-node
compute clusters (one with InfiniBand and other with Ethernet interconnecting net-
work), and 5 broadcast algorithms, i.e., arrival_b, flat, linear, binomial trees and the
one native to the machine. The results of the experiments showed the advantage of the
arrival_b algorithm for large messages and imbalanced PAPs.

Marendic et al. [16] focused on an analysis of reduce algorithms working with
imbalanced PATs. They assumed atomicity of reduced data (the data cannot be split
into segments and reduced piece by piece), as well as the Hockney [12] model of
message-passing (time of message transmission depends on the link bandwidth: β

and constant latency: α, with an additional computation speed parameter: γ) and pre-
sented related works for typical reduction algorithms. They proposed a new static
load balancing optimized reduction algorithm requiring a priori information about
current PATs of all cooperating processes. The authors performed a theoretical anal-
ysis proving the algorithm is nearly optimal for the assumed model. They showed
that the algorithm gives the minimal completion time under the assumption that the
corresponding point-to-point operations start exactly at the same time for any two
communicating processes. However, if the model introduces a delay of the receive
operation in comparison with the send one, which seems to be the case in real systems,
the algorithm does not utilize this additional time in receiving process, although, in
some cases, it could slightly improve the performance of the overall reduce operation.
The other proposed algorithm, presented by the authors: a dynamic load balancing, can
operate under the limited knowledge about PATs, being able to atomically reconfigure
the message-passing tree structure while performing reduce operation using auxil-
iary short messages for signaling the PATs between the cooperating processes. The
overhead is minimal in comparison with the gains of the PAP optimization. Finally,
a mini-benchmark was presented and some typical PAPs were examined, the results
showed the advantage of the proposed dynamic load balancing algorithm versus other
algorithms: binary tree and all-to-all reduce.

Marendic et al. [15] continued the work with optimization of the MPI reduction
operations dealing with the imbalanced PAPs. The main contribution is a new algo-
rithm, called Clairvoyant, scheduling the exchange of data segments (fixed parts of
reduced data) between reducing processes, without assumption of data atomicity, and
taking into account PATs, thus causing as many as possible segments to be reduced by
the early arriving processes. The idea of the algorithm bases on the assumption that
the PAP is known during process scheduling. The paper provided a theoretical back-
ground for the PAPs, with its own definition of the time imbalances, including a PAT
vector, absolute imbalance, absorption time as well as their normalized versions, fol-
lowed by the analysis of the proposed algorithm, and its comparison to other typically

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

J. Proficz

Table 2 Approaches for PAP detection

Operation PAP detector

All-to-all [11] Uses STAR-MPI overall efficiency indicators

Broadcast [17] Uses its own messaging for PAT signaling

Local redirect [16] Uses its own messaging for PAT signaling

Clairvoyant [15] None, suggested usage of the static analysis or SMA

used reduction algorithms. Its pseudo-code was described and the implementation
details were roughly provided with two examples of its execution for balanced and
imbalanced PAPs. Afterwards the performed experiments were described, including
details about used mini-benchmark and the results of practical comparison with other
solutions (typical algorithms with no support for imbalanced PAPs) were provided.
Finally, the results of the experiments showing advantage of the proposed algorithm
were presented and discussed.

2.3 Process arrival time estimation

The PAP collective communication algorithms require some knowledge about the
PATs for their execution. Table 2 presents the summary of the approaches used in the
works described above.

In [11] (dedicated for an all-to-all collective operation), there is assumption about
the call site (a place in the code where the MPI collective operation is called) paired
with the message size that they have a similar PAPs for the whole program execu-
tion, or at least their behavior changes infrequently. The proposed STAR-MPI [10]
system periodically assesses the call site performance (exchanging measured times
between processes) and adapts a proper algorithm, trying one after another. The authors
claim that it requires 50–200 calls to provide desired optimization. This is a general
approach, and it can be used even for other performance issues, e.g., network structure
adaptation.

In [17] (dedicated for a broadcast operation), the algorithm uses additional, short
messages sent to root process signaling process readiness for the operations. In case
the some processes are ready, the root performs sub-group broadcast; thus, the a priori
PATs are not necessary for this approach. Similar idea is used in [16] (dedicated
for a reduce operation) where the additional messages are used not only to indicate
readiness, but also to redirect delayed processes.

