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Abstract
A set S of vertices in a graph G is a dominating set if every vertex not in S is ad

jacent to a vertex in S. If, in addition, S is an independent set, then S is an inde-

pendent dominating set. The independent domination number i(G) of G is the

minimum cardinality of an independent dominating set in G. The independent

domination subdivision number sdiðGÞ is the minimum number of edges that must

be subdivided (each edge in G can be subdivided at most once) in order to increase

the independent domination number. We show that for every connected graph G on

at least three vertices, the parameter sdiðGÞ is well defined and differs significantly

from the well-studied domination subdivision number sdcðGÞ. For example, if G is a

block graph, then sdcðGÞ� 3, while sdiðGÞ can be arbitrary large. Further we show

that there exist connected graph G with arbitrarily large maximum degree DðGÞ
such that sdiðGÞ� 3DðGÞ � 2, in contrast to the known result that

sdcðGÞ� 2DðGÞ � 1 always holds. Among other results, we present a simple

characterization of trees T with sdiðTÞ ¼ 1.
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1 Introduction

Domination subdivision in graphs is very well studied in the literature. In this paper,

we study independent domination subdivisions in graphs. A set S of vertices in a

graph G is a dominating set if every vertex not in S is adjacent to a vertex in S. If, in

addition, S is an independent set, then S is an independent dominating set,
abbreviated ID-set, of G. The domination number, denoted cðGÞ, of G is the

minimum cardinality of a dominating set of G, and the independent domination
number, denoted i(G), of G is the minimum cardinality of an ID-set in G. An

independent set of vertices in a graph G is a dominating set of G if and only if it is a

maximal independent set. Thus, i(G) is equivalently the minimum cardinality of a

maximal independent set of vertices in G. An ID-set of cardinality i(G) is called an

i-set of G. A survey on independent domination in graphs can be found in [6].

An edge uw in a graph G is subdivided by deleting the edge uw, and adding a new

vertex v and two new edges uv and vw. The added vertex v of degree 2 is called a

subdivision vertex. The domination subdivision number of a connected graph G of

order at least 3, denoted sdcðGÞ, is the minimum number of edges that must be

subdivided (where no edge in G can be subdivided more than once) in order to

create a graph whose domination number exceeds that of G. The domination

subdivision number of a graph G was first formally defined in the 2000 paper by

Haynes, Hedetniemi and Hedetniemi [7], although the concept is attributed by the

authors in [7] to Arumugan, and studied further, for example, in [1, 4, 8, 12].

The independent domination subdivision number of a connected graph G of order

at least 3, denoted sdiðGÞ, is the minimum number of edges that must be subdivided

(where no edge in G can be subdivided more than once) in order to create a graph

whose independent domination number exceeds that of G. This parameter was

introduced by Sharada and Soner at an international conference on discrete

mathematics in India in 2008, and subsequently studied by them in their 2010 paper

[11] in which they characterize the trees T satisfying sdiðTÞ ¼ 3.

Although the independent domination subdivision number differs significantly

from the well-studied domination subdivision number, it has not received as much

attention in the literature. In this paper, we provide a more in-depth study of the

independent domination subdivision number of a graph. We proceed as follows. In

Sect. 1.1 we provide the necessary graph theory notation and terminology. Our main

results are presented in Sect. 2, and selected known results are given in Sect. 3. In

Sect. 4, we present a general upper bound on the independent domination

subdivision number. In Sects. 5 and 6 we study the independent domination

subdivision number of special classes of graphs such as complete bipartite graphs

and block graphs. In Sect. 7, we characterize trees T with sdiðTÞ ¼ 1.

1.1 Notation

For notation and graph theory terminology we generally follow [9]. Specifically, let

G be a graph with vertex set V(G) of order nðGÞ ¼ jVðGÞj and edge set E(G) of

size mðGÞ ¼ jEðGÞj. If G is clear from the context, we simply write V and E rather
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than V(G) and E(G). A neighbor of a vertex v in G is a vertex adjacent to v. The

open neighborhood of a vertex v in G, denoted NGðvÞ, is the set of all neighbors of v
in G, while the closed neighborhood of v is the set NG½v� ¼ NGðvÞ [ fvg. If the

graph G is clear from the context, we write N(v) and N[v] rather than NGðvÞ and

NG½v�, respectively. We denote the degree of a vertex v in G by dGðvÞ ¼ jNGðvÞj. A

vertex of degree 1 in G is a leaf of G, and a vertex with a leaf neighbor is a support
vertex of G. A strong support vertex of G is a support vertex with at least two leaf

neighbors. The minimum and maximum degrees among all vertices of G are

denoted by dðGÞ and DðGÞ, respectively.

For a set S � VðGÞ of vertices in a graph G and a vertex v 2 S, we define the S -
external private neighborhood of a vertex v, abbreviated epnGðv; SÞ, as the set of all

vertices in VðGÞnS that are adjacent to v but to no other vertex of S; that is,

epnGðv; SÞ ¼ fw 2 VðGÞnS j NGðwÞ \ S ¼ fvgg. We define an S-external private
neighbor of v to be a vertex in epnGðv; SÞ.

The distance between two vertices u and v in a connected graph G, denoted

dGðu; vÞ or simply d(u, v) if the graph G is clear from context, is the minimum

length of a (u, v)-path in G. The diameter of G is the maximum distance among all

pairs of vertices of G. The distance from a vertex v to the set S in G, denoted by

dGðv; SÞ, is the minimum distance from v to a vertex of S; that is,

dGðv; SÞ ¼ minfdðu; vÞ j u 2 Sg.

We denote the path and cycle on n vertices by Pn and Cn, respectively. A

complete graph on n vertices is denoted by Kn, while a complete bipartite graph
with partite sets of size n and m is denoted by Kn;m. A star is the graph K1;k, where

k� 1. A double star is a tree with exactly two (adjacent) non-leaf vertices. Further if

one of these vertices is adjacent to ‘1 leaves and the other to ‘2 leaves, then we

denote the double star by Sð‘1; ‘2Þ. For example, the double star S(1, 1) is the path

P4. A block graph is a graph in which every block is a complete graph. In particular,

every tree is a block graph.

A rooted tree T distinguishes one vertex r called the root. For each vertex v 6¼ r
of T, the parent of v is the neighbor of v on the unique (r, v)-path, while a child of v
is any other neighbor of v. The set of children of v is denoted by C(v). A descendant
of v is a vertex u 6¼ v such that the unique (r, u)-path contains v. In particular, every

child of v is a descendant of v. A grandchild of v is the descendant of v at distance 2

from v. We let D(v) denote the set of descendants of v, and we define

D½v� ¼ DðvÞ [ fvg.

We use the standard notation ½k� ¼ f1; . . .; kg.

2 Main Result

In this paper, we continue the study of the independent domination subdivision

number of a graph. We first establish a general upper bound on the independent

domination subdivision number of a connected graph of order at least 3 in terms of

its maximum degree and its independent domination number.
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Theorem 2.1 If G is a connected graph of order at least 3, then
sdiðGÞ�DðGÞ � iðGÞ.

