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Abstract: Road equipment, such as, e.g., road safety barriers and lighting columns, are subject
to certification according to the EN1317 standard to be allowed for use on European roads. In
engineering practice, due to the terrain conditions, there are cases where other road equipment is
installed within the working width of road safety barriers. Such situations are not considered during
the certification process. Hence, the aim of this study is to analyze the effect of a lighting column
installed within the working width of the barrier on the results of the TB51 crash test. The full-scale
crash test and numerical simulation of this event were conducted. In the full-scale crash test, as well as
in the simulation, the lighting column prevented the barrier’s post from properly disconnecting from
the guardrail, which resulted in the barrier failing to restrain and redirect the 13-t bus. The simulation
was quantitatively compared to the experiment, where the correlation coefficient of ASI curves
equaled 84%. The THIV curves differed significantly between the experiment and the simulation,
which is explained within the paper. Next, simulations with and without the lighting column were
compared. The ASI and THIV in the simulation without the column were 0.33 and 16.1 km/h,
respectively. In the simulation with the column, the ASI and THIV were 0.44 and 17.7 km/h,
respectively. The maximum roll angle of the vehicle in the simulation without the column was
2.01° and with the column was 5.96°. The main difference, however, was that the system without
the lighting column within the working width of the barrier was capable of properly restraining
and redirecting the vehicle. The specific mechanics underlying this behavior are described within
the paper.

Keywords: road safety; field and numerical tests; road barriers; passive safety

1. Introduction

Road safety is one of the key aspects of life of a modern society. With the continuous
development of road networks and with the increasing number of vehicles, a strong
emphasis should be placed on the improvement of road safety. In 2021 alone, 19,800 people
died on roads in the EU [1]. In Poland alone, on average, nearly 3000 people are killed on
the roads each year, about 20% of them as a result of a vehicle falling out of its lane [2].
Those numbers show how much remains to be done in improving road safety. The key
to understanding the need and building tools to manage road infrastructure to reduce
the consequences of lane departure vehicle accidents is to know the actual conditions on
the roads [3] and to identify the hazards and their sources that result from inadequate
design, construction, installation, and maintenance of roadway vehicle restraints [4–7].
Roadway barriers should be considered as obstacles, and their use should be treated as
a necessity [8–10]. This applies especially to bridges and locations where it is not possible
to use a safety zone [11–13]. One way to improve this is to install road safety equipment in
particularly hazardous locations around roads, i.e., road safety barriers (RSBs). In the EU,
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road barriers must pass crash tests according to the EN 1317 standard [14] to be approved
for use on common roads. During the crash test, the barrier must demonstrate essential
proprieties, i.e., it must properly restrain a vehicle and prevent the vehicle from overriding
or tearing the barrier [15–17]. Supporting the field tests are numerical simulations that
greatly expand the range of tested road barrier parameters [18–20]. Numerical analyses
could be used to address specific issues, such as, e.g., problems such as disabled drivers [21].
The consequences of overriding or tearing the barrier are usually catastrophic, especially
if an accident happens on a bridge or in the case where a bus is involved, as a number
of passengers could be on board. One of the conditions for an effective operation of
a road barrier is to provide an obstacle-free zone behind the barrier, so that, in the case of
a vehicular crash, the barrier has sufficient space for deflection [22–24]. The size of that
zone is defined by the working width and vehicle intrusion indices, which are determined
according to EN 1317 in a full-scale crash test. However, on roads, it is often observed that
other safety devices are installed directly behind the barrier, which may affect the barrier
response. There are various reasons for such solutions. One of them may be the local
constraints associated with the topology of the surrounding terrain and/or existing road
infrastructure. Despite there being many studies on vehicular impacts into RSBs [25–27]
or impacts into supporting structures [28–30], there are almost no studies investigating
the influence of the installation of supporting structure in the barrier’s working width on
the crash outcome. One of a few studies on that subject was performed by La Torre et al. [31].
That study analyzed how the installation of a variable message sign (VMS) behind a barrier
can affect the crash results. The performance of the barrier will fully comply with the EN
1317 standard [14] requirements only if the VMS is placed at a distance of at least 130 cm
from the front of the barrier as compared to the 200 cm working width of the device
analyzed. However, many more studies are still needed to properly address that issue.