In [15] (dedicated for a reduce operation), the algorithm itself does not include any
solution for the PAT estimation, that is why it is called Clairvoyant, but the authors
assume recurring PAPs and give the suggestion that there can be used simple moving
averages (SMA) approximation. This solution requires the additional communication
to exchange the PAT values, what is performed every k iterations, thus introducing
the additional communication time. The authors claim that the speedup introduced by
the usage of the algorithm overcomes this cost and provide some experimental results
showing the total time reduction in the overall computations.

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Improving all-reduce collective operations for…

3 Computation and communication model

We assume usage of the message-passing paradigm, within a homogeneous environ-
ment, where each communicating process is placed on a separated compute node.
The nodes are connected by a homogeneous communication network. Every process
can handle one or more threads of control communicating and synchronizing with
each other using shared memory mechanisms. However, there is no shared memory
accessible simultaneously by different processes.

As a process arrival pattern (PAP), we understand the timing of different processes
arrivals for a concrete collective operation, e.g., all-reduce in anMPI program.We can
evaluate a given PAP by measuring the process arrival time (PAT) for each process.
Formally, a PAP is defined as the tuple (a0, a1, . . . aP−1), where ai is a measured PAT
for process i , while P is the number of processes participating in the collective oper-
ation. Similarly process exit pattern (PEP) is defined as the tuple (f0, f1, . . . fP−1),
where fi is the time when process i finishes the operation [11]. Figure 1 presents an
example of arrival and exit patterns.

For each process participating in a particular operation, Faraj et al. define the
elapsed time as ei = fi − ai , and the average elapsed time for the whole PAP:
ē = 1

P

∑P−1
i=0 ei [11]. This is a mean value of time spent for communication by each

process, the rest of the time is used for computations. Thus, minimizing the elapsed
times of the participating processes decreases the total time of program execution and,
in our case, is the goal of the optimization.

For an all-reduce operation, assuming δ to be the time of sending the reduced data
between any two processes and only one arbitrary chosen process k is delayed (others
have the same arrival time, see an example in Fig. 1, where k = 1), we can estimate the
lower bound of ē as ēlo = ak − ao + δ, where ao is the time of arrival of all processes
except k. On the other hand, assuming Δ to be time of an all-reduce operation for
perfectly balanced PAT (ai = a j , for all i, j ∈ 〈0, k − 1〉), we can estimate the upper
bound of ē as ēup = ak −ao+Δ. Thus, using PAP optimized all-reduce algorithm can
decrease the elapsed time by Δ − δ or less. For example, for a typical ring all-reduce
algorithm, working on 16 processes, 4MB data size and 1Gbps Ethernet network we
can measure Δ = 45.7ms and δ =18.2ms; thus, using PAP optimized algorithm can
save at most 27.5ms of average elapsed time, no matter how slow the delayed process
is.

Furthermore, we assume a typical iterative processing model with two phases: the
computation phase where every process performs independent calculations, and the
communication phase where the processes exchange the results, in our case, using all-
reduce collective operation. These two phases are combined into an iteration, which
is repeated sequentially during the processing. We assume that the whole program
execution consists of N iterations.

Normally, during a computation phase, the message communication between pro-
cesses/nodes is suspended. Nevertheless, each process can contain many threads
carrying on the parallel computations exploiting shared memory for synchronization
and data exchange. Thus, during this phase the communication network connecting
nodes is unused and can be utilized for exchange of additional messages, containing

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

J. Proficz

Fig. 3 Iterative processing model (solid lines), extended by progress monitoring (dashed lines)

information about a progress of computations or other useful events (e.g., a failure
detection).

Thus, we introduce an additional thread which is responsible for internode com-
munication during computation phase. It monitors the progress of the phase on its
node, estimates the remaining computation time and exchanges this knowledge with
other processes on the cooperating nodes. Gathering this information, every thread can
approximate a process arrival pattern (PAP) for itself and other processes (see Fig. 3).

For monitoring purposes, the computation threads need to pass the status of current
iteration processing calling a special function: edge().We assume that for all processes
this call is made after a defined part of performed computations, e.g., 50%, while the
exact value is passed as the function parameter. In our implementation, the edge()
function is executed in somekind of callback function, reporting a status of the iteration
progress.

Beside the PAP monitoring and estimation functions, the additional thread can be
used for other purposes. In our case, the proposed all-reduce algorithms, described in
Sect. 4, are working much better (performing faster message exchange) when con-
nections between the communicating processes/nodes are already established; thus,
we introduced an additional warm-up procedure where a series of messages are trans-
ferred in the foreseen directions of communication. This operation is performed by
the thread after the exchange of the progress data.

