Independence in uniform linear triangle-free hypergraphs

Piotr Borowiecki ${ }^{\text {a }}$, Michael Gentner ${ }^{\text {b }}$, Christian Löwenstein ${ }^{\text {b }}$, Dieter Rautenbach ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Algorithms and System Modeling, Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, 80-233 Gdańsk, Poland
${ }^{\mathrm{b}}$ Institute of Optimization and Operations Research, Ulm University, D-89069 Ulm, Germany

A R TICLE IN F O

Article history:

Received 2 October 2014
Accepted 5 January 2016
Available online 1 February 2016

Keywords:

Independence
Hypergraph
Linear
Uniform
Double linear
Triangle-free

Abstract

The independence number $\alpha(H)$ of a hypergraph H is the maximum cardinality of a set of vertices of H that does not contain an edge of H. Generalizing Shearer's classical lower bound on the independence number of triangle-free graphs Shearer (1991), and considerably improving recent results of Li and Zang (2006) and Chishti et al. (2014), we show that $$
\alpha(H) \geq \sum_{u \in V(H)} f_{r}\left(d_{H}(u)\right)
$$ for an r-uniform linear triangle-free hypergraph H with $r \geq 2$, where $$
\begin{aligned} & f_{r}(0)=1, \quad \text { and } \\ & f_{r}(d)=\frac{1+\left((r-1) d^{2}-d\right) f_{r}(d-1)}{1+(r-1) d^{2}} \quad \text { for } d \geq 1 \end{aligned}
$$ © 2016 Elsevier B.V. All rights reserved.

1. Introduction

We consider finite hypergraphs H, which are ordered pairs $(V(H), E(H))$ of two sets, where $V(H)$ is the finite set of vertices of H and $E(H)$ is the set of edges of H, which are subsets of $V(H)$. The order $n(H)$ of H is the cardinality of $V(H)$. The degree $d_{H}(u)$ of a vertex u of H is the number of edges of H that contain u. The average degree $d(H)$ of H is the arithmetic mean of the degrees of its vertices. Two distinct vertices of H are adjacent or neighbors if some edge of H contains both. The neighborhood $N_{H}(u)$ of a vertex u of H is the set of vertices of H that are adjacent to u. For a set X of vertices of H, the hypergraph $H-X$ arises from H by removing from $V(H)$ all vertices in X and removing from $E(H)$ all edges that intersect X. If every two distinct edges of H share at most one vertex, then H is linear. If H is linear and for every two distinct non-adjacent vertices u and v of H, every edge of H that contains u contains at most one neighbor of v, then H is double linear. If there are not three distinct vertices u_{1}, u_{2}, and u_{3} of H and three distinct edges e_{1}, e_{2}, and e_{3} of H such that $\left\{u_{1}, u_{2}, u_{3}\right\} \backslash\left\{u_{i}\right\} \subseteq e_{i}$ for $i \in\{1,2,3\}$, then H is triangle-free. A set I of vertices of H is a (weak) independent set of H if no edge of H is contained in I. The (weak) independence number $\alpha(H)$ of H is the maximum cardinality of an independent set of H. If all edges of H have cardinality r, then H is r-uniform. If H is 2 -uniform, then H is referred to as a graph.

[^0]The independence number of (hyper)graphs is a well studied computationally hard parameter. Caro [4] and Wei [14] proved a classical lower bound on the independence number of graphs, which was extended to hypergraphs by Caro and Tuza [5]. Specifically, for an r-uniform hypergraph H, Caro and Tuza [5] proved

$$
\alpha(H) \geq \sum_{u \in V(H)} f_{C T(r)}\left(d_{H}(u)\right)
$$

where $f_{C T(r)}(d)=\binom{d+\frac{1}{r-1}}{d}^{-1}$. Thiele [13] generalized Caro and Tuza's bound to general hypergraphs; see [3] for a very simple probabilistic proof of Thiele's bound. Originally motivated by Ramsey theory, Ajtai et al. [2] showed that $\alpha(G)=$ $\Omega\left(\frac{\ln d(G)}{d(G)} n(G)\right)$ for every triangle-free graph G. Confirming a conjecture from [2] concerning the implicit constant, Shearer [11] improved this bound to $\alpha(H) \geq f_{S_{1}}(d(G)) n(G)$, where $f_{S_{1}}(d)=\frac{d \ln d-d+1}{(d-1)^{2}}$. In [11] the function $f_{S_{1}}$ arises as a solution of the differential equation

$$
(d+1) f(d)=1+\left(d-d^{2}\right) f^{\prime}(d) \quad \text { and } \quad f(0)=1
$$