This study analyzes the effect of the installation of a lighting column in the working
width of a W-beam RSB on the results of the TB51 crash test, as in Figure 1. This research
is important as it will shed light onto the mechanisms and interactions that occur in
the barrier–column–vehicle system during an accident. This will allow the verification of
whether two road safety devices that are safe separately will also work together to achieve
an appropriate level of safety. The TB51 crash test was selected as it involves a 13-tonne
bus, which can inflict serious damage to the barrier during the impact. Moreover, this
particular impact can have extremely tragic consequences, as there may be many fatalities
and seriously injured persons. The W-beam barrier was chosen as it is one of the most
frequently used types of barriers on roads in the EU. That barrier successfully passed
full-scale crash tests according to EN 1317 [14]; hence, it has appropriate certificates for
use on European roads. Similarly, the lighting column was positively tested in accordance
with the EN 12767 standard [32]. However, the tests for both systems were conducted
separately. Hence, the research aimed to evaluate the safety of the combination of those
two road safety systems: the W-beam barrier and the lighting column. The other objectives
of this study were as follows:

• To develop a numerical model of the crash test and its validation for two cases: (1) the test
with the barrier and the lighting column and (2) the test with the barrier alone;

• To analyze the results of the crash tests;
• To evaluate the influence of the lighting column on both: the barrier performance

and the behavior of the bus.
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Figure 1. Exemplary view of the bus during the analyzed crash test.

2. Materials and Methods

In this study, a modified TB51 full-scale crash test was conducted. According to
the EN 1317 standard, the TB51 test considers a 13-tonne bus that hits the barrier with
a speed of 70 km/h at an angle of 20°. The modification of the test considered the installation
of a lighting column within the working width of the system. The RSB was certified for
use on European roads and obtained a W4 class of working width and a VI4 class of
vehicle intrusion. The impact severity of the system was classified to the A class, and
the system’s containment level was H2. The numerical model of the RSB was validated
against a normative TB51 crash test, the results of which were obtained from the system’s
manufacturer. Additionally, the model was also validated against the modified TB51 crash
test, which is presented in the current work.

For the ease of description, the following nomenclature is introduced for the tests:

• Case No. 1—a simulation with a lighting column;
• Case No. 2—a simulation without a lighting column.

2.1. Full-Scale Experiment

The full-scale crash test was conducted on 10 August 2017 at the testing grounds of
the Research Institute for Protective Systems (IBOS) [33]. The experiment was carried out
by the Research Institute for Roads and Bridges (IBDiM) [34]. This institute is certified
by the Polish Center for Accreditation to, among others, perform crash tests according to
the EN1317 standard [14]. The setup of the test is presented in Figure 2. The total length
of the system was 81 m, where there was 63 m of straight section and 9 m at each end of
the barrier.

Figure 2. Scheme of the test setup.

A segment of the barrier is presented in Figure 3. The system consisted primarily of
three main parts, that is a guardrail, posts, and spacers. The length of the guardrail section
was 4.82 m. The total width of the barrier was 0.34 m. The height of the system equaled
0.90 m from the level of the ground. The posts were spaced every 2.25 m. Their total length
was 1.71 m, where 0.81 m was anchored in the ground. The soil on the test site contained
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broken aggregate 0–31.5 mm. Its compaction factor was equal to 1.00, and the bearing
factor was in the range of 65 to 90%.

Figure 3. Technical drawing of the analyzed H2/W4/A road safety barrier.

