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Abstract. Obtaining high-quality depth maps and disparity maps with the use of a stereo camera is a challenging
task for some kinds of objects. The quality of these maps can be improved by taking advantage of a larger
number of cameras. The research on the usage of a set of five cameras to obtain disparity maps is presented.
The set consists of a central camera and four side cameras. An algorithm for making disparity maps called
multiple similar areas (MSA) is introduced. The algorithm was specially designed for the set of five cameras.
Experiments were performed with the MSA algorithm and the stereo matching algorithm based on the sum of
sum of squared differences (sum of SSD, SSSD) measure. Moreover, the following measures were included in
the experiments: sum of absolute differences (SAD), zero-mean SAD (ZSAD), zero-mean SSD (ZSSD), locally
scaled SAD (LSAD), locally scaled SSD (LSSD), normalized cross correlation (NCC), and zero-mean NCC
(ZNCC). Algorithms presented were applied to images of plants. Making depth maps of plants is difficult because
parts of leaves are similar to each other. The potential usability of the described algorithms is especially high in
agricultural applications such as robotic fruit harvesting. © The Authors. Published by SPIE under a Creative Commons
Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original
publication, including its DOI. [DOI: 10.1117/1.JEI.24.2.023018]
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1 Introduction
Depth maps can be obtained on the basis of two images from
a stereo camera. The increase in a depth map precision is
often achieved by using more advanced algorithms with
higher computational complexity.1,2 This paper presents
a different approach for improving depth map quality. The
improvement is achieved by taking advantage of a larger
number of cameras.

Determining depth map is particularly difficult in case of
images of plants. Tan et al.3 presented a spectrum of plants
according to a varying leaf size. Making depth maps of plants
is the easiest when plants are small and they have big leaves.
Processing stereo images of trees is the most difficult. It is
caused by the fact that leaves are similar to each other and
they have many areas with the same color. This is problematic
in stereo matching algorithms as there are many areas of one
image that have multiple candidate matches in the other image.
This problem is reduced when a multicamera set is used.

This paper presents an application of a set of five cameras to
making depth maps of plants. The set consists of a central cam-
era and four cameras around it. This kind of camera arrange-
ment was first described by Park and Inoue.4 In order to make
depth maps, they used a matching measure based on the sum
of sum of squared differences (SSSD). This paper describes
the result of applying this depth mapmakingmethod to images
of plants. The paper also presents the application of other
matching measures to the set of cameras described by Park
and Inoue.4 Moreover, this paper introduces the new algorithm
for making depth maps called the multiple similar areas

(MSA) matching algorithm. The algorithm was specially
designed for the set of five cameras described in this paper.

The original contributions of this paper are the following:
(1) The analysis of using a five camera set to obtain depth
maps of a plant on the basis of the SSSD measure and other
measures. (2) The design of the novel MSA algorithm for
making depth maps on the basis of images from a set of multi-
ple cameras. (3) Results of using the MSA algorithm for a set
of plants images. (4) Providing images of plants from a set of
five cameras and ground truth data for these images.

2 Related Work
There is a large variety in the algorithms designed to create
depth maps. Most of the algorithms calculate depth maps on
the basis of images from a two-frame stereo vision system.
Some of these algorithms were applied for making depth
maps of plants. There are also stereo matching algorithms
designed for different kinds of multicamera sets.

2.1 Two-Frame Stereo Vision System
Scharstein and Szeliski2 presented an in-depth analysis of
stereo matching algorithms designed for a pair of cameras.
They created a test bed for a quantitative evaluation of
stereo algorithms. They also implemented these algorithms,
performed experiments, and provided taxonomy of stereo
matching algorithms.

A result of a stereo matching algorithm is either a depth
map or a disparity map. A disparity is the difference between
the location of a viewed object in the first image from a
stereo camera and the location of this object in the other
image. On the basis of a disparity map, a depth map can be
obtained when some additional data are available. These data
include the distance between cameras and the focal length of

*Address all correspondence to: Adam L. Kaczmarek, E-mail: adam.l
.kaczmarek@eti.pg.gda.pl

Journal of Electronic Imaging 023018-1 Mar∕Apr 2015 • Vol. 24(2)

Journal of Electronic Imaging 24(2), 023018 (Mar∕Apr 2015)

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://dx.doi.org/10.1117/1.JEI.24.2.023018
http://dx.doi.org/10.1117/1.JEI.24.2.023018
http://dx.doi.org/10.1117/1.JEI.24.2.023018
http://dx.doi.org/10.1117/1.JEI.24.2.023018
http://dx.doi.org/10.1117/1.JEI.24.2.023018
http://dx.doi.org/10.1117/1.JEI.24.2.023018
mailto:adam.l.kaczmarek@eti.pg.gda.pl
mailto:adam.l.kaczmarek@eti.pg.gda.pl
mailto:adam.l.kaczmarek@eti.pg.gda.pl
mailto:adam.l.kaczmarek@eti.pg.gda.pl
mailto:adam.l.kaczmarek@eti.pg.gda.pl
mailto:adam.l.kaczmarek@eti.pg.gda.pl
http://mostwiedzy.pl


camera lenses.5 There are two main types of methods for
obtaining a depth map: local methods and global ones.1 In
local methods, the disparity of each point is calculated on
the basis of only a part of an image. On the contrary, in global
methods, the disparity of every point depends on the whole
image. This paper is mainly concerned with local methods.
The algorithm based on the SSD function used with the set of
five cameras by Park and Inoue is a kind of a local method.4

The MSA algorithm introduced in this paper is also a local
method.

As far as depth maps of plants are concerned, general pur-
pose stereo matching algorithms can be used to obtain these
maps. Nielsen et al.6 presented experiments of this kind.
In order to make depth maps of plants, the authors applied
an algorithm which used the SSD measure with symmetric
multiple windows.7 Nielsen et al.6 compared making depth
maps of real plants with making depth maps of plants shown
in computer-rendered images. In these images, they imple-
mented a random noise and other modifications to make
rendered plants look more natural.