In [12] Shearer showed that

$$
\alpha(G) \geq \sum_{u \in V(G)} f_{S_{2}}\left(d_{G}(u)\right)
$$

for every triangle-free graph G, where $f_{S_{2}}$ solves the difference equation

$$
(d+1) f(d)=1+\left(d-d^{2}\right)(f(d)-f(d-1)) \quad \text { and } \quad f(0)=1
$$

Since $f_{S_{1}}(d) \leq f_{S_{2}}(d)$ for every non-negative integer d, and $f_{S_{1}}$ is convex, Shearer's bound from [12] is stronger than his bound from [11].

Li and Zang [10] adapted Shearer's approach to hypergraphs and obtained the following.

Theorem 1 (Li and Zang [10]). Let r and m be positive integers with $r \geq 2$.
If H is an r-uniform double linear hypergraph such that the maximum degree of every subhypergraph of H induced by the neighborhood of a vertex of H is less than m, then

$$
\alpha(H) \geq \sum_{u \in V(H)} f_{L Z(r, m)}\left(d_{H}(u)\right)
$$

where

$$
\begin{gathered}
f_{L Z(r, m)}(x)=\frac{m}{B} \int_{0}^{1} \frac{(1-t)^{\frac{a}{m}}}{t^{b}(m-(x-m) t)} d t, \\
a=\frac{1}{(r-1)^{2}}, b=\frac{r-2}{r-1}, \text { and } B=\int_{0}^{1}(1-t)^{\left(\frac{a}{m}-1\right)} t^{-b} d t .
\end{gathered}
$$

Note that for $r \geq 2$, an r-uniform linear hypergraph H is triangle-free if and only if it is double linear and the maximum degree of every subhypergraph of H induced by the neighborhood of a vertex of H is less than 1 . Therefore, since $f_{S_{1}}=f_{L Z(2,1)}$ and $f_{S_{1}}$ is convex, Theorem 1 implies Shearer's bound from [11]. Nevertheless, since $f_{S_{1}}(d)<f_{S_{2}}(d)$ for every integer d with $d \geq 2$, Shearer's bound from [12] does not quite follow from Theorem 1.

In [6] Chishti et al. presented another version of Shearer's bound from [11] for hypergraphs.

Theorem 2 (Chishti et al. [6]). Let r be an integer with $r \geq 2$.
If H is an r-uniform linear triangle-free hypergraph, then

$$
\alpha(H) \geq f_{C Z P I(r)}(d(H)) n(H)
$$

where

$$
f_{C Z P I(r)}(x)=\frac{1}{r-1} \int_{0}^{1} \frac{1-t}{t^{b}(1-((r-1) x-1) t)} d t
$$

and $b=\frac{r-2}{r-1}$.
Since $f_{S_{1}}=f_{C Z P I(2)}$, for $r=2$, the last result coincides with Shearer's bound from [11].
A drawback of the bounds in Theorems 1 and 2 is that they are very often weaker than Caro and Tuza's bound [5], which holds for a more general class of hypergraphs. See Fig. 1 for an illustration.

Fig. 1. The values of $f_{L Z(r, 1)}(d)$ (line), $f_{C Z P I(r)}(d)$ (dashed line), $f_{C T(r)}(d)$ (empty circles), and $f_{r}(d)$ (solid circles) for $0 \leq d \leq 40$ and $r=3$ (left) and $r=4$ (right).

In the present paper we extend Shearer's approach from [12] and establish a lower bound on the independence number of a uniform linear triangle-free hypergraph that considerably improves Theorems 1 and 2 and is systematically better than Caro and Tuza's bound.

For further related results we refer to Ajtai et al. [1], Duke et al. [7], Dutta et al. [8] and Kostochka et al. [9]. Note that our main result provides explicit values when applied to a specific hypergraph but that we do not completely understand its asymptotics. In contrast to that, results as in $[1,7,8]$ are essentially asymptotic statements but are of limited value when applied to a specific hypergraph.