As a consequence of Theorem 2.1, the independent domination subdivision

number is well defined on the class of connected graphs of order at least 3. We state

this formally as follows.

Corollary 2.2 For every connected graph G of order at least 3, the parameter
sdiðGÞ is well defined.

We next determine the independent domination subdivision number of a

complete regular bipartite graph.

Theorem 2.3 For k� 4, sdiðKk;kÞ ¼ 3k � 2.

As a consequence of Theorem 2.3, we remark that sdiðGÞ can be arbitrarily large,

even when restricted to the class of connected bipartite graphs G.

Corollary 2.4 There exist connected graphs G with arbitrarily large maximum
degree DðGÞ such that sdiðGÞ� 3DðGÞ � 2.

The following result shows that the independent domination subdivision number

can be arbitrary large, even for the classes of block graphs.

Theorem 2.5 There exist block graphs G such that sdiðGÞ ¼ k for any arbitrary
positive (fixed) integer k.

Our final aim is to give a simple characterization of trees T with sdiðTÞ ¼ 1. For

this purpose, let NðTÞ be the set of vertices in the tree T that belong to no i-set of T;

that is,

NðTÞ ¼ fv 2 VðTÞ j v is in no i-set of Tg:

Theorem 2.6 For a tree T of order at least 3, sdiðTÞ ¼ 1 if and only if T has at least
one of the following two properties.

P1: A leaf of T belongs to the set NðTÞ.
P2: An edge of T has both its ends in NðTÞ.

3 Known Results

In 2000 Haynes, Hedetniemi, and Hedetniemi [7] established the following upper

bound on the domination subdivision number of a graph.

Theorem 3.1 [7] Let G be a connected graph of order n� 3. If u and v are two
arbitrary adjacent vertices each having degree at least 2, then
sdcðGÞ� dGðuÞ þ dGðvÞ � 1.

As a consequence of Theorem 3.1, the domination subdivision number sdcðGÞ is

defined for every connected graph G of order n� 3. As a further consequence of
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Theorem 3.1, we have the following upper bound on the domination subdivision

number of a graph.

Corollary 3.2 [7] If G is a connected graph of order n� 3, then
sdcðGÞ� dðGÞ þ DðGÞ � 1.

In 2008 Favaron et al. [5] gave a construction showing that the domination

subdivision number can be made arbitrarily large.

Theorem 3.3 [5] For each pair of positive integers r and q such that r þ q� 4,

there exists a graph G with dðGÞ ¼ r and sdcðGÞ� r þ q.

Dettlaff [3] proved in her PhD thesis that the domination subdivision number of a

block graph G is at most 3.

Theorem 3.4 [3] If G is a block graph, then 1� sdcðGÞ� 3.

As an immediate consequence of Theorem 3.4, we have that if T is a tree, then

1� sdcðTÞ� 3. Recall that Pn denotes a path on n vertices. For n� 3, we note that

iðPnÞ ¼ dn=3e, implying the following result first observed by Sharada and Soner

[11].

Observation 3.5 [11] For n� 3,

sdiðPnÞ ¼
1 if n � 0 ðmod 3Þ
3 if n � 1 ðmod 3Þ
2 if n � 2 ðmod 3Þ:

8
><

>:

4 A General Upper Bound

We note that if G ¼ K2, then the independent domination number of G does not

change when its only edge is subdivided. Further we note that it possible that the

subdivision of an edge in a connected graph may decrease its independent

domination number. For example, if k� 2 and G is a tree with exactly two non-leaf

vertices both of which have k leaf neighbors, that is, if G is a double star S(k, k),

then iðGÞ ¼ k þ 1 but subdividing the edge joining the two non-leaf vertices

produces a graph G	 with iðG	Þ ¼ 2\iðGÞ.
However we show that the independent domination subdivision number is well

defined on the class of connected graphs of order at least 3. For each such graph, we

show there always exists some set of edges that can be subdivided (where each edge

can be subdivided at most once) in order to increase its independent domination

number.

Theorem 4.1 If G is a connected graph of order at least 3, then there exists an i-set
I of G such that the graph G	 obtained from G by subdividing every edge incident
with a vertex of I satisfies iðG	Þ[ iðGÞ.
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Proof Let G be a connected graph of order n� 3. Let I be an i-set of G with the

minimum possible number of vertices of degree 1, and let �I be the complement of

the set I, and so �I ¼ VðGÞnI. We proceed further with the following claim. h

Claim 1 At least one vertex of I is not a leaf.

Proof Suppose, to the contrary, that every vertex of I is a leaf. If two vertices of I
have a common neighbor, say v, then the set ðInNGðvÞÞ [ fvg is an ID-set of G of

cardinality less than |I|, contradicting the minimality of the set I. Hence, no two

vertices of I have a common neighbor. Thus, jIj ¼ j�Ij ¼ 1
2
n and each vertex outside I

has a unique neighbor in I. Let x be an arbitrary vertex of I, and let y be its unique

neighbor (in �I). Since G is a connected graph of order at least 3, we note that the

vertex y has degree at least 2 in G. Thus the set ðInfxgÞ [ fyg is a i-set of G that

contains fewer leaves than the set I, contradicting our choice of the set I. h

By Claim 1, at least one vertex in the independent set I has degree 2 or more in

the graph G. Let

I1 ¼ fv 2 I j dGðvÞ ¼ 1g

and let I2 ¼ InI1. By our earlier observations, jI2j � 1. Possibly, I1 ¼ ;. Let G	 be

the graph obtained from G by subdividing every edge incident with a vertex of I. For

each vertex v 2 I, let

N	
v ¼ NG	 ðvÞ

be the set consisting of all neighbors of the vertex v in G	. Every independent

dominating set of G	 must contain at least one vertex in NG	 ½v� ¼ N	
v [ fvg in order

to dominate the vertex v for every vertex v 2 I. Thus, iðG	Þ� jIj ¼ iðGÞ. We show

that iðG	Þ[ iðGÞ. Suppose, to the contrary, that iðG	Þ ¼ iðGÞ. Let I	 be an i-set of

G	, and so I	 is an ID-set of G	 and jI	j ¼ iðG	Þ ¼ jIj. In what follows we present a

series of claims describing some structural properties of G which culminate in the

implication of its non-existence.

Claim 2 I2 
 I	.

Proof Suppose, to the contrary, that the vertex v 2 I2 does not belong to the set I	

for some vertex v 2 I. By definition of the set I2, we note that dGðvÞ� 2. Let

v1; v2; . . .; vk be the neighbors of v in the graph G	. We note that the set N	
v ¼

fv1; ; v2; . . .; vkg of neighbors of v in G	 is an independent set, and each vertex in this

set is a subdivided vertex of degree 2.