Furthermore, the analysis of the above requirements implemented in the additional
thread shows that the thread should react accordingly to the following events (see
Fig. 4):

– the beginning of processing, when the thread is informed about the computation
phase start and when it stores the timestamp for the further time estimation,

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Improving all-reduce collective operations for…

Fig. 4 Events and actions performed in the additional thread

– the edge, in the middle of processing, when the thread estimates the ongoing
computation phase time for its process, exchanges this information with other
processes and performs the warm-up procedure for establishing connections to
speed up the message transfer in the coming collective operation,

– the finish of processing, when the thread is informed about the end of the compu-
tation phase and when it stores the timestamp for the further time estimations.

4 New all-reduce algorithms optimized for PAPs

In this section, we introduce two new algorithms for all-reduce operations, optimized
for a PAP observed during the computation phase: (i) sorted linear tree (SLT) and
(ii) pre-reduced ring (PRR). Both of them are based on the well-known and widely
used regular all-reduce algorithms: linear tree [4] and ring [20], respectively, and have
similar communication and time complexity.

4.1 Sorted linear tree (SLT)

The algorithm is an extension of the linear tree [4], which transfers the data segments
sequentially through processes exploiting the pipeline parallel computation model.
The proposed modification causes the processes to be sorted by their arrival times.
While the faster processes start the communication earlier, the later ones have more
time to finish the computations.

Figure 5 presents pseudo-code of the algorithm. At the beginning, new identifiers
are assigned to the processes according to the arrival order; then, the data are split
into equal segments, in our case we assume P segments, where P is a number of
the cooperating processes. Afterwards the reduce loop is started (lines: 1–6), where
the data segments are transferred and reduced, and then the override loop is executed
(lines: 7–12), where the segments are distributed back to all processes.

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

J. Proficz

Fig. 5 Pseudo-code of the sorted linear tree (SLT) algorithm

Let’s assume τ is a time period required for transfer and reduction/overriding of
one data segment between any two processes. Figure 6b presents an example of SLT
execution, where the process 0 arrival time is delayed for 4τ in comparison with all
other processes. Using the regular linear tree reduction, the total time of the execution
would be 14τ (see Fig. 6a), while the knowledge of the PAP and procedure of sorting
the processes by their arrival times make the delayed process to be the last one in the
pipeline and cause the whole operation time to be decreased to 12τ .

4.2 Pre-reduced ring (PRR)

This algorithm is an extended version of ring [20], where each data segment is reduced
and then passed to other processes in synchronous manner. The idea of the algorithm
is to perform a number of so-called, reducing pre-steps, between faster processes (with
lower arrival times), and then the regular processing, like in the typical ring algorithm,
is performed.

Figure 7 presents pseudo-code of the algorithm. First of all, the processes are sorted
by their arrival times and the new ids are assigned, i.e., initially the processes perform
communication in direction from the earliest to the latest ones. Then, data are split into
P equal segments and for each such a segment the number of pre-steps is calculated

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Improving all-reduce collective operations for…

(a)

(b)

Fig. 6 Example of a linear tree and b sorted linear tree (SLT) algorithm executions, showing data distribu-
tion between the processes (one square corresponds to one data segment), where process #0 is delayed by
4τ , a solid arrow represents send and reduce a data segment, an empty arrow represents send and override
a data segment, and τ is the time of transfer and reduction/overriding of a data segment

(lines: 1–6), its value depending directly on the estimated process arrival times (PATs):
ai and the time of transfer and reduction/overriding of one segment: τ . Knowing the
above, the algorithm resolves where each segment starts and finishes its processing;
thus, two process ids are assigned for each segment: spi and rpi , respectively (lines:
7–13).

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

J. Proficz

Fig. 7 Pseudo-code of the pre-reduced ring (PRR) algorithm

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Improving all-reduce collective operations for…

Afterwards, initial value of the segment index: si is calculated from which every
process starts processing. In the case of the regular ring algorithm, its value depends
on the process id only; however, for PRR it also regards the pre-steps performed by
the involved processes (line: 14). Then, the reduce loop is started, the pre-steps and
the regular steps are performed in one block, where the variable si controls which
segments are sent, received and reduced (lines: 15–21). Similarly, the override loop is
performed, being controlled by the same variable (lines: 22–27).

In the regular ring, every process performs 2P − 2 receive and send operations;
thus, total number is P × (2P − 2). In case of PRR, this total number is the same;
however, the faster processes (the ones which finished computation earlier) tend to
perform more communication while executing the pre-steps. In the case, when the
arrival of the last process is largely delayed to the next one (i.e., more than P × τ)
it performs only P − 1 send and receive operations, while every other process does
2P − 1 ones.