2. Results

For an integer r with $r \geq 2$, let $f_{r}: \mathbb{N}_{0} \rightarrow \mathbb{R}_{0}$ be such that

$$
\begin{aligned}
f_{r}(0) & =1 \text { and } \\
f_{r}(d) & =\frac{1+\left((r-1) d^{2}-d\right) f_{r}(d-1)}{1+(r-1) d^{2}}
\end{aligned}
$$

for every positive integer d.
Lemma 3. If r and d are integers with $r \geq 2$ and $d \geq 0$, then $f_{r}(d)-f_{r}(d+1) \geq f_{r}(d+1)-f_{r}(d+2)$.
Proof. Substituting within the inequality $f_{r}(d)-2 f_{r}(d+1)+f_{r}(d+2) \geq 0$ first $f_{r}(d+2)$ with

$$
\frac{1+\left((r-1)(d+2)^{2}-(d+2)\right) f_{r}(d+1)}{1+(r-1)(d+2)^{2}}
$$

and then $f_{r}(d+1)$ with

$$
\frac{1+\left((r-1)(d+1)^{2}-(d+1)\right) f_{r}(d)}{1+(r-1)(d+1)^{2}}
$$

and solving it for $f_{r}(d)$, it is straightforward but tedious to verify that it is equivalent to $f_{r}(d) \geq L(r, d)$ where

$$
L(r, d)=\frac{(2 r-1) d+3 r}{r\left(d^{2}+5 d+5\right)}
$$

Therefore, in order to complete the proof, it suffices to show $f_{r}(d) \geq L(r, d)$. For $d=0$, we have $f_{r}(0)=1>\frac{3}{5}=L(r, 0)$. Now, let $f(d) \geq L(r, d)$ for some non-negative integer d. Since $(r-1)(d+1)^{2}-(d+1) \geq 0$, we obtain by a straightforward yet tedious calculation

$$
f(d+1)-L(r, d+1)=\frac{1+\left((r-1)(d+1)^{2}-(d+1)\right) f(d)}{1+(r-1)(d+1)^{2}}-L(r, d+1)
$$

$$
\begin{aligned}
& \geq \frac{\left(1+\left((r-1)(d+1)^{2}-(d+1)\right) L(r, d)\right.}{1+(r-1)(d+1)^{2}}-L(r, d+1) \\
& =\frac{2\left(1+(r-1)(d+2)^{2}\right)}{r\left(d^{2}+7 d+11\right)\left(d^{2}+5 d+5\right)}
\end{aligned}
$$

which is positive for $r \geq 2$. Therefore, $f(d+1) \geq L(r, d+1)$, which completes the proof by an inductive argument.
The following is our main result.

Theorem 4. Let r be an integer with $r \geq 2$.
If H is an r-uniform linear triangle-free hypergraph, then

$$
\alpha(H) \geq \sum_{u \in V(H)} f_{r}\left(d_{H}(u)\right)
$$

Before we proceed to the proof, we compare our bound to the bounds of Caro and Tuza [5], Li and Zang [10], and Chishti et al. [6]. Fig. 1 illustrates some specific values. An inspection of Li and Zang's proof in [10] reveals that they actually prove a lower bound on the so-called strong independence number, which is defined as the maximum cardinality of a set of vertices that does not contain two adjacent vertices. Therefore, especially for large values of r, Theorem 1 is much weaker than Theorem 2. In fact, it is quite natural that it is worse by a factor of about $r-1$.

As we show now, our bound is systematically better than Caro and Tuza's bound [5].
Lemma 5. If r and d are integers with $r \geq 3$ and $d \geq 2$, then $f_{r}(d)>f_{C T(r)}(d)$.
Proof. Note that $f_{r}(0)=f_{C T(r)}(0)=1, f_{r}(1)=f_{C T(r)}(1)=\frac{r-1}{r}$, and $f_{C T(r)}(d)=\frac{d}{d+\frac{1}{r-1}} f_{C T(r)}(d-1)$ for $d \in \mathbb{N}$, which immediately implies that $f_{C T(r)}(d)<\frac{r-1}{r}$ for $d \geq 2$. Now, if $f_{r}(d-1) \geq f_{C T(r)}(d-1)$ for some $d \geq 2$, then

$$
\begin{aligned}
f_{r}(d)-f_{C T(r)}(d) & =\frac{1+\left((r-1) d^{2}-d\right) f_{r}(d-1)}{1+(r-1) d^{2}}-f_{C T(r)}(d) \\
& \geq \frac{1+\left((r-1) d^{2}-d\right) f_{C T(r)}(d-1)}{1+(r-1) d^{2}}-f_{C T(r)}(d) \\
& =\frac{1+\left((r-1) d^{2}-d\right) \frac{1+(r-1) d}{(r-1) d} f_{C T(r)}(d)}{1+(r-1) d^{2}}-f_{C T(r)}(d) \\
& =\frac{1-\frac{r}{r-1} f_{C T(r)}(d)}{1+(r-1) d^{2}} \\
& >0
\end{aligned}
$$