By supposition, v 62 I	. Renaming vertices if necessary, we may assume that

v1 2 I	 in order to dominate the vertex v. We note that every vertex in I is at

distance at least 4 from every other vertex of I in the graph G	. In particular, for

distinct vertices x and y in I, the sets N	
x and N	

y are disjoint and there is no edge

joining a vertex in N	
x and a vertex in N	

y . In order to dominate the vertex v2, either

v2 2 I	 or the (unique) neighbor of v2 that belongs to the set �I belongs to the set I	.
Thus, the set I	 contains at least one vertex from each of the sets NG	 ½w� for every
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vertex w 2 Infvg, and contains at least two additional vertices to dominate the

vertices in NG	 ½v�. Therefore, jI	j � jIj þ 1, contradicting our supposition that

jI	j ¼ jIj. h

By Claim 2, I2 
 I	.

Claim 3 The set I1 dominates the set �I in the graph G.

Proof Suppose, to the contrary, that there is a vertex w 2 �I that is adjacent to no

vertex of I1 in the graph G. Thus, no neighbor of a vertex in the set I1 is adjacent to

the vertex w in the graph G	. Therefore, the vertex w is not dominated by any vertex

in I	 that belongs to one of the sets N	
x for every x 2 I1. By Claim 2, we have

I2 
 I	, implying that I	 \ N	
v ¼ ; for every vertex v 2 I2. Thus, no vertex of I	

belongs to one of the sets N	
x for every x 2 I2. Thus, in order to dominate the vertex

w in G	, the set I	 must contain at least one vertex that belongs to the set �I, implying

that jI	j � jIj þ 1, a contradiction. h

By Claim 3, the set I1 dominates the set �I in the graph G. Thus, every vertex in �I
has at least one neighbor in G that belong to the set I1.

Claim 4 Every vertex in �I has at least one neighbor in G that belong to the set I2.

Proof Suppose, to the contrary, that there is a vertex w 2 �I that has no neighbor in

G that belongs to the set I2. Let Iw be the set of neighbors of w that belong to the set

I, that is, Iw ¼ I \ NGðwÞ. By supposition, every neighbor of w in I belongs to the set

I1 noting that I is a dominating set of G. Thus, Iw 
 I1 and jIwj � 1. Since G is a

connected graph of order at least 3, we note that the vertex w has degree at least 2 in

G. The set I	w ¼ ðInIwÞ [ fwg is an ID-set of G, implying by our earlier observations

that iðGÞ� jI	wj ¼ jIj � jIwj þ 1� jIj ¼ iðGÞ. Hence we must have equality through-

out this inequality chain. In particular, this implies that jIwj ¼ 1 and the set I	w is an

i-set of G. However, the set I	w contains fewer vertices of degree 1 that does the set I,
contradicting our choice of the set I. h

By Claim 3, every vertex in �I has at least one neighbor in G that belong to the set

I1. By Claim 4, every vertex in �I has at least one neighbor in G that belong to the set

I2. Let w be an arbitrary vertex in �I and let Iw be the set of neighbors of w in G that

belong to the set I, that is,

Iw ¼ I \ NGðwÞ:

Thus, jIwj ¼ jIw \ I1j þ jIw \ I2j � 1 þ 1 ¼ 2. The set I	w ¼ ðInIwÞ [ fwg is an ID-

set of G of cardinality jI	wj ¼ jIj � jIwj þ 1� jIj � 2 þ 1\jIj, contradicting the

minimality of the set I. This completes the proof of Theorem 4.1. h

Theorem 2.1 now follows as an immediate consequence of Theorem 4.1.

123

Graphs and Combinatorics (2021) 37:691–709 697

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


5 Complete Bipartite Graphs

In this section, we show that the independent domination subdivision number can be

arbitrary large, even for special classes of graphs such as connected bipartite graph.

We also show that the independent domination subdivision number differs

significantly from the domination subdivision number. The following result

determines the independent domination subdivision number of a complete bipartite

graph.

Theorem 5.1 For k� 2,

sdiðKk;kÞ ¼
3k � 3 if k 2 f2; 3g
3k � 2 if k� 4:

�

Proof For k� 2, let G ffi Kk;k and let X and Y be the partite sets of G. If k ¼ 2, then

Kk;k ¼ C4 and sdiðC4Þ ¼ 3 ¼ 3ðk � 1Þ. Hence in what follows, we may assume that

k� 3. We note that iðGÞ ¼ k and that both X and Y are i-sets of G. We establish first

a lower bound on sdiðGÞ. h

Claim 5 If k ¼ 3, then sdiðGÞ� 3k � 3, while if k� 4, then sdiðGÞ� 3k � 2.

Proof Let E0 be a smallest possible set of edges of G that need to be subdivided in

order to increase the independent domination number of G. Thus, E0 
 EðGÞ and

sdiðGÞ ¼ jE0j. We show that jE0j � 3ðk � 1Þ. Let G0 be a graph obtained from G by

subdividing the edges in the set E0. By our choice of the set E0, we note that

iðG0Þ[ iðGÞ ¼ k.

If the set X is a dominating set of G0, then since X is an independent set it is an

ID-set of G0, implying that iðG0Þ � jXj ¼ iðGÞ, a contradiction. Hence, the set X is

not a dominating set of G0. Therefore there must exist a vertex y 2 Y not dominated

by the set X in G0. This implies that every edge incident with y in G is subdivided

when constructing G0. Analogously, reversing the roles of X and Y, we have that the

set Y is not a dominating set of G0 and there must exist a vertex x 2 X such that

every edge incident with x in G is subdivided when constructing G0. Let Ex and Ey

be the edges of G incident with x and y, respectively. Thus, Ex [ Ey 
 E0 and every

edge of Ex [ Ey is subdivided when constructing G0. We note that

jEx [ Eyj ¼ dGðxÞ þ dGðyÞ � 1 ¼ 2k � 1. Let X ¼ fx1; x2; . . .; xkg and

Y ¼ fy1; y2; . . .; ykg, where x ¼ x1 and y ¼ y1. Let Y1 ¼ Ynfy1g and let

X1 ¼ Xnfx1g.

Claim 5.1 If no vertex in X1 dominates the set Y1 or if no vertex in Y1 dominates the
set X1, then sdiðGÞ� 3k � 2.

Proof Suppose that no vertex in X1 dominates the set Y1. This implies that at least

one edge joining each vertex of X1 with some vertex of Y1 is subdivided when

constructing the graph G0. Since the set X1 is an independent set, at least jX1j such

edges are subdivided. Further each such edge incident with a vertex of X1 and a
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vertex of Y1 does not belong to the set Ex [ Ey. Hence,

jE0j � jEx [ Eyj þ jX1j ¼ ð2k � 1Þ þ ðjXj � 1Þ ¼ ð2k � 1Þ þ ðk � 1Þ ¼ 3k � 2.