Figure 8b presents an example of PRR execution, where the process 0 arrival time
is delayed for 2τ (2× time of transfer and reduction/overriding of one data segment) in
comparison with all other processes. Using the regular ring reduction, the total time of
the execution would be 8τ (see Fig. 8b), while the knowledge of the PAP, performing
two additional reduction pre-steps and setting the delayed process to be the last one
in the pipeline, causes the whole operation time to be reduced to 7τ .

5 The experiments

The above algorithms were implemented and tested in a real HPC environment, the
following subsections describe a proposed benchmark (including its pseudo-code and
implementation details), the experiment’s setup and provide the discussion about the
observed results.

5.1 The benchmark

Figure 9 presents pseudo-code of the proposed benchmark evaluating the performance
of the proposed algorithms in the real HPC environment usingMPI [6] for communica-
tion purposes. For every execution, there is a sequence of repeated iterations consisting
of the following actions:

line 2: data generation, where the data are randomly assigned,
line 3: calculation of the emulated computation time, ensuring that the progress

monitoring communication (the additional 100ms) is completely cov-
ered by the computation phase,

lines 4–8: the delay mode is applied, in ‘one-late’ mode only one process (id: 1)
is delayed for maxDelay, while in ‘rand-late’ mode all processes are
delayed for random time up to maxDelay,

lines 9–10: two MPI_Barrier() calls, making sure all the processes are synchro-
nized,

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

J. Proficz

(a)

(b)

Fig. 8 Example of a ring and b pre-reduced ring (PRR) algorithm executions, showing data distribution
between the processes (one square corresponds to one data segment), where process #0 is delayed by 2τ , a
solid arrow represents send and reduce a data segment, an empty arrow represents send and override a data
segment, and τ is the time of transfer and reduction/overriding of a data segment

lines 11–13: the emulation of computation phase by using sleep() (usleep() in the
implementation) function, including call to edge() function (see Sect. 3),
providing the progress status to the underlying monitoring thread,

lines 14–16: call to the all-reduce algorithm implementation, including the com-
mands for the time measurements, for the benchmark purposes we
assumed sum as the reduce operator,

line 17: checking the correctness of the performed all-reduce operation, using
regular MPI_Allreduce() function,

lines 18–19: calculation of the elapsed time for the current and for all processes using
MPI_Allgather() function,

line 20: saving the average elapsed time into the results vector.

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Improving all-reduce collective operations for…

Fig. 9 Pseudo-code of the performance benchmark

For the comparison purposes, we used two typical all-reduce algorithms: ring [20]
and Rabenseifner [19], they are implemented in the twomost popular open sourceMPI
implementations: OpenMPI [4] and MPICH [3], respectively, and used for large input
data size. To the best knowledge of the author, there are no PAP optimized all-reduce
algorithms described in the literature.

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

J. Proficz

The benchmark was implemented in C language v. C99, compiled using GCC
v. 7.1.0, with the maximal code optimization (-O3). The program uses OpenMPI
v. 2.1.1 for processes/nodes message exchange and POSIX Threads v. 2.12 for intra-
node communication and synchronization; moreover, for managing of dynamic data
structuresGLibc v. 2.0 librarywas used. In this implementation, the reduce operation is
based on a sum [equivalent of usingMPI_SUM for op parameter inMPI_Allreduce()].

5.2 Environment and test setup

The benchmark was executed in a real HPC environment using cluster supercomputer
Tryton, placed in Centre of Informatics – Tricity Academic Supercomputer and Net-
worK (CI TASK) at Gdansk University of Technology in Poland [14]. The cluster
consists of homogeneous nodes, where each node contains 2 processors (Intel Xeon
Processor E5 v3, 2.3 GHz, Haswell), with 12 physical cores (24 logical ones, due to
hyperthreading technology) and 128GB RAM memory. In total, the supercomputer
consists of 40 racks with 1600 servers (nodes), 3200 processors, 38,400 compute
cores, 48 accelerators and 202TB RAMmemory. It uses fast FDR 56Gbps InfiniBand
in fat tree topology and 1Gbps Ethernet for networking. Total computing power is
1.48PFLOPS. The cluster weighs over 20 metric tons.