Chn et al.8 applied Microsoft Kinect camera to make
depth maps of plant leaves. Chn et al.8 explained that their
motivations for the choice of this camera were small size,
low weight, and low cost. In their paper, they focused on
the problem of plant phenotyping and proposed an algorithm
for segmentation of leaves from a depth image.

Depth maps are also created in order to make three-
dimensional (3-D) models of plants. Biskup et al.9 presented
research in which they performed a 3-D reconstruction of
plants’ canopies on the basis of images from a stereo cam-
era.9 A 3-D reconstruction of plants can be also performed
without making depth maps. It can be achieved by taking
images of a plant from different overlapping views around
this plant. As a result of this process, a model of the viewed
object can be obtained. This kind of model is called a struc-
ture from motion. Structures from motion of plants were
acquired by Quan et al.10 and Tan et al.3 Quan et al. made
images of small plants in pots. Tan et al. performed experi-
ments with trees.

Another area of technology where depth maps of plants
are calculated is robotic fruit harvesting. In order to pick up a
fruit, a harvesting robot needs to determine the location of
this fruit and the distance to it. This can be achieved by mak-
ing a depth map. Designers of harvesting robots most usually
do not design new methods for measuring distance, but they
take advantage of already existing ones. For example, they
use the Point Grey BumbleBee2 binocular camera.11,12 It is
a commercial camera which makes it possible to acquire a
depth map of viewed objects similarly to Microsoft Kinect.

2.2 Multicamera Vision Systems
Depth maps of various objects can be made on the basis of
images from many cameras. Making a depth map with the
use of three cameras is called trinocular stereovision.13 Three
cameras can be placed in different locations. Many research
papers are concerned with a right angled configuration where
there is the base camera, a camera located at a side of the base
one and a third camera located above or below a base camera.
Agrawal and Davis13 proposed an algorithm that computes
a disparity by finding in the images a path with the least
matching cost. The algorithm is based on dynamic program-
ming. Williamson and Thorpe14 presented a trinocular stereo

algorithm for the Highway Obstacle Detection system. The
algorithm was designed to detect small objects on roads at
a long range. Authors used the SSSD-in-inverse-distance
matching algorithm.5 The SSSD-in-inverse-distance match-
ing algorithm is a popular algorithm used for obtaining depth
maps on the basis of images from a set of multiple cameras.
This algorithm can be applied to various camera configura-
tions including trinocular stereovision. This algorithm is
further described in Sec. 4.2 of this paper.

Depth maps are also prepared using images from arrays of
cameras. A camera array is a set of many cameras located
either on the same plane or on the same sphere.15,16 Matusik
and Pfister15 presented a camera array which consists of 16
regularly spaced cameras located along the horizontal line.
They used these arrangement for making 3-D TV scenes
with moving objects. Wilburn et al.16 from Stanford Univer-
sity presented the biggest camera array described in research
papers. Their array consists of 100 cameras. These cameras
were used for high-speed video capture. The authors ana-
lyzed various camera arrangements, e.g., 8 rows with 12
cameras in a row.

Park and Inoue4 proposed obtaining depth maps with the
use of a set of five cameras. This kind of a set was used in the
research presented in this paper. In this solution, there is
a central camera and four side cameras. Side cameras create
with a central camera a set of four stereo cameras. Park and
Inoue4 made depth maps on the basis of a modified version
of the SSSD function. The arrangement of five cameras is
described in detail in Sec. 3 of this paper. The algorithm pro-
posed by Park and Inoue4 is described in Sec. 4.2.

A similar arrangement of cameras was applied by Hensler
et al.17 However, they used four cameras to make depth
maps. There were a central camera and three side cameras.
Distances between side cameras and the central one were the
same for all side cameras. Hensler et al.17 made depth maps
on the basis of all pairs of cameras included in the set. Thus,
also pairs consisting of two side cameras were taken into
account. Hensler et al.17 used this set to make depth maps
of faces.

2.3 Determining Distance Without Stereo Cameras
Depth maps can be also obtained by other methods than
those that use stereo cameras. Instead of a stereo camera, a
structured-light 3-D scanner can be used.18 This kind of scan-
ner emits bands of light and it records the distortion of light
on a viewed object. Moreover, there are time of flight (TOF)
cameras which also emits light to measure the distance.19

However, the major disadvantage of making depth maps
of plants with the use of structured-light 3-D scanners and
TOF cameras is such that the performance of these devices
deteriorates when a viewed object is located in intensive
natural light. Plants in a field are exposed to this kind of
light. A distance to an object can also be measured by
lasers.20 This method is very precise, but a single measure-
ment with a laser specifies a distance to only one particular
point. In order to obtain a depth map of an object, a series of
measurements needs to be performed. A distance can also be
estimated by analyzing the size of objects in an image.21 This
requires predefining a set of objects and their sizes. It also
requires that a depth map making algorithm can recognize
these objects in an image.
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2.4 Related Work Summary
In general, there are many works concerned with making
depth maps with multiple vision systems and there are
some works on making depth maps of plants with the use of
a single stereo camera. However, apart from the work by
Nielsen6 and structure from motion systems,3,10 there are no
significant works on applying multiple vision systems to
making depth maps of plants. This paper addresses this
research area.

3 Five-Cameras Set
The arrangement of five cameras used in this paper is the
same as the arrangement proposed by Park and Inoue.4

Axes of all five cameras are parallel to each other. There is
a central camera and four side cameras. Side cameras are
located above, below, and at both sides of the central camera.
Thus, there is a central (No. 0), right (No. 1), down (No. 2),
left (No. 3), and up (No. 4) camera. The distance between
every side camera and the central one is the same. Let I
denote an image and the index of I denote the camera that
made the image (I0 is the image made by the central camera).
Figure 1 presents the layout of images acquired with the use
of this set of cameras.