The analyzed crash test also considered the lighting column in the working width of
the barrier. This column was the 100HE3 class according to the EN 12767 standard [32].
Without a foundation, the column was 10 m long and weighted 87 kg. It was mounted
1.75 m behind the 12th post of the barrier (see Figure 4), and its axis was distanced at 0.60 m
from the face of the system. The foundation was made of a 150 × 30 × 30 cm reinforced
concrete cube, weighing approximately 225 kg.

Figure 4. Test site before the collision, with (A) a view of the run-up track with the bus and the impact
point and (B) a view of the impact point from the point of view of the run-up track.
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2.2. Numerical Simulation
2.2.1. Road Safety Barrier

The numerical model of the H2/W4/A RSB was created using the documentation from
the full-scale crash test and the manufacturer. Guardrails, posts, and spacers were modeled
using fully integrated shell elements of a size of approximately 15 mm. Those elements
were made of steel, and they had a piecewise linear plasticity material model assigned with
the properties of S235 structural steel. The material properties of the steel were obtained
from tensile tests conducted on specimens cut from a section of the considered RSB. Bolt
connections were modeled using solid elements with reduced integration. They had
the material law dedicated to spot weld connections, which is a common approach in FE
modeling [35,36]. The material characteristics of the bolts corresponded to the bolts class 8.8,
according to the ISO 4032-8 standard. Steel parts of the system had a failure criterion that
was based on the maximum effective plastic strain of an element. The critical value of
the plastic strain was assigned to each part of the barrier based on parametric analyses.

The model of RSB consisted of 271,018 nodes and 259,336 mainly quadrilateral FEs.
The comparison between the selected part of the numerical model and the actual barrier
is shown in Figure 5A. In Figure 5B, there is a view on the detail of the finite element
discretization of the surroundings of the barrier’s post. Figure 6A,B show the numerical
simulation setup and include descriptions of the objects involved. In Figure 6C, there is
also a discretization detail of the barrier’s segment.

Figure 5. (A) Comparison between the actual post of the road safety barrier and the corresponding
numerical model; (B) detail of FE discretization of a guardrail, a post, and the ground.

2.2.2. Lighting Column

The lighting column model was created based on the column used in the experiment.
The column in the test setup is shown in Figure 6A,B. The numerical model consisted
of 3715 nodes comprising 3706 FEs. The elements of the column were modeled using
four-node reduced integration shell elements. They had assigned a constitutive model of
a piecewise linear plastic material law with material characteristics corresponding to S235
steel. The size of the elements was in the range from 20 to 50 mm, depending on the height.
The mass and geometry were assigned according to the report from the experiment.
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Figure 6. General views of the road safety barrier and the lighting pole with (A) specific dimensions,
(B) a description of specific elements, and (C) a discretization detail of the barrier’s segment.

2.2.3. Ground

In the simulation, the ground was modeled as cylinders surrounding individual posts;
in which the posts were embedded. The shape of the post was cut from the soil cylinder so
that the ground perfectly surrounded the barrier element. The interaction between the soil
and the post was modeled using a penalty-based contact [37] with static friction of 0.4,
dynamic friction of 0.2, and decay coefficient of 0.001, similar to [38]. Soil cylinders had
a diameter of 1 m and a depth of 0.86 m. The cylinders of the ground were discretized
using 8-node reduced integration solid elements. The view of the post and soil cylinder,
with their corresponding discretization, is presented in Figures 5B and 6C. The density
of the ground was 2200 kg/m3; its bulk modulus was 97.75 MPa, and its shear modulus
equaled 58.64 MPa. The constants of the ground’s plastic yield function constant were
assumed as follows: A0 = 0.000811, A1 = 0.0526, A2 = 0.853, and the pressure cut-off
for tensile fracture was −0.3 MPa. These parameters were assumed based on previous
work [35,36,39].