The experiments were performed using a subset of the nodes, with HT switched
off, grouped in one rack and connected to each other trough a 1Gbps Ethernet switch
(HP J9728A 2920-48G). The benchmark input parameters were set up to the following
values:

algorithm: ring, Rabenseifner, pre-reduced ring (PRR) and sorted linear tree (SLT);
size: (of data vector) 128, 512K, 1, 2, 4, 8M of floats (4 bytes long);
mode: (of process delay) one-late (where only one process is delayed by

maxDelay) and rand-late (where all processes are delayed randomly
up to maxDelay);

maxDelay: (of processes arrival times) 0, 1, 5, 10, 50, 100, 500, 1000ms;
P: (number of processes/nodes) 4, 6, 8, 10, 12, 16, 20, 24, 28, 32, 36, 40,

44, 48;
N : (number of iterations) 64–256, depending on maxDelay (more for

lower delay).

5.3 Benchmark results

Table 3 presents the results of the benchmark execution for 1M of floats of reduced
data, 1Gbps Ethernet network, where only one process was delayed on 48 nodes in
a cluster environment of Tryton [14] HPC computer. The results are presented as
absolute values of average elapsed time: ēalg and speedup: salg, in comparison with

ring algorithm salg = ēring
ēalg

, where alg is the evaluated algorithm.
In this setup, the ring algorithm seems to be more efficient than the Rabenseifner;

thus, in further analysis we use the former for reference purposes. For more balanced
PAPs, where the delay is below 5ms the proposed algorithms perform worse than the

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Improving all-reduce collective operations for…

Table 3 Benchmark results for 1M of floats of reduced data, 1Gbps Ethernet network, only one process
delayed and 48 processes/nodes

Algorithm↓ Max delay→
0 1 5 10 50 100 500 1000

Ring 67.8 67.6 70.1 75.6 115.9 165.5 558.6 1047.0

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Rabenseifner 76.3 75.9 82.9 85.7 125.0 181.6 572.0 1061.8

0.89 0.89 0.85 0.88 0.93 0.91 0.98 0.99

SLT 90.3 90.3 89.7 89.7 101.0 149.8 542.1 1031.9

0.75 0.75 0.78 0.84 1.15 1.10 1.03 1.01

PRR 70.9 70.8 71.1 73.0 101.0 149.7 541.7 1031.5

0.96 0.95 0.99 1.04 1.15 1.11 1.03 1.01

Maximum delay is measured in ms, and each result consists of two values: the average elapsed times in ms

and speedup in comparison with the ring algorithm (
ēr ing
ēalg

)

The bold values indicate better performance in comparison with the ring algorithm

ring, it is especially visible for SLT (about 25% slower); however, PRR shows only
slight difference (below 5%). On the other hand, when the PAP is more imbalanced
with the delay over 10ms, both algorithms perform much better (up to 15% faster
than the ring). For the really high delays, the results stabilize providing about 17ms of
average elapsed time savings, causing the total speedup to be lower. The comparison
of influence of changes in the (maximum) delay on the algorithms’ performance is
presented in Fig. 10.

Table 4 presents the benchmark results related to PRR in comparison with the
ring algorithm, executed on 48 nodes with 1Gbps Ethernet interconnecting network.
While the absolute average elapsed time savings of PRR algorithm are higher for
longer messages (up to 82ms for 8M), the high speedup values occur for all message
sizes providing relative savings up to 15%.We can observe that the lower delays cause
lager speedup losses (up to 22%, but for absolute time: 1.5ms only),which is especially
visible for the smallest message size: 128K. In general, for the lower delays, the PRR
is comparable with the ring (see Fig. 10 for 1M of float numbers reduced data size).

The mode of the introduced PAT delay influences slightly the measured values. For
larger delays and message sizes, when only one process is delayed the PRR algorithm
provides slightly smaller relative savings than in the case when the delays were intro-
duced for all processes, with the uniform probabilistic distribution, it is especially
visible for 500–1000ms delays and message sizes of 2–8M of floats. However, in
general, the PRR works fine for both modes of PAT delay.

Figure 11 presents the behavior of the tested algorithms in a context of the changing
data size. While the PRR algorithm performs well for a wide range of size values, the
SLT lags for the larger data, the threshold depends on the (maximum) delay, e.g., for
50ms the SLT is worse than the regular ring for 4+M of float numbers data size.