Figure 1 also shows point P which represents an object
visible by every camera in the set. The location of this point
is different in every image. The point is shifted depending on
the location of the cameras. Figure 1 shows the coordinates
of the point P in every cameras’ views. In the central image,
the point P is located at coordinates ðxp; ypÞ. In every side
image, the point P is shifted by the d value, however, the
shift occurs in different directions. The value of shift is the
same in all side images, because the distance between every
side camera and the central camera is the same.

A standard coordinates system for digital images is used
with coordinates (0,0) located at the left up corner of the
image. Images made with the camera arrangement presented
in this section are input data to stereo matching algorithms
presented further in this paper. In these algorithms, there is
an assumption that input images were calibrated and recti-
fied.22,23 Experiments presented in this paper are also con-
cerned with a set of calibrated and rectified images.

4 Matching Cost Functions
Algorithms designed to obtain depth maps take advantage of
matching cost functions, which measure the level of similar-
ity between a part of an image and a part of another image.
Matching cost functions used for sets of multiple cameras are
derived from cost functions used for a pair of cameras.
Different functions can be applied to obtain depth maps
with the use of the set of five cameras.

4.1 Matching Cost Functions for a Stereo Camera
In algorithms for making depth maps, the most commonly
used matching cost functions are sum of absolute differences
(SAD) and sum of squared differences (SSD).1,2 However,
other functions are also used, including the following: zero-
mean sum of absolute differences (ZSAD), locally scaled sum
of absolute differences (LSAD), zero-mean sum of squared
differences (ZSSD), locally scaled sum of squared differences
(LSSD), normalized cross correlation (NCC), zero-mean nor-
malized cross correlation (ZNCC).24 Equations (1)–(8) present
equations of these functions.

The equations refer to calculations made on a pair of
monochromatic images taken with the use of two cameras
from the set of five cameras presented in Fig. 1. Equations
are valid for pairs of images which consist of an image I0
from the central camera and an image Ii from the side camera
i. The central image is the reference one, i.e., points of
a depth map corresponds to points of this image. Matching
cost functions compare parts of images specified by an
aggregating window W.

ESAD;iðp; dÞ ¼
X
b∈W

jI0ðpþ bÞ − Iiðpþ bþ diÞj; (1)

ESSD;iðp; dÞ ¼
X
b∈W

½I0ðpþ bÞ − Iiðpþ bþ diÞ�2; (2)

EZSAD;iðp; dÞ ¼
X
b∈W

jI0ðpþ bÞ − I0ðWÞ

− ½Iiðpþ bþ diÞ − IiðW; diÞ�j; (3)

EZSSD;iðp; dÞ ¼
X
b∈W

fI0ðpþ bÞ − I0ðWÞ

− ½Iiðpþ bþ diÞ − IiðW; diÞ�g2; (4)

ELSAD;iðp; dÞ ¼
X
b∈W

����I0ðpþ bÞ − I0ðWÞ
IiðW; diÞ

Iiðpþ bþ diÞ
����;
(5)

ELSSD;iðp;dÞ ¼
X
b∈W

�
I0ðpþ bÞ− I0ðWÞ

IiðW;diÞ
Iiðpþ bþ diÞ

�2
;

(6)

I3 I0 I1

P(xp,yp+d)

P(xp,yp)

P(xp,yp-d)

P(xp-d,yp)P(xp+d,yp)

I4

I2

Fig. 1 The arrangement of five cameras used in this paper.
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ENCC;iðp; dÞ ¼
P

b∈W½I0ðpþ bÞ · Iiðpþ bþ diÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
b∈W

½I0ðpþ bÞ2� · P
b∈W

½Iiðpþ bþ diÞ2�
r ;

(7)

EZNCC;iðp; dÞ ¼
P

b∈WðJ0 · JiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
b∈W

J20 ·
P
b∈W

J2i
r

J0 ¼ I0ðpþ bÞ − I0ðWÞ
Ji ¼ Iiðpþ bþ diÞ − IiðW;diÞ; (8)

where p is the location of a point, d is the disparity, I is the
function that returns the intensity of a point in a monochro-
matic image, W is the aggregating window, and Ī is the
average value of points included in the aggregating window
located with regard to the disparity di.

Matching cost functions are calculated for a disparity d.
Equations (1)–(8) contain a disparity in the form of a vector
di such that di ¼ jdj. Values of these vectors refer to the
location of the i’th camera in the set of five cameras. Thus,
d1 ¼ ðd; 0Þ, d2 ¼ ð0; dÞ, d3 ¼ ð−d; 0Þ, and d4 ¼ ð0;−dÞ.
The stereo matching algorithms based on these functions
calculate their results for a range of disparities jdj ∈
½dmin; dmax�. For Eq. (1)–(6), the matching algorithm selects
the disparity for which the result of a matching cost function
is the lowest. This disparity is included in the disparity map
created as a result of the algorithm. In the case of algorithms
using Eqs. (7) and (8), the disparity for which the result of
the function is the greatest is selected to a disparity map.

4.2 Matching Cost Functions for a Set of Multiple
Cameras

One of matching functions used for making depth maps on
the basis of images from a set of multiple cameras is SSSD.4,5

This measure can be used with various cameras’ arrange-
ments. In the research presented in this paper, SSSD is
applied to a set of five cameras described in Sec. 3. Park and
Inoue,4 who took advantage of the same kind of a camera
arrangement, also used the matching measure based on
SSSD.

The SSSD function is a sum of SSD functions. SSSD is
often used with an array of cameras placed along a horizontal
line when optical axes of cameras are perpendicular to this
line. When the number of cameras in such an array is equal to
n, the array is regarded as a set of n − 1 pairs of cameras.
Each pair consists of a reference camera C0 and some Cj
where 1 ≤ j ≤ n. The numeration of cameras in an array
is such that a camera with the number 0 is located the farthest
to the left from the point of view behind a camera array.
Subsequent cameras are denoted with consecutive natural
numbers.