2.2.4. Vehicle

The bus model used in this study was developed by The Norwegian Public Road
Administration [40]. The model of the bus was modeled mainly using fully integrated
4-node shell elements and selectively reduced solids. Most parts of the bus used the piece-
wise linear plasticity material law; the tires had the Mooney–Rivlin hyper-elastic constitu-
tive relation assigned. Figure 7 shows the comparison between the bus used in the full-scale
crash test and the bus from the simulations. In Figure 7A,B, there is a side view and a front
view of the bus used in the experiment, respectively. The corresponding views for the bus
from the simulations are in Figure 7C,D. A summary of the vehicle parameters, along with
the requirements for the TB51 crash test vehicle, for both the simulation and the experiment,
is presented in Table 1. As seen, all requirements were met for both vehicles.D
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Table 1. Comparison between the FE model of the bus, the bus used in experiment—SETRA S215 UL—
and the requirements for the TB51 crash test, according to EN 1317.

FE Model SETRA S215 UL
Model Year 1991 EN 1317

Mass 12,967.6 kg 12,992 ± 20 kg 13,000 ± 400 kg

Length 12.80 m 12.010 ± 0.020 m n/a

Width 2.506 m 2.490 ± 0.020 m n/a

Location of center
of gravity (CG)

CGx: 3987 mm
CGy: 0 mm

CGz: 1338 mm

CGx: 3815 ± 2 mm
CGy: 3 ± 2 mm

CGz: 1435 ± 2 mm

CGx: 3800 mm ± 10%
CGy: ±100 mm

CGz: 1400 mm +15%/−5%

Number of axles 2 2 n/a

Wheel base 6.798 m 6.080 ± 0.020 m 6.50 m ± 15%

Wheel track
(front/rear) 2.088 m/1.769 m 2.070 ± 0.020 m/

1.800 ± 0.020 m 2.00 m ± 15%

Wheel radius
(front/rear) 0.495 m/0.495 m 0.490 ± 0.005 m/

0.492 ± 0.005 m 0.52 m ± 15%

Number of nodes 125,550 n/a n/a

Number of FEs 128,245 n/a n/a

Figure 7. Comparison between the bus used in the experiment and the corresponding numerical
model, with (A) a side view of the bus, (B) a front view of the bus, and (C) a side view and (D) a front
view of the numerical model.

2.3. Impact Severity Indices

The analysis was conducted according to the EN1317 standard where one of the meth-
ods of assessing the severity of a collision inflicted on the occupants of the vehicle is
the Acceleration Severity Index (ASI) [14]. The ASI is a dimensionless metric based on
acceleration components acquired from the vehicle’s center of gravity. The acceleration
components are normalized to critical values according to the following formula:

ASI(t) =

√√√√(Ax

âx

)2

+

(
Ay

ây

)2

+

(
Az

âz

)2

, (1)
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where Ax, Ay, Az are the components of the acceleration along the axes x, y, and z, re-
spectively. Before application to the formula, the components are filtered with a four-pole
phase-less Butterworth low-pass digital filter with a cut-off frequency of 13 Hz. The vari-
ables âx = 12 G, ây = 9 G, and âz = 10 G are the limit values of acceleration components
along x, y, and z, where G = 9.81 m/s2. The curve of the ASI represents the ASI as a func-
tion of time. However, the final value of the ASI is calculated as the maximum value of
the ASI curve during a collision.

Another severity index is the Theoretical Head Impact Velocity (THIV), which denotes
an impact speed of a theoretical head at the moment of contact with a theoretical vehicle
cabin [14]. The indices ASI and THIV are usually calculated for tests of passenger vehicles.
In this study, these indices were obtained for a bus to provide an additional quantitative
measure for validation.

3. Validation of the Numerical Model
3.1. Full-Scale Experiment

The impact speed of the bus in the full-scale crash test was 73.2 km/h, and the angle
equaled 19.5°, thus generating the vehicle’s kinetic energy of 298.7 kJ. During the experi-
ment, the vehicle hit the barrier 10 cm before the post No. 11 and remained in contact with
the guardrail. After passing the post No. 14, the bus ran over the barrier and rode along
the barrier’s top up to the post No. 16. After reaching this post, the bus left the barrier on
the side opposite to the in-run. At the height of the Post 29, the vehicle overturned to its
left side, which can be seen in Figure 8B. In addition, damage to the protective system and
the lighting column is presented in Figure 8A.