that is, $f_{r}(d)>f_{C T(r)}(d)$, which completes the proof by an inductive argument.
For $r=2$, Lemma 5 would state that Shearer's bound [12] is better than Caro [4] and Wei's bound [14], which is known.
We proceed to the proof of Theorem 4.
Proof of Theorem 4. We prove the statement by induction on $n(H)$. If H has no edge, then $\alpha(H)=n(H)$, which implies the desired result for $n(H) \leq r-1$. Now let $n(H) \geq r$. If H has a vertex x with $d_{H}(x)=0$, then $f_{r}\left(d_{H}(x)\right)=1$ and, by induction,

$$
\alpha(H) \geq 1+\alpha(H-x) \geq f_{r}\left(d_{H}(x)\right)+\sum_{u \in V(H) \backslash\{x\}} f_{r}\left(d_{H-x}(u)\right)=\sum_{u \in V(H)} f_{r}\left(d_{H}(u)\right)
$$

Hence we may assume that H has no vertex of degree 0 .
Since H is r-uniform and linear, for every two edges e_{1} and e_{2} with $e_{1} \cap e_{2}=\{u\}$ for some vertex u of H, the sets $e_{1} \backslash\{u\}$ and $e_{2} \backslash\{u\}$ are disjoint and of order $r-1$. Therefore, for every vertex u of H, there is a set $\mathcal{R}(u)$ of $r-1$ sets of neighbors of u such that every neighbor of u belongs to exactly one of the sets in $\mathcal{R}(u)$, and $|e \cap R|=1$ for every edge e of H with $u \in e$ and every $R \in \mathscr{R}(u)$.

If x is a vertex of H and $R \in \mathcal{R}(x)$ is such that

$$
1+\sum_{u \in V(H) \backslash(\{x\} \cup R)} f_{r}\left(d_{H-(\{x\} \cup R)}(u)\right) \geq \sum_{u \in V(H)} f_{r}\left(d_{H}(u)\right),
$$

then the statement follows by induction, because $\alpha(H) \geq 1+\alpha(H-(\{x\} \cup R))$. Therefore, in order to complete the proof, it suffices to show that the following term is non-negative:

$$
P=\sum_{x \in V(H)} \sum_{R \in \mathcal{R}(x)}\left(1+\sum_{u \in V(H) \backslash(\{x\} \cup R)} f_{r}\left(d_{H-(\{x\} \cup R)}(u)\right)-\sum_{u \in V(H)} f_{r}\left(d_{H}(u)\right)\right) .
$$

Since H is linear and triangle-free, we have $d_{H-(\{x\} \cup R)}(z)=d_{H}(z)-\left|N_{H}(z) \cap R\right|$ for every vertex z in $V(H) \backslash(\{x\} \cup R)$. Trivially, $d_{H-(\{x\} \cup R)}(z)=d_{H}(z)$ for $z \notin N_{H}(R)$, and hence P equals $P_{1}+P_{2}$, where

$$
\begin{aligned}
& P_{1}=\sum_{x \in V(H)} \sum_{R \in \mathcal{R}(x)}\left(1-f_{r}\left(d_{H}(x)\right)-\sum_{y \in R} f_{r}\left(d_{H}(y)\right)\right) \text { and } \\
& P_{2}=\sum_{x \in V(H)} \sum_{R \in \mathcal{R}(x)} \sum_{z \in N_{H}(R) \backslash\{x\}}\left(f_{r}\left(d_{H}(z)-\left|N_{H}(z) \cap R\right|\right)-f_{r}\left(d_{H}(z)\right)\right) .
\end{aligned}
$$

Since for every vertex u of H, there are exactly $(r-1) d_{H}(u)$ many vertices v of H such that u belongs to exactly one of the sets in $\mathcal{R}(v)$, we have

$$
P_{1}=\sum_{x \in V(H)}\left((r-1)-(r-1)\left(d_{H}(x)+1\right) f_{r}\left(d_{H}(x)\right)\right) .
$$