A camera array is a kind of a multiple baseline stereo
vision system.5 The distance between a reference camera
and a matching camera is different for every pair of cameras.
Therefore, values of disparities are different for the same
object visible in different pairs of cameras. For this reason,
Okutomi and Kanade5 proposed the SSSD-in-inverse-dis-
tance function. This function is calculated with respect to
the ζ value that is the inverse of the distance to the viewed

point. The value of the inverse distance is the same in all
pairs of cameras. The SSSD-in-inverse-distance function
is presented in Eq. (9):

SSSDðp; ζÞ ¼
X
1≤j≤n

X
b∈W

½I0ðpþ bÞ − Ijðpþ bþ BjFζÞ�2;

(9)

where ζ is the inverse distance, Ij denotes the intensity of a
point in the image from the camera Cj, F is the focal length
of a camera, and Bj is the baseline referring to the distance
between the camera C0 and the camera Cj.

In the case of a five camera set presented in this paper,
there is no need to use the inverse distance as an argument
instead of a disparity, because distances between cameras are
the same in all pairs of cameras. The application of the SSSD
function to a set of five cameras is presented in Eq. (10):

SSSDðp; dÞ ¼
X
1≤i≤4

ESSD;iðp; dÞ. (10)

Apart from the function SSSD, this paper also considers
other matching cost functions. The application of these func-
tions to the set of five cameras is one of the novelties intro-
duced in this paper. The function SSSD derives from the
function SSD by summing the results of the function SSD
for four pairs of cameras in the set. Similarly, other matching
cost functions for two cameras can be generalized to the set
of five cameras. The matching cost function for the set of five
cameras is equal to the sum of matching functions for every
pair of images consisting of an image from the central cam-
era and an image from the side camera. The central image is
the reference one in every pair. The general matching cost
function for the set of five cameras is presented in Eq. (11):

SEFðp; dÞ ¼
X
1≤i≤4

EF;iðp; dÞ; (11)

where the index F refers to one of the matching functions for
two images presented in Eqs. (1)–(8).

Equations (10) and (11) can be also used when fewer than
four pairs of images are taken into account. In such cases,
results of functions EF;i are always equal to 0 for the camera
i which is not included in calculations.

5 MSA Matching Algorithm
This section introduces a novel algorithm which has been
developed by the author of this paper. The algorithm has
been called MSA matching algorithm.

5.1 MSA Algorithm for a Pair of Cameras
Let us first suppose that there is only one pair of cameras
consisting of a central camera 0 and a right camera 1. The
central image is the reference one. In the MSA algorithm, the
disparity is calculated for every point of an image independ-
ently from other points. Thus, the MSA algorithm is a match-
ing algorithm of a local type.1 In the algorithm, there are
three variables that need to be set before the algorithm is
applied.

dmin—the minimum disparity
dmax—the maximum disparity
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H—the value of the threshold which determines whether
two points have a similar intensity or not.

The algorithm uses a similarity function S. The function
determines if intensities of two points are similar to each
other or not. When the difference in points’ intensities is
not higher than the threshold H, then the result of function
S is equal to 1 and points have a similar intensity. The result
of the function S is equal to 0 otherwise. The function S is
defined by Eq. (12):

Snðx; y; xn; ynÞ ¼
�
1 if jI0ðx; yÞ − Inðxn; ynÞj ≤ H
0 if jI0ðx; yÞ − Inðxn; ynÞj > H

;

(12)

where n is the index of a camera and the expression Inðx; yÞ
denotes the intensity of a point with coordinates ðx; yÞ in
the image In.

Moreover, the MSA algorithm uses the function m. The
function is calculated for disparities d that range from dmin to
dmax and coordinates ðx; yÞ, which values are limited by the
size of images. The result of the functionm for all arguments
out of these boundaries is equal to 0. The function m verifies
if a point located at coordinates ðx; yÞ in the reference image
I0 has a similar intensity as a corresponding point from the
other image I1. Coordinates of a point in the image I1 differ
from coordinates of the point in the image I0 with respect to
the value of disparity. The corresponding point is located at
coordinates (x − d, y). The function m for images from cam-
eras 0 and 1 is presented in Eq. (13):

mRðx; y; dÞ ¼ S1ðx; y; x − d; yÞ: (13)

Most often, there will be many values of disparities for
which the result of the function m will be equal to 1, there-
fore, there will be a match with a corresponding point that
has a similar intensity. There will also be a sequence of dis-
parities for which there will be this kind of a match. The next
function used in the MSA algorithm which is denoted by u
addresses the issue of such sequences. The function u spec-
ifies a range of possible changes in the disparity value for
which a point from the reference image I0 has a similar inten-
sity as a corresponding point from the image I1, i.e., the
result of the function m is equal to 1.

Let us suppose that there is a point ðx; yÞ and a disparity d
for which m1ðx; y; dÞ ¼ 1. The function u depends on a
maximum value of T ∈ N for which all values of
m1ðx; y; dþ tÞ are equal to 1 for −T ≤ t ≤ T, t ∈ Z. The
fact that the value of T is maximum implicates that either
m1ðx; y; dþ T þ 1Þ ¼ 0 or m1ðx; y; d − T − 1Þ ¼ 0. The
function u is also specified for a point ðx; yÞ and disparity
d such thatm1ðx; y; dÞ ¼ 0. In this case, the result of function
u is equal to 0. The definition of the function u is presented in
Eq. (14):

uðx; y; dÞ ¼
�
0 if m1ðx; y; dÞ ¼ 0

T þ 1 if m1ðx; y; dÞ ¼ 1
; (14)

where T is equal to the value which satisfies the conditions
presented in Eq. (15).

∀
−T≤t≤T

m1ðx; y; dþ tÞ ¼ 1 ∧

∃
t¼−ðTþ1Þ∨

t¼Tþ1

m1ðx; y; dþ tÞ ¼ 0: (15)

In the final disparity map created by the MSA algorithm,
the disparity in the point ðx; yÞ is the one for which the result
of the function u is the greatest. The function D presented in
Eq. (16) determines the value of a disparity inserted into
a disparity map which is a result of the MSA algorithm:

Dðx; yÞ ¼ argmax
d

uðx; y; dÞ: (16)

There can be some points for which function D does not
determine disparities. These are the points such that the
results of the function u are equal to 0 for all analyzed dis-
parities d ∈ ½dmin; dmax�. In a disparity map generated as a
result of the MSA algorithm, values of disparities in these
points are undefined.