Figure 12 shows the tested algorithms performance related to the increase in the
number of the nodes/processes exchanging reduced data. For 32 nodes, we observed
interesting behavior of the Rabenseifner algorithm, which was designed for power of 2

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

J. Proficz

100 101 102

Max. delay [ms]

0

20

40

60

80

100

120

140

160

180

200

A
ve

ra
ge

 e
la

ps
ed

 ti
m

e
[m

s]

Ring
PRR
SLT
Rabenseifner

Fig. 10 Benchmark results showing influence of the increasing maximum delay on average elapsed times
of the tested algorithms. The experiments were performed on 48 nodes for 1Gbps Ethernet network, one
process delayed, and message size: 1024K of float numbers. The error bars are set to ± 2σ (95% of the
measurements for the normal distribution)

0 1 2 3 4 5 6 7 8 9
Data size [float] 106

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
ve

ra
ge

 e
la

ps
ed

 ti
m

e
[s

]

Ring
PRR
SLT
Rabenseifner

Fig. 11 Benchmark results showing the algorithms’ behavior related to the reduced data size. The experi-
ments were performed on 48 nodes for 1Gbps Ethernet network, one process delayed, and the (maximum)
delay equals 50ms. The error bars are set to ± 2σ (95% of the measurements for the normal distribution)

node/process numbers. Both the PRR and SLT algorithms present stable speedup over
the regular ring algorithm, proving good usability and high scalability for imbalanced
PAPs.

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Improving all-reduce collective operations for…

Table 4 Comparison of ring and PRR algorithms for 1Gbps Ethernet and 48 processes/nodes

Size↓ Max delay→
0 1 5 10 50 100 500 1000

Only one process delayed

128 1.0 1.5 − 5.0 − 4.1 − 4.3 − 3.2 − 0.9 − 0.8

0.85 0.78 1.53 1.26 1.08 1.03 1.00 1.00

512 − 1.0 − 0.3 − 10.3 − 12.6 − 16.4 − 11.6 − 1.5 − 1.7

1.04 1.01 1.37 1.41 1.26 1.10 1.00 1.00

1024 2.9 3.7 1.2 − 3.2 − 14.1 − 15.2 − 15.8 − 16.0

0.96 0.95 0.98 1.04 1.14 1.10 1.03 1.02

2048 7.8 6.4 3.4 − 1.7 − 8.5 − 23.9 − 27.1 − 27.7

0.93 0.94 0.97 1.02 1.06 1.13 1.05 1.03

4096 7.6 6.0 5.2 2.8 − 20.9 − 29.6 − 38.1 − 46.8

0.96 0.97 0.97 0.99 1.10 1.12 1.06 1.04

8192 5.8 17.0 13.7 11.7 − 29.0 − 52.1 − 75.7 − 82.1

0.98 0.95 0.96 0.97 1.08 1.14 1.10 1.07

All processes delayed randomly

128 1.2 1.0 − 1.1 − 1.1 − 2.7 − 1.0 − 0.9 − 1.3

0.82 0.85 1.11 1.09 1.09 1.02 1.00 1.00

512 2.3 − 0.3 − 9.5 − 9.3 − 16.3 − 11.5 − 2.3 − 2.9

0.91 1.01 1.37 1.35 1.38 1.18 1.01 1.01

1024 2.9 3.8 1.7 0.7 − 13.0 − 13.2 − 14.1 − 14.5

0.96 0.95 0.98 0.99 1.17 1.13 1.05 1.03

2048 7.1 8.3 4.8 3.0 − 8.8 − 21.2 − 23.9 − 24.5

0.94 0.92 0.96 0.97 1.08 1.16 1.07 1.04

4096 6.1 0.1 3.2 5.6 − 21.8 − 19.0 − 42.6 − 39.8

0.97 1.00 0.98 0.97 1.11 1.09 1.11 1.06

8192 13.8 16.3 6.8 7.1 0.4 − 34.4 − 75.9 − 75.1

0.96 0.95 0.98 0.98 1.00 1.10 1.15 1.10

Maximum delay is measured in ms and size in Kfloats (4×KB). Each entry consists of two values: a
difference of the average elapsed times in ms (ēPRR − ēring) and speedup: a quotient of elapsed times

(
ēring
ēPRR

)
The bold values indicate better performance in comparison with the ring algorithm

6 All-reduce PAP optimization for training of a deep neural network

In this section, we present a practical application of the proposed method for a deep
learning iterative procedure, implemented using tiny-dnn open-source library [7]. The
example is focused on training of a convolutional neural network to classify graphical
images (photos).

For the experiments, we used a training dataset usually utilized for benchmarking
purposes: CIFAR-10 [1], it contains 60,000 32×32 color images grouped in 10 classes.