Since $f_{r}(d-1)-f_{r}(d)$ is decreasing by Lemma 3, we have $f_{r}(d-n)-f_{r}(d) \geq n\left(f_{r}(d-1)-f_{r}(d)\right)$ for all positive integers d and n with $n<d$. Therefore,

$$
\begin{aligned}
P_{2} & \geq \sum_{x \in V(H)} \sum_{R \in \mathscr{R}(x)} \sum_{z \in N_{H}(R) \backslash\{x\}}\left|N_{H}(z) \cap R\right|\left(f_{r}\left(d_{H}(z)-1\right)-f_{r}\left(d_{H}(z)\right)\right) \\
& =\sum_{x \in V(H)} \sum_{R \in \mathcal{R}(x)} \sum_{z \in N_{H}(R) \backslash\{x\}} \sum_{y \in R}\left|N_{H}(z) \cap\{y\}\right|\left(f_{r}\left(d_{H}(z)-1\right)-f_{r}\left(d_{H}(z)\right)\right) \\
& =\sum_{x \in V(H)} \sum_{R \in \mathcal{R}(x)} \sum_{y \in R} \sum_{z \in N_{H}(R) \backslash\{x\}}\left|N_{H}(z) \cap\{y\}\right|\left(f_{r}\left(d_{H}(z)-1\right)-f_{r}\left(d_{H}(z)\right)\right) \\
& =\sum_{x \in V(H)} \sum_{R \in \mathcal{R}(x)} \sum_{y \in R} \sum_{z \in N_{H}(y) \backslash\{x\}}\left(f_{r}\left(d_{H}(z)-1\right)-f_{r}\left(d_{H}(z)\right)\right) .
\end{aligned}
$$

Let T be the set of all 4-tuples (x, R, y, z) with $x \in V(H), R \in \mathcal{R}(x), y \in R$, and $z \in N_{H}(y) \backslash\{x\}$. Note that $y \in N_{H}(z)$ for every (x, R, y, z) in T. Since H is linear, for a given vertex z of H and a given neighbor y of z, there are $(r-1) d_{H}(y)-1$ many vertices x of H with $y \in R$ for some R in $\mathcal{R}(x)$ and $z \in N_{H}(y) \backslash\{x\}$. Furthermore, by the properties of $\mathcal{R}(x)$, given x and y, the set R in $\mathcal{R}(x)$ with $y \in R$ is unique. Therefore,

$$
\begin{aligned}
P_{2} & \geq \sum_{x \in V(H)} \sum_{R \in \mathcal{R}(x)} \sum_{y \in R} \sum_{z \in N_{H}(y) \backslash\{x\}}\left(f_{r}\left(d_{H}(z)-1\right)-f_{r}\left(d_{H}(z)\right)\right) \\
& =\sum_{z \in V(H)} \sum_{y \in N_{H}(z)}\left((r-1) d_{H}(y)-1\right)\left(f_{r}\left(d_{H}(z)-1\right)-f_{r}\left(d_{H}(z)\right)\right) .
\end{aligned}
$$

Let \mathcal{E} be the edge set of the graph that arises from H by replacing every edge of H by a clique, that is, \mathcal{E} is the set of all sets containing exactly two adjacent vertices of H.

We obtain

$$
\begin{aligned}
P_{2} & \geq \sum_{z \in V(H)} \sum_{y \in N_{H}(z)}\left((r-1) d_{H}(y)-1\right)\left(f_{r}\left(d_{H}(z)-1\right)-f_{r}\left(d_{H}(z)\right)\right) \\
& =\sum_{\{y, z\} \in \mathcal{E}}\left(h_{1}(y) h_{2}(z)+h_{1}(z) h_{2}(y)\right), \quad \text { where } \\
h_{1}(x) & =(r-1) d_{H}(x)-1 \text { and } \\
h_{2}(x) & =f_{r}\left(d_{H}(x)-1\right)-f_{r}\left(d_{H}(x)\right) .
\end{aligned}
$$

If $d_{H}(y) \geq d_{H}(z)$, then $h_{1}(y) \geq h_{1}(z)$ and, by Lemma $3, h_{2}(z) \geq h_{2}(y)$, which implies

$$
\left(h_{1}(y)-h_{1}(z)\right)\left(h_{2}(z)-h_{2}(y)\right) \geq 0
$$

Therefore, $h_{1}(y) h_{2}(z)+h_{1}(z) h_{2}(y) \geq h_{1}(y) h_{2}(y)+h_{1}(z) h_{2}(z)$.