5.2 MSA Algorithm for the Set of Five Cameras
The MSA algorithm is not intended for use with a pair of
cameras, but it is designed for multiple stereo cameras. In
the case of a five camera set described in Sec. 3, there are
four pairs of cameras taken into account.

The MSA algorithm first computes the results of the
function m which is based on the similarity measure S,
Eq. (12). The function m identifies points similar to each
other. Equation (13) presented in the previous section defines
the functionm for a pair which consists of a right camera and
a central one. The central camera is present in every consid-
ered pair of cameras. When a set of five cameras is used,
the functionm is calculated for every pair taken into account.
Equation (17) presents functions for pairs containing down
(m2), left (m3), and up (m4) cameras:

m2ðx; y; dÞ ¼ S2ðx; y; x; yþ dÞ
m3ðx; y; dÞ ¼ S3ðx; y; xþ d; yÞ
m4ðx; y; dÞ ¼ S4ðx; y; x; y − dÞ: (17)

After calculating the results of function m for the given
range of input values, the algorithm computes results for
the function u. Equation (14) in the previous subsection
presents the equation of this function for a right camera.
In the case of four pairs of cameras, this function is defined
on the basis of the single pair version. When all four pairs of
cameras are taken into account, the function u simultane-
ously matches points in all four pairs of cameras. The func-
tion u identifies sequences of disparities for which there are
points similar to each other in every pair of cameras. The
equation of the function u for four pairs of cameras is pre-
sented in Eq. (18):

uðx; y; dÞ ¼
8<
:

0 if ∀
1≤i≤4

miðx; y; dÞ ¼ 0

T þ 1 if ∃
1≤i≤4

miðx; y; dÞ ¼ 1
; (18)

where T matches the conditions presented in Eq. (19):
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∀
−T≤t≤T

miðx; y; dþ tÞ ¼ 1 ∧

∃
t¼−ðTþ1Þ∨t¼Tþ1

0≤i≤4

miðx; y; dþ tÞ ¼ 0: (19)

In the last step of the MSA algorithm, results of the func-
tion u are used to obtain values of disparities that are inserted
into a disparity map as a final result of the algorithm. In the
MSA algorithm for two cameras, these values are obtained
with the use of Eq. (16). The same equation is used in the
MSA algorithm for five cameras.

The MSA algorithm can also be used with fewer than five
cameras. Some side cameras may be excluded from the cam-
era arrangement described in Sec. 3. For example, only cen-
tral, right, and up cameras may be available. If the MSA
algorithm is used for fewer than five cameras, the disparity
map is obtained with the use of the equations presented in
this section, but the parts of equations corresponding to the
excluded cameras are disregarded in the calculations. For
example, when a right camera is excluded, then the function
m1 is not taken into account.

6 Evaluation
The stereo matching algorithms presented in Secs. 4 and 5
were evaluated on the basis of representative test data. The
results of performed experiments were evaluated with the use
of quality metrics.

6.1 Test Data
Test data used in the evaluation consist of two sets of plant
images. The first set contains images of a ficus tree (Ficus
benjamina). The second one includes images of a dwarf
umbrella tree (Schefflera arboricola). These sets of images
are presented in Figs. 2 and 3, respectively.

The images were acquired using the camera arrangement
presented in Sec. 3. A Panasonic Lumix DMC LF1 camera
was used in the experiments. This model has 10.2 megapixels
resolution and a focal length equal to 28 mm.

Ground truths were prepared for both set of images.
Ground truth is a map of real disparities of objects visible
in images. Ground truths were calculated manually by
matching points in the central image with points in the side
images. The values of disparities for which a match was
found were marked in ground truth maps.

Parts of a central image that are close to the border of an
image are occluded areas. They are not included in a ground
truth map. The size of an occluded area is determined by
the maximum value of the disparity dmax taken into account
in the stereo matching algorithm. The occluded area com-
prises all points within the range of dmax points from the
border of an image. For these points, the stereo matching
algorithm cannot verify the matching of points for all ana-
lyzed disparities.

There are also other areas in images for which it is not
possible to determine values of disparities. These are
areas containing parts of objects located at the back of the
viewed scene. These parts can be visible from only one cam-
era. They are partly hidden behind other parts of objects
located closer to cameras. For some points in parts of objects
located far from cameras, it is not possible to determine
matching points in the images from other cameras. For these
points, values of disparities in ground truth are undefined.

Figures 4(a) and 5(a) present parts of images without
occluded areas. Ground truth for the first set of images is
presented in Fig. 4(b). Figure 5(b) presents ground truth
for the second set of images. In these images, brightness
intensity refers to the distance from a camera. Points with
greater intensity are located closer to a camera.

6.2 Quality Metrics
There are two metrics commonly used to estimate the quality
of disparity maps and algorithms that create them:2 root-
mean-squared (RMS) error and the percentage of bad match-
ing pixels.

The quality estimation of disparity maps is based on com-
paring them with ground truth maps. The RMS error metric
is a quadratic mean of differences between disparities in

Fig. 2 Images of the ficus tree: (a) up, (b) left, (c) central, (d) right, and (e) down.

Fig. 3 Images of the dwarf umbrella tree: (a) up, (b) left, (c) central, (d) right, and (e) down.
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a map acquired as a result of a stereo matching algorithm and
disparities in a ground truth map. The equation of the RMS
metric for disparity maps is presented in Eq. (20):

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1

N

X
ðx;yÞ

jDMðx; yÞ −DTðx; yÞj2
�vuut ; (20)

where R is the RMS error, ðx; yÞ are coordinates, the function
DMðx; yÞ returns the value of the disparity in the evaluated
disparity map,DTðx; yÞ is the value of the disparity in ground
truth, and N is the number of points taken into account.