Analogously interchanging the roles of X and Y, if no vertex in Y1 dominates the set

X1, then jE0j � 3k � 2. The desired result follows noting that sdiðGÞ ¼ jE0j. h

By Claim 5.1, we may assume that there exists a vertex x0 2 X1 that dominates

the set Y1, for otherwise sdiðGÞ� 3k � 2 and the desired result follows. Analogously

interchanging the roles of X and Y, we may assume that there exists a vertex y0 2 Y1

that dominates the set X1. Renaming vertices if necessary, we may assume that

x0 ¼ x2 and y0 ¼ y2. Thus, the only edge incident with x2 in G that is subdivided

when constructing G0 is the edge x2y1, and the only edge incident with y2 in G that is

subdivided when constructing G0 is the edge x1y2. We note that the vertex x2

dominates the set Y1 in G0, and the vertex y2 dominates the set X1 in G0.
Let X2 ¼ Xnfx1; x2g and let Y2 ¼ Ynfy1; y2g. Let y1;i be the subdivided vertex of

G0 corresponding to the edge xiy1 of G for i 2 ½k�. If the set X2 dominates the set Y2

in G0, then the set X2 [ fx1; y1;2g, for example, is an ID-set of G0 noting that the set

X2 dominates the vertex y2, implying that iðG0Þ � jX2jþ
jfx1; y1;2gj ¼ jX2j þ 2 ¼ jXj ¼ iðGÞ, a contradiction. Hence, the set X2 does not

dominates the set Y2 in G0. Therefore there must exist a vertex y00 2 Y2 not

dominated by the set X2 in G0. This implies that every edge joining y00 with a vertex

of X2 in G is subdivided when constructing G0. Analogously interchanging the roles

of X and Y, the set Y2 does not dominates the set X2 in G0, implying that there must

exist a vertex x00 2 X2 not dominated by the set Y2 in G0. This implies that every

edge joining x00 with a vertex of Y2 in G is subdivided when constructing G0.
Renaming vertices if necessary, we may assume that x00 ¼ x3 and y00 ¼ y3.

Let Ex3
be the set of edges of G joining x3 with vertices of Y2, and let Ey3

be the

set of edges of G joining y3 with vertices of X2. Thus, Ex3
[ Ey3

� E0 and every edge

of Ex3
[ Ey3

is subdivided when constructing G0. We note that

jEx3
[ Ey3

j ¼ ðk � 2Þ þ ðk � 2Þ � 1 ¼ 2k � 5. By our earlier observations,

Ex [ Ey [ Ex3
[ Ey3


 E0, and so sdiðGÞ ¼ jE0j � jEx [ Ey [ Ex3
[ Ey3

j
¼ jEx [ Eyj þ jEx3

[ Ey3
j ¼ ð2k � 1Þ þ ð2k � 5Þ ¼ 4k � 6. Thus if k ¼ 3, then

sdiðGÞ� 4k � 6 ¼ 3k � 3, while if k� 4, then sdiðGÞ� 4k � 6� 3k � 2. This

completes the proof of Claim 5. h

Claim 6 If k ¼ 3, then sdiðGÞ� 3k � 3.

Proof Let X ¼ fx1; x2; x3g and Y ¼ fy1; y2; y3g. Let x ¼ x1 and y ¼ y1, and let Ex

and Ey be the set of edges of G incident with x and y, respectively. Let

E	 ¼ Ex [ Ey [ fx2y2g. Let G	 be the graph obtained from G by subdividing the

edges of G that belong to the set E	. Let y1;i be the subdivided vertex of G	 resulting

from subdividing the edge xiy1 for i 2 ½3�, and let x1;i be the subdivided vertex of G	

resulting from subdividing the edge x1yi for i 2 ½3�. We note that x1;1 ¼ y1;1. Let w
be the subdivided vertex of G	 resulting from subdividing the edge x2y2. We show

that iðG	Þ[ iðGÞ ¼ 3. Let I	 be an i-set of G	.
In order to dominate the vertex x1;1, we have that I	 \ fx1; y1; x1;1g 6¼ ;. If

x1;1 2 I	, then in order to dominate the four subdivided vertices incident with x or y
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different from x1;1, we need at least four additional vertices in I	, and so in this case

jI	j � 5. If fx; yg � I	, then we need at least two additional vertices in I	 to

dominate the four vertices in fx2; x3; y2; y3g, and so jI	j � 4. Hence, we may assume

that exactly one of x and y belong to the set I	, for otherwise jI	j � 4, as desired. By

symmetry, we may assume that x 2 I	. In order to dominate the vertex y, at least one

of y1;2 and y1;3 belongs to I	. If y1;2 2 I	, then we need at least two additional

vertices in I	 to dominate w and y3, while if y1;3 2 I	, then we need at least two

additional vertices in I	 to dominate y1;2 and y2. Thus in both cases, jI	j � 4. Hence,

iðG	Þ ¼ jI	j � 4[ iðGÞ, implying that sdiðGÞ� jE	j ¼ 6 ¼ 3k � 3. h

Claim 7 If k� 4, then sdiðGÞ� 3k � 2.

Proof Let X ¼ fx1; x2; . . .; xkg and Y ¼ fy1; y2; . . .; ykg. Let x ¼ x1 and y ¼ y1, and

let Ex and Ey be the set of edges of G incident with x and y, respectively. Let

ei ¼ xiyi for i 2 ½k�, and let E0 ¼ fe2; . . .; ekg. Let E	 ¼ Ex [ Ey [ E0. We note that

jE	j ¼ jEx [ Eyj þ jE0j ¼ ð2k � 1Þ þ ðk � 1Þ ¼ 3k � 2. Let G	 be the graph

obtained from G by subdividing the edges of G that belong to the set E	. Let y1;i

be the subdivided vertex of G	 resulting from subdividing the edge xiy1 for i 2 ½k�,
and let x1;i be the subdivided vertex of G	 resulting from subdividing the edge x1yi
for i 2 ½k�. We note that x1;1 ¼ y1;1. The set X [ fy1g is an ID-set of G	 (as is the set

Y [ fx1g), and so iðG	Þ � jXj þ 1 ¼ k þ 1 ¼ iðGÞ þ 1. We show that

iðG	Þ ¼ k þ 1 ¼ iðGÞ þ 1.

Let Nx and Ny be the set of subdivided vertices adjacent to x and y, respectively,

in G	, and so Nx ¼ fx1;i j i 2 ½k�g and Ny ¼ fy1;i j i 2 ½k�g. Let wi be the subdivided

vertex in G0 corresponding to the edge xiyi of G for i 2 ½k�. In particular, we note

that Nx \ Ny ¼ fw1g, and so w1 ¼ x1;1 ¼ y1;1. Let Y1 ¼ Ynfy1g and let

X1 ¼ Xnfx1g. Let I	 be an i-set of G	. In order to dominate the vertex w1, we

have that I	 \ fx1; y1;w1g 6¼ ;.

Suppose firstly that I	 \ fx; yg ¼ ;. In this case, w1 2 I	. Since x 62 I	 and y 62 I	,
in order to dominate the 2ðk � 1Þ subdivided vertices in G	 that belong to the set

ðNx [ NyÞnfw1g, we need at least 2ðk � 1Þ additional vertices in I	, implying that

jI	j � 1 þ 2ðk � 1Þ ¼ 2k � 1� k þ 1.