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

J. Proficz

0 5 10 15 20 25 30 35 40 45 50
Process/node number

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

A
ve

ra
ge

 e
la

ps
ed

 ti
m

e
[s

]

Ring
PRR
SLT
Rabenseifner

Fig. 12 Benchmark scalability results for 1 Gbps Ethernet network, one process delayed for 100ms, 1M of
float numbers data size. The error bars are set to± 2σ (95% of themeasurements for the normal distribution)

There are 50,000 training images, exactly 5000 images per class. The other 10,000 test
images are used to evaluate training results. In our example, we assess the performance
of the distributed processing, especially collective communication; thus, we did not
need to use the test set.

We test the network architecture 8 layers: 3 convolutional, 3 average pooling, and
2 fully connected ones; the whole model has 145,578 parameters of float size. Each
process trains such a network, and after each training iteration, it is averaged over the
other processes, a similar procedure was described in [9], with the distinction in using
a separated parameter server. The mini-batch size was set to 8 images per node, what
gives 390 iterations in total.

The training program was implemented in C++ language (v. C++11) using tiny-
dnn library [7]. It was chosen because it is very lightweight: header only, easy
to install, dependency-free and has an open-source license: BSD 3-Clause. The
above features made it easy to introduce the required modification: a callback func-
tion for each neural network layer, called during the distributed stochastic gradient
descent (SGD [9]) training. The function is used for progress monitoring, where the
edge() function (see Sect. 3) is called just before the last layer is processed, which
takes about 44% of computation time of the iteration. Additionally, the computa-
tion part of each iteration is performed in parallel, using POSIX threads [5] executed
on available (24) cores (provided by two processors with hyperthreading switched
off).

We tested 3 all-reduce algorithms: ring, sorted linear tree (SLT) and pre-reduced
ring (PRR). The PAP framework, including estimation of computation time andwarm-
up, was initiated only for the latter two. The benchmark was executed 128 times for
each algorithm, and each execution consists of 390 training iterations with all-reduce

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Improving all-reduce collective operations for…

Table 5 Times and speedup of Cifar10 [1] benchmark execution

Algorithm All-reduce average elapsed time All-reduce speedup Training total time Training speedup

Ring 35.7 1.000 81,900 1.000

SLT 33.1 1.079 78,768 1.040

PRR 31.9 1.121 78,604 1.042

The times are presented in ms, and the speedup is calculated in comparison with a ring algorithm imple-
mentation

function calls. The tests were executed in an HPC cluster environment, consisting
of 16 nodes with 1Gbps Ethernet interconnecting network. (The configuration is
described in Sect. 5.2.)

The results of the benchmark are presented in Table 5. The PRR has the lowest time
of communication: 31.9ms (average elapsed time of all-reduce) as well as the total
time of training: 78.6 s, SLT is slightly worse having 33.1ms and 78.8 s, respectively.
These algorithms were compared to a typical ring [20] implementation, where the
average elapsed time equals 35.7ms and the total training took 81.9 s. In context of
the average elapsed time, the PRR and SLT algorithms are faster for 12.1 and 7.9%,
while for the training total time 4.2 and 4.0%, respectively.

The above results seem to be just a slight improvement, however in the current,
massive processing systems, e.g., neural networks, which are trained using thousands
of compute nodes, consuming MegaWatts of energy, with budgets of millions of dol-
lars, introducing 4% computing time reduction, without additional resource demand
can provide great cost savings.

7 Final remarks

The proposed algorithms provide optimizations for all-reduce operations executed in
environment of imbalanced PAPs. The experimental results show improved perfor-
mance and good scalability of the proposed solution over currently used algorithms.
The real case example (machine learning using distributed SGD [9]) shows usability
of the prototype implementation with sum as the reducing operation. The solution
can be used in a wide spectrum of applications using iterative computation model,
including many machine learning algorithms.

The future works cover the following topics:

– evaluation of the method for a wider range of interconnecting network speeds and
larger number of nodes using a simulation tool, e.g., [8,18],

– expansion of the method for other collective communication algorithms, e.g., all-
gather,

– a framework for automatic PAP detection and proper algorithm selection, e.g.,
providing a regular ring for balanced PAPs and PRR for imbalanced ones,

– introduction of the presented PAT estimation method for other purposes, e.g.,
asynchronous SDG training [9] or deadlock and race detection in distributed pro-
grams [13],

– deployment of the solution in a production environment.

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

J. Proficz

We believe that the ubiquity of the imbalanced PAPs in HPC environments [11]
will cause a fast development of new solutions related to this subject.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. CIFAR-10 andCIFAR-100 datasets. https://www.cs.toronto.edu/~kriz/cifar.html. Accessed 4 Jan 2018
2. MPI 3.1 collective communication. http://mpi-forum.org/docs/mpi-3.1/mpi31-report/node95.htm.