The second metric, which is the percentage of bad match-
ing pixels, specifies two kinds of points in disparity maps.
There are points for which a stereo matching algorithm
calculated a disparity correctly and there are points for
which the value of the disparity is incorrect. The distinction
between correctly and incorrectly matched points is based on
a threshold. If the difference between the disparity of a point
in the disparity map and the disparity of the corresponding
point in ground truth is less than the value of the threshold,
the disparity of the point is assumed to be correct. The dis-
parity is incorrect otherwise. The equation for the percentage
of bad matching pixels is presented in Eq. (21):

B ¼ 1

N

X
ðx;yÞ

½jDMðx; yÞ −DTðx; yÞj > Z�; (21)

where B is the percentage of bad matching pixels, Z is the
threshold defining the disparity error tolerance, and other
symbols are the same as in Eq. (20).

In the experiments presented in this paper, a level of cov-
erage was also calculated. The coverage level is the percent-
age of points in ground truth that are available in the disparity
map regardless of the disparity values in these points. When

a stereo matching algorithm processes images to obtain a dis-
parity map, there can be some points for which the algorithm
is not able to find a match. The value of disparity is unknown
for those points so they are not included in the disparity map.
The coverage level is equal to the number of points that are
present both in the disparity map and in ground truth divided
by the number of points available in ground truth. If ground
truth is not available, then the total number of points in the
reference image is considered instead of the number of points
included in ground truth.

6.3 Results
In order to analyze the performance of stereo matching algo-
rithms for a set of five cameras, the author of this paper per-
formed a series of experiments. The first one measured
the performance of stereo matching algorithms based on dif-
ferent matching measures, in particular, the SSSD measure.
The second experiment measured the performance of the
MSA algorithm. The third experiment is concerned with
selecting the parameter H for the MSA algorithm.

6.3.1 Experiments with different matching measures

The first experiment was focused on the quality of disparity
maps obtained with the use of the SSSD measure and other
matching measures. In the experiment, both set of images
described in Sec. 6.1 were considered.

The ground truth for the first set of images contains values
of disparities that range from 77 to 102. In the experiment,
measures were not calculated for all possible values of dis-
parities from 0 to a value significantly beyond the maximum
disparity in ground truth. Experiments were conducted for
the estimated range of disparities that embrace points of a
viewed object. In the experiment with the first set of images,
the following boundaries were set: dmin ¼ 70 and dmax ¼
110. For the second set of images, disparities in ground

Fig. 4 Ficus Tree—ground truth and disparity maps: (a) original image, (b) ground truth, (c) the SSSD
measure for five cameras, and (d) the MSA algorithm for five cameras.

Fig. 5 Dwarf Umbrella Tree—ground truth and disparity maps: (a) original image, (b) ground truth, (c) the
SSSD measure for five cameras, and (d) the MSA algorithm for five cameras.
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truth range from 142 to 188 and boundaries were set to
dmin ¼ 140 and dmax ¼ 200.

Figure 6(a) presents results for the first set of images con-
taining views of Ficus Tree. Figure 6(b) presents results for
images of Dwarf Umbrella Tree. These figures are concerned
with the SSSD measure defined by Eq. (10) presented in
Sec. 4.2. Charts were made for monochromatic images.

The figures show the relation between the percentage of
bad matching pixels and the number of used stereo cameras.
One stereo camera refers to a pair of cameras consisting of a
central camera and up one. Two stereo cameras include cen-
tral, left and up camera. Three stereo cameras include central,
right, left, and up camera. Lastly, four stereo cameras refer to
all four pairs of cameras taken into account in the five cam-
eras set.

The percentage of bad matching pixels was calculated
with the use of Eq. (21). The threshold level Z was set to
4 for both sets of images. The percentage of bad matching
pixels was calculated for all points included in ground truth.

There are three plots in each figure. Each plot refers to a
different size of aggregating window used in the SSSD mea-
sure. The experiment was performed for square windows of
sizes 1 × 1, 3 × 3 and 5 × 5. Charts show that the percentage
of bad matching pixels decrease with respect to the number

of stereo cameras. The best results are obtained for the 5 × 5
window when all four pairs of cameras are taken into
account. For this window size, the percentage of bad match-
ing pixels improved from 27.97% to 15.46% for Ficus Tree
and from 64.92% to 28.92% for Dwarf Umbrella Tree, when
five cameras were used instead of two. On average, the
number of bad matching points was reduced by 50.01%.
Disparity maps created with the use of the SSSD measure in
this configuration are presented in Figs. 4(c) and 5(c).

Apart from the SSSD measure, experiments were also
performed with other measures. Tables 1 and 2 present the
percentage of bad matching pixels in disparity maps obtained
with the use of the following measures: SAD, SSD, LSAD,
LSSD, ZSAD, ZSSD, NCC, and ZNCC. Calculations were
made on the basis of Eq. (11). Disparity maps were calcu-
lated with the use of all these measures for window sizes 3 ×
3 and 5 × 5. The window 1 × 1 was used only for measures
SAD and SSD. This kind of a window was not relevant for
other measures. Table 1 presents results for the set of images
of Ficus Tree. Table 2 shows results for Dwarf Umbrella
Tree. Tables 1 and 2 show the percentage of bad matching

2 3 4 5
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80 %

(b)

The 1x1 window
The 3x3 window
The 5x5 window
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40 %

60 %

80 %

(a)

Fig. 6 The percentage of bad matching pixels for the SSSDmeasure:
(a) Ficus Tree and (b) Dwarf Umbrella Tree.

Table 1 Results for images of Ficus Tree.