Suppose secondly that jI	 \ fx; ygj ¼ 1, and so w1 62 I	. By symmetry, we may

assume that x 2 I	, and so y 62 I	. In order to dominate k � 1 vertices in Nynfw1g we

note that jI	 \ fxi; y1;igj ¼ 1 for each i 2 ½k�nf1g. Further in order to dominate the

vertex y, we note that I	 \ ðNynfw1gÞ 6¼ ;. Renaming vertices if necessary, we may

assume that the vertex y1;2 2 I	, and so x2 62 I	. But then at least one additional

vertex is needed in I	 in order to dominate the subdivided vertex w2 in G	, implying

that jI	j � 1 þ ðjNyj � 1Þ þ 1 ¼ jNyj þ 1 ¼ k þ 1.

Suppose thirdly that fx; yg � I	. In this case, we need at least k � 1 additional

vertices in I	 to dominate the k � 1 vertices w2;w3; . . .;wk. Therefore,

jI	j � 2 þ ðk � 1Þ ¼ k þ 1. In all cases, we have shown that

iðG	Þ ¼ jI	j � k þ 1[ iðGÞ, implying that sdiðGÞ� jE	j ¼ 3k � 2. h

The desired result of Theorem 5.1 now follows immediately from Claims 5, 6,

and 7 . h
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Theorem 2.3 is a special case of Theorem 5.1 when k� 4. By Theorem 2.3, we

remark that the result of Theorem 3.1 for the domination subdivision number does

not hold for the independent domination subdivision number. Thus, the independent

domination subdivision number differs significantly from the domination subdivi-

sion number.

6 Block Graphs

We consider next the class of block graphs, where we recall that a block graph is a

graph in which every block is a complete graph. In this section we prove

Theorem 2.5. Recall its statement.

Theorem 2.5. There exist block graphs G such that sdiðGÞ ¼ k for any arbitrary
(fixed) positive integer k.

Proof For k ¼ 1, we take G ¼ Pn where n � 0 ðmod 3Þ. For k ¼ 2, we take G ¼ Pn

where n � 2 ðmod 3Þ, while for k ¼ 3, we take G ¼ Pn where n � 1 ðmod 3Þ. By

Observation 3.5, we note that sdiðGÞ ¼ k in each of these cases. Hence, we may

assume that k� 4, for otherwise the result is immediate. For k� 4, let Gk be

obtained from a complete graph F ffi Kk on k vertices with vertex set VðFÞ ¼
fv1; v2; . . .; vkg by attaching k pendant edges to each vertex of the complete graph F.

For example, when k ¼ 4 the graph Gk is illustrated in Fig. 1, where the darkened

vertices form an i-set of G4. We note that iðGkÞ ¼ 1 þ ðk � 1Þk ¼ k2 � k þ 1 since

every i-set of Gk contains one vertex of F and all ðk � 1Þk leaves of Gk not adjacent

to the selected vertex of F.

We show firstly that sdiðGÞ� k. Let E0 � EðGkÞ be an arbitrary subset of k � 1

edges. Let G0 be the graph obtained from G by subdividing the k � 1 edges in the set

E0.
Suppose firstly that E0 contains at least one edge of the complete graph F.

Renaming vertices if necessary, we may assume that v1v2 2 E0. Let v be the

subdivided vertex in G0 resulting from subdividing the edge v1v2. Let W be the set of

k � 2 subdivided vertices of G0 different from v. Let W1 be the set of subdivided

vertices of G0 resulting from subdividing pendant edges of G incident with v1 or v2

(possibly, W1 ¼ ;). Let W2 be the set of vertices in WnW1 that have a leaf neighbor

in G0, and let W3 be the set of vertices in WnðW1 [W2Þ that are adjacent to neither

v1 nor v2 in G0. We note that jW1j þ jW2j þ jW3j � jW j. Let L1 be the set of leaves of

G0 incident with a vertex in W1, and let L2 be the set of leaves in G0 adjacent to a

vertex in VðFÞnfv1; v2g. We note that jL1j ¼ jW1j, jL2j ¼ ðk � 2Þk � jW2j. We now

consider the set

F ∼= K4
v1

v2 v3
v4

Fig. 1 The graph G4
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D ¼ fv1; v2g [ L1 [ L2 [W2 [W3:

The set D is an ID-set of G0, and so

iðG0Þ � jDj ¼ 2 þ jL1j þ jL2j þ jW2j þ jW3j
¼ 2 þ jW1j þ ððk � 2Þk � jW2jÞ þ jW2j þ jW3j
¼ 2 þ jW1j þ ðk � 2Þk þ jW3j
� k2 � 2k þ 2 þ jW j
¼ k2 � 2k þ 2 þ ðk � 2Þ
¼ k2 � k

\k2 � k þ 1

¼ iðGkÞ:

This, if E0 contains at least one edge of the complete graph F, then iðG0Þ\iðGkÞ, a

contradiction. Hence, E0 contains no edge from the complete graph F. Thus, every

edge of E0 is a pendant edge of G. Since jE0j\k, at least one vertex of F is such that

none of its incident pendant edges belong to the set E0. Renaming vertices if nec-

essary, we may assume that v1 is such a vertex of F. In this case, we let L consist of

all leaves of G that are not adjacent to v1. The set L [ fv1g is an ID-set of G0,

implying that iðG0Þ � jLj þ 1 ¼ ðk � 1Þk þ 1 ¼ k2 � k þ 1 ¼ iðGkÞ. Thus, if E0 �
EðGkÞ is an arbitrary subset of k � 1 edges, then we have shown that removing the

set of edges E0 from Gk does not increase the independent domination number. This

proves that sdiðGÞ� k, as desired.

To prove that sdiðGÞ� k, let ui be an arbitrary leaf neighbor of the vertex vi in G
for all i 2 ½k�. Let ei ¼ uivi for i 2 ½k�, and let E	 ¼ fe1; e2; . . .; ekg. Let G	 be the

graph obtained from G by subdividing the k edges that belong to the set E	. Let I	 be

an arbitrary i-set of G	. By the minimality of I	, the set I	 contains exactly one

vertex from the complete graph. Renaming vertices if necessary, we may assume

that v1 2 I	, implying that u1 62 I	. In order to dominate the leaves of G	 that are not

adjacent to v1 in G	 and are different from u1, the set I	 contains at least ðk � 1Þk
additional vertices. Thus, iðG	Þ ¼ jI	j � 2 þ ðk � 1Þk ¼ k2 � k þ 2[ iðGkÞ. Hence,

sdiðGkÞ� jE	j ¼ k. As observed earlier, sdiðGÞ� k. Consequently, sdiðGÞ ¼ k. h

Recall that by Theorem 3.4, if G is a block graph, then 1� sdcðGÞ� 3. However

by Theorem 2.5, we can construct a block graph G such that sdiðGÞ is arbitrary

large. This shows once again that the independent domination subdivision number

differs significantly from the domination subdivision number.