Figure 8. Test site after the collision with (A) a view from behind the barrier on the vehicle approach
track and (B) a view from the approach track on the impact point.

3.2. Numerical Simulation

The simulation was carried out using the MPP LS-Dyna R10.1 software with double
precision on two 12-core Intel® Xeon® Processors E5 v3 @ 2.3 GHz (48 threads in total).
The simulation of 2 s of the impact took 33 h and 46 min of computation time.

The numerical simulation had the same impact conditions as in the experiment,
i.e., the same velocity and the same impact angle. To impact location was also chosen as

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Materials 2022, 15, 4926 9 of 19

in the experiment; hence, the bus in the simulation hit the barrier 10 cm before Post 11.
A comparison of the impact conditions between the experiment and the simulation is also
presented in Figure 9.

Figure 9. Impact conditions of the vehicle in (A) the full-scale crash test and in (B) the simulation.

The results of the numerical simulation were compared with the corresponding ex-
periment. A visual representation of the vehicle trajectories for both cases is presented in
Figure 10. During the initial phase, the bus in the simulation and the experiment followed
a similar path. Differences were observed in the latter parts of the test. The vehicle in
the experiment hit the barrier and swung to its other side, as in Figure 10(2). As seen,
the left side of the vehicle crossed the face of the barrier, and eventually, the whole bus
followed and fully crossed over to the other side of the protective system (see Figure 10(4)).
The wheels on the right side of the bus then caught the barrier, resulting in the bus rollover.
A difference in the vehicle course was observed in the simulation where the center of
the vehicle’s chassis did not cross the face of the barrier. Hence, as a consequence, the ve-
hicle hung on the barrier, as seen in Figure 10(3). The simulation ended with the bus’s
undercarriage hanging on the protective barrier, as in Figure 10(4). Nevertheless, in both,
the experiment and the simulation, the analyzed road safety barrier did not stop the vehicle
from crossing over the traffic lane.

Figure 10. Vehicle trajectories of the full-scale crash test and the numerical simulation.
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The calculated ASI curves were based on accelerations from the driver seat and are
presented in Figure 11. The similarity between the curves was calculated based on the MPC
and ANOVA metrics, as proposed in the technical report [41]. Residuals of ASI curves with
their corresponding distributions are presented in Figure 12. A summary of the metrics is
in Table 2, where all criteria were fulfilled, indicating a good overall correlation between
curves. The maximum ASI in the experiment was 0.25 and occurred 0.196 s after the initial
impact. In the simulation, the maximum ASI was higher and exited 0.44 at 0.189 s.

Figure 11. The comparison between the ASI calculated at the driver seat in the simulation and
the experiment.

Table 2. The summary of MPC, ANOVA, and single value metrics.

MPC Metrics Value, %

Sprague–Geers Magnitude 6.3
Sprague–Geers Phase 18.2

Sprague–Geers Comprehensive 19.2

ANOVA Metrics

Average −1
Std 29.6

Single Value Metrics

Correlation Coefficient 84.1

In Figure 13, there is a comparison between the experimental and the simulation
THIV curves. For both cases, the THIV was based on accelerations from the driver seat.
However, as seen in Figure 13, there are significant differences between those curves.
Discrepancies are mainly due to the different rate at which the vehicle changed its direction
after hitting the barrier. This is because the THIV index directly depends on the yaw velocity.
In both cases, the barrier initiated the redirection of the bus. However, in the simulation,
the redirection occurred faster and was more abrupt. In the experiment, the bus maintained
its initial moving direction for longer. Additionally, the discrepancy may be due to the fact
that in the simulation, the bus hanged on the barrier, and in the experiment, the bus
completely ran over to the other side of the barrier.