Matching
measure

Window
size

Number of cameras

2 3 4 5

SAD 1 × 1 54.7 42.26 33.25 24.92

SSD 1 × 1 54.7 41.53 32.28 24.37

SAD 3 × 3 33.46 28.64 22.59 16.15

SSD 3 × 3 32.83 29.06 22.98 17.38

LSAD 3 × 3 41.47 42.35 36.62 31.94

LSSD 3 × 3 40.91 42.87 37.83 33.95

ZSAD 3 × 3 41.29 42.36 36.32 31.85

ZSSD 3 × 3 40.73 42.9 37.7 33.74

NCC 3 × 3 40.85 42.78 37.71 33.85

ZNCC 3 × 3 46.26 47.1 40.93 34.92

SAD 5 × 5 28.02 24.3 18.64 13.6

SSD 5 × 5 27.97 25.63 19.76 15.46

LSAD 5 × 5 31.02 33.54 30.28 25.22

LSSD 5 × 5 31.32 35.61 33.02 28.35

ZSAD 5 × 5 30.19 33.67 30.04 25.34

ZSSD 5 × 5 30.45 35.6 32.95 28.54

NCC 5 × 5 31.18 35.46 32.75 28.06

ZNCC 5 × 5 33.15 35.42 30.54 23.53
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pixels when a different number of input images was taken
into account.

The best results for both sets of input images were
obtained when measures SAD and SSD were used with the
window 5 × 5 when all five images were considered. In case
of images of Ficus Tree, using the SAD measure led to better
results than using the SSD measure. In case of Dwarf
Umbrella Tree, the SSD measure was better than SAD. On
average, the SSD measure returns better results than the SAD
measure. The differences in the results obtained with mea-
sures LSAD, LSSD, ZSAD, ZSSD, and NCC were not
significant for the same window size. Results which differed
more from results obtained with these measures were
acquired with the use of the ZNCC measure. This measure
generated in some cases better results than LSAD, LSSD,
ZSAD, ZSSD and NCC measures, however, in other cases,
results deteriorated. Results for measures LSAD, LSSD,
ZSAD, ZSSD, NCC, and ZNCC were sometimes better
than results for measures SAD and SSD when two images
were taken into account. However, measures SAD and SSD
always proved to be better with the use of all five images.

For all measures, the percentage of bad matching pixels
was lower for the window 5 × 5 than for the window 3 × 3
when the same number of input images were included in the
calculations. In general, the increase in the number of cam-
eras leads to the decrease in the percentage of bad matching
pixels. However, there are some exceptions from this rule.
For example, in the case of images of Ficus Tree, all mea-
sures apart from SAD and SSD generated better results for
two images than for three images. Nevertheless, in all cases,
results obtained with the use of five images were better than
results acquired with the use of two images.

6.3.2 Experiments with the MSA algorithm

In the experiments with the MSA algorithm, the same values
of dmin and dmax were used as in the experiments presented in
the previous subsection. MSA requires an additional param-
eter H that is a threshold defining points regarded as similar
to each other [Eq. (12)]. The value of H was set to 17 for the
set of images containing Ficus Tree. The parameter was set to
13 for the set with views of Dwarf Umbrella Tree. The prob-
lem of selecting the value of H parameter is discussed in the
next Sec. 6.3.3. Disparity maps generated by the MSA algo-
rithm for these values of the parameter H are presented in
Figs. 4(d) and 5(d).

Figure 7 presents the results for the MSA algorithm for
both set of images. The figure contains charts calculated
for the 1 × 1 window for monochromatic images. The figure
presents the percentage of bad matching pixels. Figure 7 also
contains coverage levels defined in Sec. 6.2.

The increase in the number of cameras taken into account
causes the decrease in the percentage of bad matching pixels.
The percentage of bad matching pixels decreased from
49.04% to 13.88% for Ficus Tree and from 65.33% to
30.28% for Dwarf Umbrella Tree. On average, the number
of bad matching points was reduced by 62.67%.

Moreover, the MSA algorithm for a window of size 1 × 1
provides similar values of the percentage of bad matching
pixels as the algorithm based on the SSSD measure for
the 5 × 5 window when five cameras are used. The average
difference is equal to 0.11%. On average, SSSD for the 5 × 5
window provides a percentage of bad matching pixels equal
to 22.19%. In MSA, the average percentage of bad matching
pixels is equal to 22.08%. MSA achieves similar results as
SSSD, but it requires a much smaller window size. It is an
important advantage of the MSA algorithm that makes it pos-
sible to obtain disparity maps faster and with the use of fewer
computations. However, the coverage level is decreasing in
the MSA algorithm when more cameras are used. The algo-
rithm does not provide results for all points, but for the
resolved ones, the results are accurate.

This feature of the MSA algorithm determines the algo-
rithm’s robustness. The algorithm can be executed on images
containing a random noise and images that have low quality
for other reasons. The quality of the input images has a major
impact on the coverage level of disparity maps obtained with
the use of MSA. In the case of low-quality images, the algo-
rithm will not be able to match points from different cameras.
This will occur in particular in the case of taking into account
all images from the five cameras set. However, the percent-
age of bad matching pixels for points included in a disparity
map will not be affected by the quality of the input images as
much as the coverage level. Nevertheless, the coverage level,

Table 2 Results for images of Dwarf Umbrella Tree.

Matching
measure

Window
size

Number of cameras

2 3 4 5

SAD 1 × 1 74.86 61.41 51.66 45.37

SSD 1 × 1 74.86 61.59 50.18 43.94

SAD 3 × 3 69.14 49.89 40.27 34.59

SSD 3 × 3 68.57 49.35 38.89 32.73

LSAD 3 × 3 69.87 62.84 57.51 52.76

LSSD 3 × 3 69.45 62.88 57.54 52.81

ZSAD 3 × 3 68.22 63.08 56.21 51.83

ZSSD 3 × 3 67.99 63.08 56.45 51.98

NCC 3 × 3 69.42 62.78 57.39 52.67

ZNCC 3 × 3 72.61 66.08 62.2 59.13

SAD 5 × 5 66.24 44.64 36.21 30.74

SSD 5 × 5 64.92 43.65 34.74 28.92

LSAD 5 × 5 57.35 46.25 39.2 34.63

LSSD 5 × 5 56.61 46.48 40.23 35.64

ZSAD 5 × 5 55.31 46.4 38.07 33.81

ZSSD 5 × 5 54.44 46.35 38.81 34.83

NCC 5 × 5 56.52 46.28 39.98 35.32

ZNCC 5 × 5 58.79 48.02 42.5 38.9
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regardless of the quality of the input images, can be managed
by adjusting the threshold level used in the algorithm. The
problem of selecting the value of the threshold is described in
the next subsection.