7 Trees

In this section, we present a proof of Theorem 2.6. We remark that our

characterization given in Theorem 2.6 is along similar lines to that presented by

Benecke and Mynhardt [2, Theorem 2] for the domination subdivision number. (In

[2, Theorem 2], however, we note that the set NðTÞ is defined with respect to the
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domination number; that is, NðTÞ ¼ fv 2 VðTÞ j v is in no c-set of Tg.) We

also remark that our proof of the necessity part of the proof of Theorem 2.6 is along

similar lines to the proof presented in [2, Theorem 2].

We are now in a position to present a proof of Theorem 2.6. Recall its statement.

Theorem 2.6. For a tree T of order at least3, sdiðTÞ ¼ 1if and only if T has at
least one of the following two properties.

P1: A leaf of T belongs to the set NðTÞ.
P2: An edge of T has both its ends in NðTÞ.

Proof We first prove the sufficiency. We proceed with the following two claims.

Claim 8 If the tree T has property P1, then sdiðTÞ ¼ 1.

Proof Suppose that the tree T has property P1. Let u be a leaf of T such that

u 2 NðTÞ, and let v be its neighbor. Consider the tree T 0 obtained from T by

subdividing the edge uv and let w be the resulting subdivided vertex adjacent to u
and v in T 0. Let I0 be an i-set of T 0. We note that either u 2 I0 or w 2 I0. Suppose

firstly that w 2 I0. In this case, the set I ¼ I0nfwgÞ [ fug is an ID-set of T. Since

u 2 NðTÞ, the set I is not an i-set of T, implying that iðT 0Þ ¼ jI0j � iðTÞ þ 1.

Suppose secondly that u 2 I0. If v 62 I0, then we can replace u in I0 with the vertex w,

and obtain iðT 0Þ � iðTÞ þ 1, as in the previous case. If v 2 I0, then the set I0nfug is

an ID-set of T, implying that iðTÞ� jI0j � 1 ¼ iðT 0Þ � 1. Thus in all cases we have

iðT 0Þ[ iðTÞ. Therefore, subdividing only one edge of T, namely the edge uv,

increases the independent domination number. Thus, sdiðTÞ ¼ 1. h

Claim 9 If the tree T has property P2, then sdiðTÞ ¼ 1.

Proof Suppose that the tree T has property P2. Let e ¼ uv be an edge of T such that

both u 2 NðTÞ and v 2 NðTÞ. We note that in this case neither u nor v is a leaf in T,

and so dTðuÞ� 2 and dTðvÞ� 2. Let Tu and Tv be the components of the tree T � uv
that contain the vertex u and v, respectively. Let I be an i-set of T, and let Iu and Iv
be the restriction of the set I to the trees Tu and Tv, and so Iu ¼ I \ VðTuÞ and

Iv ¼ I \ VðTvÞ. By our earlier observations, u 62 Iu and v 62 Iv. If Iu is not an i-set of

Tu, then jIuj[ iðTuÞ. In this case, if I	u is an i-set of Tu, then the set I	u [ Iv is an ID-

set of T, and so iðTÞ� jI	u j þ jIvj\jIuj þ jIvj ¼ jIj ¼ iðTÞ, a contradiction. Hence, Iu
is an i-set of Tu, and so iðTuÞ ¼ jIuj. Analogously, iðTvÞ ¼ jIvj. If there is an i-set of

Tu that contains the vertex u, then such a set can be extended to an i-set of T by

adding to it the set Iv, contradicting the supposition that u 2 NðTÞ. Hence,

u 2 NðTuÞ. Analogously, v 2 NðTvÞ.
We now consider the tree T 0 obtained from T by subdividing the edge uv and let

w be the resulting subdivided vertex adjacent to u and v in T 0. Let I0 be an i-set of T 0.
In order to dominate the vertex w, we note that I0 \ fu; v;wg 6¼ ;. Let I0u and I0v be

the restriction of the set I0 to the subtrees Tu and Tv of T 0, and so I0u ¼ I0 \ VðTuÞ and

I0v ¼ I0 \ VðTvÞ.

Claim 9.1 If w 62 I0, then sdiðTÞ ¼ 1.
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Proof Suppose that w 62 I0. We show that in this case, we must have

jI0 \ fu; vgj ¼ 1. Suppose, to the contrary, that fu; vg 
 I0. We note that I0u and I0v
are ID-sets of Tu and Tv, respectively. By supposition, u 2 I0u and v 2 I0v. By our

earlier observations, u 2 NðTuÞ, implying that the set I0u is not an i-set of Tu, and so

jI0uj � iðTuÞ þ 1. Analogously since v 2 NðTvÞ, we have jI0vj � iðTvÞ þ 1. Thus,

iðT 0Þ ¼ jI0j ¼ jI0uj þ jI0vj � iðTuÞ þ iðTvÞ þ 2 ¼ iðTÞ þ 2. However the set Iu [ Iv [
fwg is an ID-set of T 0, implying that iðT 0Þ � jIuj þ jIvjþ 1 ¼ iðTuÞ þ iðTvÞþ
1 ¼ iðTÞ þ 1. Thus we have shown that iðTÞ þ 2� iðT 0Þ � iðTÞ þ 1, a contradiction.

Hence, jI0 \ fu; vgj ¼ 1, and so exactly one of u and v belong to the set I0.
Renaming u and v if necessary, we may assume that u 2 I0 (and therefore that

v 62 I0). In this case, the set I0 is an ID-set of T. However since u 2 NðTÞ, the set I0 is

not an i-set of T, implying that iðT 0Þ ¼ jI0j[ iðTÞ. Therefore, subdividing only one

edge of T, namely the edge e ¼ uv, increases the independent domination number.

Thus, sdiðTÞ ¼ 1. h

By Claim 9.1, we may assume that w 2 I0, for otherwise the desired result,

namely sdiðTÞ ¼ 1, follows. Thus, u 62 I0 and v 62 I0 since the set I0 is an independent

set. If the set I0u is not an ID-set of Tu, then this implies that I0u dominates all vertices

of Tu except for the vertex u. In this case, the set I ¼ ðI0nfwgÞ [ fug is an ID-set of

T. However since u 2 NðTÞ, the set I is not an i-set of T, implying that

iðT 0Þ ¼ jI0j ¼ jIj[ iðTÞ. Hence we may assume that the set I0u is an ID-set of Tu, and

analogously that the set I0v is an ID-set of Tv. Thus,

iðT 0Þ ¼ jI0j ¼ jI0uj þ jI0vj þ 1� iðTuÞ þ iðTvÞ þ 1 ¼ iðTÞ þ 1. Hence if w 2 I0, then

iðT 0Þ[ iðTÞ. This completes the proof of Claim 9. h

The proof of the sufficiency follows from Claims 8 and 9 . To prove the

necessity, suppose that sdiðTÞ ¼ 1. Thus by subdividing only one edge of T, say the

edge uv, we increase the independent domination number. Let T 0 be the tree

obtained from T by subdividing the edge uv and let w be the resulting subdivided

vertex adjacent to u and v in T 0. Let I0 be an i-set of T 0. By supposition, iðT 0Þ[ iðTÞ.
Suppose that either u or v, say u, is a leaf of T. If the vertex u belongs to some i-

set I of T, then the set ðInfugÞ [ fwg is an ID-set of T 0, implying that

iðT 0Þ � jIj ¼ iðTÞ, a contradiction. Hence, u 2 NðTÞ. Therefore we may assume

that neither u nor v is a leaf of T, for otherwise the tree T has property P1 as desired.