To sum up this section, based on both the qualitative comparison of the crash test
trajectories from the experiment and simulation and the quantitative comparison of specific
metrics, the analyzed simulation was considered validated.
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Figure 12. Residuals (A) history, (B) histogram, and (C) cumulative distribution of ASI curves.

Figure 13. The comparison between the THIV calculated at the driver seat in the simulation and
the experiment.

3.3. Damage of the Road Safety Barrier

As a result of the impact in the full-scale crash test, the system was damaged be-
tween Posts 11 and 19. For the simulation, the damage was between Posts 10 and 25.
The guardrail was locally torn in the experiment at Posts 12, 15, 16, and 18. For the simula-
tion, the guardrail was severely damaged at Posts 12, 15, 18, 19, and 20. In the full-scale
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crash test, Posts 11, 12, and 17 were bent, the posts between 13 to 16 were bent to the ground,
and the posts from 1 to 11 were only twisted. For the simulation case, Posts 10, 11, 12, and
24 were bent, Posts 13 to 23 were bent to the ground, and the posts from 1 to 9 and No. 25
were only twisted. The lighting column for both the experiment and the simulation was
damaged near the foundation and was broken at one third of its height.

A view of the damage of the system can be seen in Figure 14.

Figure 14. View of the damaged barrier. (A) Experiment; (B) simulation.

3.4. Damage of the Vehicle

In the experiment, the rear window of the vehicle was broken, the front windshield
was severely cracked, and the front bumper was crushed. Moreover, the left-front wheel of
the vehicle was broken. The left side of the vehicle was damaged due to the contact with
the guardrail. In the simulation, the left side of the vehicle was also damaged. Additionally,
the front and rear bumpers were crushed due to the impact. Moreover, the cross-member
of the chassis frame was damaged and the front axle was bent near the left-front wheel.

A comparison of vehicle’s damage between the full-scale crash test and simulation is
presented in Figure 15.

Figure 15. View of the damaged vehicle. (A) Experiment; (B) simulation.

4. Collisions with and without the Lighting Column

Numerical simulations considered two cases, where Case No. 1 had the lighting
column installed within the working width of the H2/W4/A W-beam RSB and Case No. 2
considered the barrier itself, without any obstacles. All of the modeling details were
the same in both simulations, i.e., the model of the vehicle and the model of the barrier
remained unchanged. Both cases had the same impact conditions, i.e., the impact speed of
70.6 km/h, the impact angle of 20.3°, and the impact location of 10 cm before Post No. 11.
The course of the vehicles’ trajectories in both simulations is presented in Figure 16.
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Figure 16. Vehicle trajectories of numerical simulations of (A) the barrier without an obstacle (Case
No. 1) and (B) the barrier with a lighting column within its working width (Case No. 2).

The trajectory of the vehicle in Case No. 1 was described in Section 3. In simulation Case
No. 2, 0.08 s after the impact, the barrier guardrail flattened on the left-front side of the vehicle
body and the vehicle began to slide and redirect along the guardrail. At 0.14 s after the impact,
Spacer No. 12 was detached from the guardrail, and then, two more spacers (Nos. 13 and 14)
also detached from the guardrail consequently. At 0.54 s after the impact, the rear of the bus hit
the guardrail at the height of Post No. 10 (see Figure 16(3.B)). The rear of the vehicle was also
caught by the barrier, and the guardrail properly redirected the vehicle; at 1.30 s after the impact,
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the vehicle eventually left the barrier. The calculated working width was 1.37 m, and the
dynamic deflection was 1.03 m. The difference between the working width from the simulation
and the value from its certificate was less than 10 cm. The maximum roll angle of the vehicle in
the simulation Case No. 2 was 2.01°, and it was 3.95° less than in Case No. 1. A comparative
analysis of the vehicle trajectories for both simulation cases is summarized in Table 3, where
the time 0.0 s is the time of vehicle impact and the time 2.0 s indicates the end of the simulation.