Accessed 26 Jan 2018
3. MPICH high-performance portable MPI. https://www.mpich.org/. Accessed 7 Sep 2017
4. Open MPI: open source high performance computing. https://www.open-mpi.org/. Accessed 27 Aug

2017
5. POSIX threads programming. https://computing.llnl.gov/tutorials/pthreads/. Accessed 5 Jan 2018
6. The standarization forum for message passing interface (MPI). http://mpi-forum.org/. Accessed 24

Jan 2018
7. Tiny-dnn header only, dependency-free deep learning framework in C++. https://github.com/tiny-dnn/

tiny-dnn. Accessed 4 Jan 2018
8. Czarnul P, Kuchta J, Matuszek M, Proficz J, Rościszewski P, Wójcik M, Szymański J (2017) MERP-

SYS: an environment for simulation of parallel application execution on large scale HPC systems.
Simul Model Pract Theory 77:124–140

9. Dean J, Corrado G, Monga R, Chen K, Devin M, Le QV, Mao M, Ranzato M, Senior A, Tucker
P, Yang K, Ng AY (2012) Large scale distributed deep networks. In: Advances in neural information
processing systems 25: 26th annual conference on neural information processing systems 2012. Curran
Associates, Inc., pp 1223–1231

10. Faraj A, Yuan X, Lowenthal D (2006) STAR-MPI: self tuned adaptive routines for MPI collective
operations. In: Proceedings of the 20th Annual International Conference on Supercomputing, pp 199–
208

11. Faraj A, Patarasuk P, Yuan X (2008) A study of process arrival patterns for MPI collective operations.
Int J Parallel Program 36(6):543–570

12. Hockney RW (1994) The communication challenge for MPP: Intel Paragon and Meiko CS-2. Parallel
Comput 20(3):389–398

13. Krawczyk H, Krysztop B, Proficz J (2000) Suitability of the time controlled environment for race
detection in distributed applications. Future Gener Comput Syst 16(6):625–635

14. Krawczyk H, Nykiel M, Proficz J (2015) Tryton supercomputer capabilities for analysis of massive
data streams. Pol Marit Res 22(3):99–104

15. Marendic P, Lemeire J, Vucinic D, Schelkens P (2016) A novel MPI reduction algorithm resilient to
imbalances in process arrival times. J Supercomput 72:1973–2013

16. Marendić P, Lemeire J, Haber T, Vučinić D, Schelkens P (2012) An investigation into the performance
of reduction algorithms under load imbalance. In: Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol 7484, pp
439–450

17. Patarasuk P, Yuan X (2008) Efficient MPI_Bcast across different process arrival patterns. In: IPDPS
Miami 2008: Proceedings of the 22nd IEEE International Parallel and Distributed Processing Sympo-
sium, Program and CD-ROM, p 1

18. Proficz J, Czarnul P (2016) Performance and power-aware modeling of MPI applications for cluster
computing. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) vol 9574, pp 199–209

19. Rabenseifner R (2004) Optimization of collective reduction operations. In: Lecture Notes in Compu-
tational Science, vol 3036, pp 1–9

20. Thakur R, Rabenseifner R, Gropp W (2005) Optimization of collective communication operations in
MPICH. Int J High Perform Comput Appl 19(1):49–66

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://creativecommons.org/licenses/by/4.0/
https://www.cs.toronto.edu/~kriz/cifar.html
http://mpi-forum.org/docs/mpi-3.1/mpi31-report/node95.htm
https://www.mpich.org/
https://www.open-mpi.org/
https://computing.llnl.gov/tutorials/pthreads/
http://mpi-forum.org/
https://github.com/tiny-dnn/tiny-dnn
https://github.com/tiny-dnn/tiny-dnn
http://mostwiedzy.pl

	Improving all-reduce collective operations for imbalanced process arrival patterns
	Abstract
	1 Introduction
	2 Related works
	2.1 All-reduce operation
	2.2 Imbalanced process arrival times
	2.3 Process arrival time estimation

	3 Computation and communication model
	4 New all-reduce algorithms optimized for PAPs
	4.1 Sorted linear tree (SLT)
	4.2 Pre-reduced ring (PRR)

	5 The experiments
	5.1 The benchmark
	5.2 Environment and test setup
	5.3 Benchmark results

	6 All-reduce PAP optimization for training of a deep neural network
	7 Final remarks
	References