Thus, dTðuÞ� 2 and dTðvÞ� 2. If both u 2 NðTÞ and v 2 NðTÞ, then T has

property P2 as desired. Hence we may further assume that at least one of u and v,

say u, belongs to some i-set of T.

Let I be an i-set of T that contains the vertex u. Let NTðvÞnfug ¼ fv1; . . .; vkg
where k ¼ dTðvÞ � 1� 1. Let Ti be the component of T � vvi that contains the

vertex vi for i 2 ½k�. Let Ii be the restriction of I to the tree Ti for i 2 ½k�; that is,

Ii ¼ I \ VðTiÞ. Further, let Ev be the set of k edges incident with v different from the

edge uv, and let Tv be the component of T � Ev that contains the vertex v. Finally,

let Iv be the restriction of the set I to the tree Tv, and so Iv ¼ I \ VðTvÞ. We note that
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I ¼ Iv [
[

i2½k�
Ii

0

@

1

A and iðTÞ ¼ jIj ¼ jIvj þ
Xk

i¼1

jIij:

We proceed further with the following series of claims.

Claim 10 The vertex u is the only neighbor of v that belongs to the set I.

Proof Suppose, to the contrary, that the vertex vi 2 I for at least one i 2 ½k�. This

implies that the set I is also an ID-set in the tree T 0, and so iðT 0Þ � iðTÞ, a

contradiction. h

By Claim 10, the vertex u is the only neighbor of v that belongs to the set I; that

is, v 2 epnTðu; IÞ.

Claim 11 The following hold for all i 2 ½k�.
(a) The set Ii is an i-set of Ti.
(b) The vertex vi does not belong to any i-set of Ti for all i 2 ½k�

Proof Since v 62 I, we note that the set Ii is an ID-set of Ti. If Ii is not an i-set of Ti
for some i 2 ½k�, then replacing the set Ii in I with an i-set of Ti produces an

independent set of T of cardinality less than |I|, a contradiction. Hence, Ii is an i-set

of Ti for all i 2 ½k�. This proves part (a). To prove part (b), suppose, to the contrary,

that there is an i-set of Ti that contains the vertex vi for some i 2 ½k�. Such an i-set

can be extended to an i-set of T by adding to it the set Iv and the i-sets Ij of Tj for

j 2 ½k�nfig. However as observed in the proof of Claim 10, such an i-set of T is also

an ID-set of T 0, and so iðT 0Þ � iðTÞ, a contradiction. Hence, vertex vi does not

belong to any i-set of Ti for all i 2 ½k�; that is, vi 2 NðTiÞ for all i 2 ½k�. h

Claim 12 v 2 NðTvÞ and v 2 NðTÞ.

Proof Suppose that there is an i-set, say Dv, of Tv that contains the vertex v. In

particular, we note that iðTvÞ ¼ jIvj ¼ jDvj. In this case, the set ðInIvÞ [ ðDvnfvgÞ [
fwg is an ID-set of T 0, implying that iðT 0Þ � jIj � jIvj þ jDvj � 1 þ 1 ¼ jIj ¼ iðTÞ, a

contradiction. Hence, the vertex v does not belong to any i-set of Tv; that is,

v 2 NðTvÞ.
Suppose next that there is an i-set, say S, of T that contains the vertex v. Let Sv be

the restriction of S to the tree Tv, and so Sv ¼ S \ VðTvÞ. Since v 2 Sv, we note that

the set Sv is an ID-set of Tv. However since v 2 NðTvÞ, the set Sv is not an i-set of

Tv, implying that jSvj � iðTvÞ þ 1. Let Si be the restriction of S to the tree Ti for

i 2 ½k�; that is, Si ¼ S \ VðTiÞ. If jSij � iðTiÞ for all i 2 ½k�, then

iðTÞ ¼ jSj ¼ jSvj þ
Xk

i¼1

jSij � iðTvÞ þ 1 þ
Xk

i¼1

iðTiÞ ¼ iðTÞ þ 1;

a contradiction. Hence, jSij\iðTiÞ for at least one i 2 ½k�. For such an i 2 ½k�, the set

Si is not an ID-set of Ti. However, Si is an ID-set of Ti � vi, implying that Si [ fvig
is an ID-set of Ti of cardinality jSij þ 1� iðTiÞ. Consequently, jSij ¼ iðTiÞ � 1 and
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the set Si [ fvig is an i-set of Ti that contains the vertex vi, contradicting

Claim 11(b). Hence, there is no i-set of T that contains the vertex v; that is,

v 2 NðTÞ. h

By Claims 11 and 12 , for every edge vvi of T where i 2 ½k�, we have v 2 NðTÞ
and vi 2 NðTÞ; that is, the edge vvi of T has both its ends in NðTÞ for i 2 ½k�.
Hence, the tree T has property P2. This completes the proof of the necessity. h

As a consequence of Theorem 2.6 we present a simple proof that the independent

domination subdivision number of a tree is at most 3. For this purpose, if v is a

support vertex in a tree T, we denote by LvðTÞ the set of leaf neighbors of v in T. If

the tree T is clear from context, we simply write Lv rather that LvðTÞ.

Theorem 7.1 If T is a tree of order n� 3, then 1� sdiðTÞ� 3.

Proof Let T be a tree of order n� 3. If sdiðTÞ ¼ 1, then the desired result follows.

Hence we may assume that sdiðTÞ� 2. Thus by Theorem 2.6, the tree T has neither

property P1 nor P2. In particular, for each leaf v of T there exists an i-set, Dv, of T
such that v 2 Dv, and for each edge uv of T there exists an i-set, Duv, of T such that

jfu; vg \ Duvj ¼ 1. Since T is a tree of order n� 3 satisfying sdiðTÞ[ 1, we note

that T not a star, and so diamðTÞ� 3.

Suppose that diamðTÞ ¼ 3, and so T is a double star Sð‘1; ‘2Þ for some integers

‘2 � ‘1 � 1. If ‘2 [ ‘1, then T has property P1, a contradiction. Hence, ‘2 ¼ ‘1. If

‘ ¼ 1, then T ¼ P4 and sdiðTÞ ¼ 3. If ‘� 2, then subdividing two non-adjacent

edges (that have no vertex in common) results in a tree T 0 with

iðT 0Þ ¼ ‘1 þ 2[ ‘1 þ 1 ¼ iðTÞ, implying that sdiðTÞ ¼ 2. Hence we may assume

that diamðTÞ� 4, for otherwise 2� sdiðTÞ� 3 and the desired result holds.

Among all longest paths in T, let P : v1v2. . .vdiamðTÞþ1 be chosen so that the

degree of v2 is as large as possible. We now root the tree T at the vertex vdiamðTÞþ1.