Since, for every vertex y of H, there are exactly $(r-1) d_{H}(y)$ many vertices z of H with $\{y, z\} \in \mathcal{E}$, we obtain

$$
\begin{aligned}
P_{2} & \geq \sum_{\{y, z\} \in \mathcal{E}}\left(h_{1}(y) h_{2}(z)+h_{1}(z) h_{2}(y)\right) \\
& \geq \sum_{\{y, z\} \in \mathcal{E}}\left(h_{1}(y) h_{2}(y)+h_{1}(z) h_{2}(z)\right) \\
& =\sum_{x \in V(H)}(r-1) d_{H}(x) h_{1}(x) h_{2}(x) \\
& =\sum_{x \in V(H)}(r-1) d_{H}(x)\left((r-1) d_{H}(x)-1\right)\left(f_{r}\left(d_{H}(x)-1\right)-f_{r}\left(d_{H}(x)\right)\right) .
\end{aligned}
$$

Combining these estimates, we see that

$$
\begin{aligned}
P= & P_{1}+P_{2} \\
\geq & \sum_{x \in V(H)}\left((r-1)-(r-1)\left(d_{H}(x)+1\right) f_{r}\left(d_{H}(x)\right)\right. \\
& \left.+(r-1) d_{H}(x)\left((r-1) d_{H}(x)-1\right)\left(f_{r}\left(d_{H}(x)-1\right)-f_{r}\left(d_{H}(x)\right)\right)\right)
\end{aligned}
$$

which is 0 by the definition of f_{r}. This completes the proof.
It seems a challenging task to extend the presented results to non-uniform and/or non-linear triangle-free hypergraphs.

Acknowledgment

The first author has been partially supported by National Science Centre under contract DEC-2011/02/A/ST6/00201.

References

[1] M. Ajtai, J. Komlos, J. Pintz, J. Spencer, E. Szemeredi, Extremal uncrowded hypergraphs, J. Comb. Theory, Ser. A 32 (1982) $321-335$.
[2] M. Ajtai, J. Komlós, E. Szemerédi, A note on Ramsey numbers, J. Comb. Theory, Ser. A 29 (1980) 354-360.
[3] P. Borowiecki, F. Göring, J. Harant, D. Rautenbach, The potential of greed for independence, J. Graph Theory 71 (2012) 245-259.
[4] Y. Caro, New Results on the Independence Number, Technical Report, Tel-Aviv University, 1979.
[5] Y. Caro, Zs. Tuza, Improved lower bounds on k-independence, J. Graph Theory 15 (1991) 99-107.
[6] T.A. Chishti, G. Zhou, S. Pirzada, A. Iványi, On vertex independence number of uniform hypergraphs, Acta Univ. Sapientiae, Informatica 6 (2014) 132-158.
7] R. Duke, H. Lefmann, V. Rödl, On uncrowded hypergraphs, random struct, Algorithms 6 (1995) 209-212.
[8] K. Dutta, D. Mubayi, C.R. Subramanian, New lower bounds for the independence number of sparse graphs and hypergraphs, SIAM J. Discrete Math. 26 (2012) 1134-1147.
[9] A. Kostochka, D. Mubayi, J. Verstraëte, On independent sets in hypergraphs, Random Structures Algorithms 44 (2014) $224-239$.
[10] Y. Li, W. Zang, Differential methods for finding independent sets in hypergraphs, SIAM J. Discrete Math. 20 (2006) 96-104.
[11] J.B. Shearer, A note on the independence number of triangle-free graphs, Discrete Math. 46 (1983) 83-87.
[12] J.B. Shearer, A note on the independence number of triangle-free graphs. II, J. Combin. Theory Ser. B 53 (1991) 300-307.
[13] T. Thiele, A lower bound on the independence number of arbitrary hypergraphs, J. Graph Theory 30 (1999) 213-221.
[14] V.K. Wei, A Lower Bound on the Stability Number of a Simple Graph, Technical memorandum, TM 81-11217-9, Bell Laboratories, 1981.

[^0]: * Corresponding author.

 E-mail addresses: pborowie@eti.pg.gda.pl (P. Borowiecki), michael.gentner@uni-ulm.de (M. Gentner), christian.loewenstein@uni-ulm.de (C. Löwenstein), dieter.rautenbach@uni-ulm.de (D. Rautenbach).