6.3.3 Threshold value in the MSA algorithm

Figure 8 presents the results of the MSA algorithm for differ-
ent values of the threshold H. The figure shows the percent-
age of bad pixels and coverage levels for both set of images
when all five cameras are taken into account.

In every chart, there is a value of a threshold for which the
percentage of bad matching pixels and coverage levels reach
the best result. The best result is a minimum in the case of the
percentage of bad matching pixels metric and a maximum in
the case of a coverage level. These extrema are reached in
every chart for different values of thresholds.

For Dwarf Umbrella Tree, the best value of the percentage
of bad matching pixels is equal to 30.28%. It is reached when
the threshold is equal to 13. The maximum coverage level for
this set of images is equal to 92.63% when the threshold is
28. The percentage of bad matching pixels is a more impor-
tant metric than the coverage level. Therefore, the best value
of a threshold for images of Dwarf Umbrella Tree is set to 13.
The coverage level is then equal to 82.44%.

The percentage of bad matching pixels for Ficus Tree
reaches the best value 10.63% when the threshold is equal

to 6. However, the coverage level is equal to 14.75% for this
threshold. It is a very low value. In the range of thresholds
between 6 and 50, there is a tradeoff between the coverage
level and the percentage of bad matching pixels. For the
threshold equal to 17, the percentage of bad matching pixels
is equal to 13.88% and the coverage level is equal to 65.87%.
The coverage level is acceptable for this threshold and the
value of the percentage of bad matching pixels does not
differ significantly from the maximum value. Therefore, the
threshold in this set of images is set to 17.

In the process of selecting the value of the threshold, both
the bad matching points measure and coverage measure need
to be taken into account. When the threshold is too high, the
results of these measures deteriorate. Similarly, there are
poor results of both of these measures when the threshold
value is too low. There is some range of threshold values for
which it is needed to make a compromise between the num-
ber of bad matching points and the coverage level. On the
basis of images presented in this paper, on average, the value
of the threshold should be equal to 15.

The value of the threshold can be improved for a particu-
lar set of input images that the MSA algorithm processes.
The algorithm is intended to use when there is a set of
input images without ground truth available for these images.
Ground truth is necessary to calculate the percentage of bad
matching pixels. However, it is not needed to calculate
the coverage level. The coverage level is determined only
on the basis of a disparity map generated by the algorithm.
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Fig. 7 The results of the MSA algorithm: (a) Ficus Tree and (b) Dwarf
Umbrella Tree.
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Fig. 8 Differences in the threshold level in the MSA algorithm:
(a) Ficus Tree and (b) Dwarf Umbrella Tree.
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If the coverage level obtained as a result of using some
threshold is not suitable, then the threshold can be changed
and the MSA algorithm can be rerun. Subsequent values of
thresholds can be estimated with regard to the desired differ-
ence in the coverage level. This process can be executed
iteratively in order to achieve a demanded level of coverage.
Nevertheless, it is time consuming.

Figure 8 shows that there is a relation between the cover-
age level and the percentage of bad matching pixels. There-
fore, selecting the threshold appropriate for the coverage
level has an impact on the percentage of bad matching pixels.
For example, if a target coverage level for input images pre-
sented in this paper is set to 70%, the threshold level needs to
be equal to 19 in the case of Ficus Tree images and it needs to
be equal to 9 for Dwarf Umbrella Tree. For these levels,
the percentage of bad matching pixels is equal to 15.15%
for Ficus Tree and 33.16% for Dwarf Umbrella Tree. These
are not optimal values, but they differ from the best values of
percentages of bad matching pixels less then 5%. Therefore,
setting the target coverage level to 70% and rerunning the
algorithm leads to obtain such results.

7 Conclusions
Taking advantage of the five camera set makes it possible to
increase the quality of disparity maps of plants both with the
use of different kinds of matching measures and the MSA
algorithm. In case of the SSSD measure with an aggregating
window of size 5 × 5, the number of bad matching pixels is
reduced by ca. 50% when five cameras are used instead of
two. The average improvement in case of the MSA algorithm
is equal to ca. 63%. The MSA algorithm is dedicated for a
camera arrangement described in this paper. This algorithm
for a window of size 1 × 1 acquires similar results as the
algorithm based on the SSSD measure with the 5 × 5 win-
dow. Moreover, measures based on sums of SSD and SAD
return better results than measures based on LSAD, LSSD,
ZSAD, ZSSD, NCC, and ZNCC when the set of five cameras
is used. On average, SSD is also better than SAD for this set.

The research presented in this paper can be used in control
systems of autonomous robots. Such robots can perform
actions in a real environment. For example, they are used
in robotic fruit harvesting. This kind of robot needs to deter-
mine the distance to a plant and its parts. Using the set of five
cameras instead of a single stereo camera would have a great
influence on the efficiency of harvesting robots.

The five cameras set can be applied to determine not only
disparity maps of plants but also disparity maps of other
objects. The importance of methods for obtaining this kind
of map rises because of a growing popularity of 3-D TVand
interactive 3-D video games. The research presented in this
paper can be used in these applications. In future work, the
author plans to develop methods of estimating the best value
of the threshold used in the MSA algorithm on the basis of
features of the input images and their characteristics. The
estimation will be performed before the execution of the
algorithm. The future work also includes application of

the presented set of cameras to objects other than plants.
In particular, objects for which it is difficult to obtain a dis-
parity map will be examined.
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