We note that every child of v2 in the rooted tree T is a leaf; that is, Lv2
¼ Cðv2Þ. Let

A and B be the set of children and grandchildren, respectively, of the vertex v3 in the

rooted tree T. We note that each vertex of B is a leaf of T and is at distance 2 from

v3 in T. Further, every descendant of v3 belongs to the set A [ B. We proceed further

with the following series of claims.

Claim 13 If dTðv2Þ� 3, then the vertex v3 is a support vertex.

Proof Let dTðv2Þ� 3 and suppose, to the contrary, that the vertex v3 is not a support

vertex of T. Thus each child of v3 has at least one leaf neighbor. Since the child v2

of v3 has at least two leaf neighbors, we note therefore that jBj � jAj þ 1. As

observed earlier, every leaf belongs to some i-set of T. Let I be an i-set of T that

contains the leaf v1. We note that every child of v2 is a leaf, and so, Lv2
¼ Cðv2Þ.

Since v2 62 I, we note that Lv2
� I. If v3 62 I, then ðInLv2

Þ [ fv2g is an ID-set of T of

smaller cardinality than jIj ¼ iðTÞ, a contradiction. Hence, v3 2 I. This in turn

implies that B � I. If v4 has at least two neighbors in I, then let

I	 ¼ ðInðB [ fv3gÞÞ [ A. If v3 is the only neighbor of v4 in I, then let

I	 ¼ ðInðB [ fv3gÞ [ ðA [ fv4gÞ. In both cases, I	 is an ID-set of T, and so

iðTÞ ¼ jI	j � jIj � jBj þ jAj\jIj ¼ iðTÞ, a contradiction. h
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Claim 14 If dTðv2Þ� 3, then sdiðTÞ ¼ 2.

Proof Let dTðv2Þ� 3. By Claim 14, the vertex v3 is a support vertex. Let y be an

arbitrary leaf neighbor of v3, and let T 0 be the tree obtained from T by subdividing

the edges v1v2 and v3y with the new subdivided vertices u1 and u2, respectively. Let

I0 be an i-set of T 0. Suppose firstly that v3 2 I0. In this case, y 2 I0, v2 62 I0 and

jfu1; v1g \ I0j ¼ 1. If u1 2 I0, then we can replace u1 with v1 in I0. Hence we can

choose I0 so that v1 2 I0. We now let I	 ¼ I0nfyg. Suppose secondly that v3 62 I0. In

this case, jfu2; yg \ I0j ¼ 1 and jD½v2� \ I0j ¼ 2, where note that

D½v2� ¼ Lv2
ðTÞ [ fv2g. Hence we can choose I0 so that y 2 I0 and fv1; v2g � I0.

We now let I	 ¼ I0nfv1g. In both cases, jI	j ¼ jI0j � 1 and the set I	 is an ID-set of

T, and so iðTÞ� jI	j\jI0j ¼ iðT 0Þ, implying that sdiðTÞ ¼ 2. h

Claim 15 If dTðv2Þ ¼ 2 and v3 is a support vertex, then sdiðTÞ� 3.

Proof Let dTðv2Þ ¼ 2 and suppose that v3 is a support vertex. Let y be an arbitrary

leaf neighbor of v3, and let T 0 be the tree obtained from T by subdividing the edges

v1v2, v2v3 and v3y with the new subdivided vertices u1, u2 and u3, respectively. Let

I0 be an i-set of T 0. Suppose firstly v3 2 I0. In this case, fu1; yg � I0 and we let

I	 ¼ ðI0nfu1; ygÞ [ fv1g. Suppose secondly that v3 62 I0. In this case,

jfu1; v1g \ I0j ¼ 1, jfu2; v2g \ I0j ¼ 1 and jfu3; yg \ I0j ¼ 1. Hence we can choose

the set I0 so that fu1; u2; u3g 
 I0, and we let I	 ¼ ðI0nfu1; u2; u3gÞ [ fv2; yg. In both

cases, jI	j ¼ jI0j � 1 and the set I	 is an ID-set of T, and so iðTÞ� jI	j\jI0j ¼ iðT 0Þ,
implying that sdiðTÞ� 3. h

Claim 16 If dTðv2Þ ¼ 2 and v3 is not a support vertex, then sdiðTÞ� 3.

Proof Let dTðv2Þ ¼ 2 and suppose that v3 is not a support vertex. By our choice of

the vertex v2, we note that each child of v3 is therefore a support vertex of degree 2.

Let T 0 be the tree obtained from T by subdividing the edges v1v2, v2v3 and v3v4 with

the new subdivided vertices u1, u2 and u3, respectively. Let I0 be an i-set of T 0.
Suppose firstly v4 2 I0. In this case, u3 62 I0, jfu1; v1g \ I0j ¼ 1 and

jfu2; v2; v3g \ I0j ¼ 1. Hence we can choose the set I0 so that fu1; u2g 
 I0, and

we let I	 ¼ ðI0nfu1; u2gÞ [ fv2g. Suppose secondly v4 62 I0 and v3 2 I0. In this case,

fu1; v3g � I0 and we let I	 ¼ ðI0nfu1; v3gÞ [ fv2g. Suppose thirdly u3 2 I0. In this

case, jfu1; v1g \ I0j ¼ 1 and jfu2; v2g \ I0j ¼ 1. Hence we can choose the set I0 so

that fu1; u2g 
 I0. Further we can choose I0 so that if dTðv3Þ� 3, then the set I0

contains all grandchildren of v3 different from v1. We now let

I	 ¼ ðI0nfu1; u2; u3gÞ [ fv1; v3g. In all three cases, jI	j ¼ jI0j � 1 and the set I	 is

an ID-set of T, and so iðTÞ� jI	j\jI0j ¼ iðT 0Þ, implying that sdiðTÞ� 3. h

The proof of Theorem 7.1 follows from Claims 14, 15 and 16 . h
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8 Open Problems

We close with some open problems that we have yet to settle. By Theorem 2.1, if G
is a connected graph of order at least 3, then sdiðGÞ�DðGÞ � iðGÞ. A natural

question is to find a general upper bound on the independent domination subdivision

number of a connected graph G in terms of its maximum degree DðGÞ.

Problem 1 Does there exists a constant C such that every connected graph G
satisfies sdiðGÞ�C � DðGÞ? If so, determine the smallest such constant C.

By Corollary 2.4 we know that the constant C in Problem 1, if it exists, satisfies

C� 3. By Theorem 7.1, if T is a tree of order n� 3, then 1� sdiðTÞ� 3, and in

Theorem 2.6 the trees T satisfying sdiðTÞ ¼ 1 are characterized. It remains an open

problem to characterize the trees T satisfying sdiðTÞ ¼ 2 or sdiðTÞ ¼ 3. We state

this problem formally as follows.

By Theorem 2.5, the independent domination subdivision number of a block

graph can be arbitrary large. However as remarked earlier, the independent

domination subdivision number of a tree is at most 3.

Problem 2 Determine classes of graphs different from the class of trees for which
the independent domination subdivision number is bounded above by a constant.
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