The results of the ASI and THIV for both simulations were calculated based on acceler-
ations from the driver seat. Their corresponding curves are presented in Figures 17 and 18.
In Case No. 2, the maximum ASI equaled 0.33 and was 25% lower than in Case No. 1.
The time of the maximum ASI in Case No. 2 was at 0.235 s after the impact, which was
0.046 s later than in Case No. 1. The maximum THIV in Case No. 2 was 16.06 km/h at
the time of 0.196 s, which is 9% less and 0.006 s earlier, compared to the other case.

In Figures 19 and 20, there is a comparison between Case No. 1 and Case No. 2 at crucial
moments in the simulation. It was observed that Post Nos. 11, 12, and 13 in Case No. 1 (see
Figure 19A) did not detach from the guardrail, in contrast to the ones in Case No. 2 (see
Figure 19B). This difference seems to be crucial from the point of view of the correct operation
of the system. The experiment additionally confirmed the simulation results, where also no
detachment of the posts from the system was observed. The comparison of the damaged
barrier in the experiment and corresponding simulation is presented in Figure 21.

Table 3. Description of the differences between the analyzed cases. (* the time of the impact, ** the
end of the simulation.)

Time
Intervals, s

Comparison between Simulations

Case No 1 Case No 2

0.0 *–0.13 Similar Course

0.14–0.25
The guardrail made contact with the lighting column, which prevented
the connection between the post and the guardrail from breaking (see
Figures 16(1.A) and 20A).

Post No. 12 was detached from the guardrail (see Figures 16(1.B) and 20B).

0.26–0.39 Post No. 13 did not detach from the guardrail, and the system was
pressed to the ground by the vehicle chassis (see Figure 16(2.A)).

Another post (No. 13) was detached from the guardrail. The guardrail flattened
against the vehicle body and began to redirect the vehicle (see Figure 16(2.B)).

0.40–0.63
After sliding underneath the vehicle chassis, the guardrail was shaped
into a flat surface parallel to the ground, which acted as a ramp, which
allowed the vehicle to run over the barrier (see Figure 16(3.A)).

Post No. 14 disconnected from the guardrail, and the guardrail continued to
effectively redirect the vehicle (see Figure 16(3.B)).

0.63–0.85

The left-front wheel of the vehicle crossed to the other side of the bar-
rier, and the vehicle chassis landed on the top of the guardrail. The sys-
tem underneath the bus almost completely laid down on the ground (see
Figures 16(4.A) and 19A).

The bus was moving parallel to the line of the barrier. Post No. 12, 13, and 14
were disconnected from the system (see Figures 16(4.B) and 19B).

0.86–1.07 The left-rear wheel of the bus reached the barrier. The vehicle continued to move along the guardrail.

1.08–2.0 **
The left-rear wheel of the bus crossed to the other side of the barrier,
and the whole vehicle was over the system. The bus chassis pressed
the system to the ground; however, no posts detached from the guardrail.

The bus eventually left the system completely redirected.

Figure 17. The comparison between the ASI calculated at the driver seat in both simulations.
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Figure 18. The comparison between the THIV calculated at the driver seat in both simulations.

Figure 19. Side views of the H2/W4/B road safety barrier during simulations (time = 0.5 s) for
(A) Case No. 1 and (B) Case No. 2. Note that the surface and soil cylinders are set transparent
for clarity.
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Figure 20. Isometric views of simulations (time = 0.3 s) for Cases (A) No. 1 and (B) No. 2.Note that
the surface and soil cylinders are set transparent for clarity.

Figure 21. Views of the damaged H2/W4/A road safety barrier in (A) the experiment and in
(B) the simulation. Note that the surface and soil cylinders are set transparent for clarity.

5. Conclusions

This research showed that the influence of the installation of the lighting column in
the working width of the H2/W4/A beam barrier led to the malfunction of the system
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during the TB51 crash test. In the considered case, the barrier did not properly restrain and
redirect the vehicle.

It was found that the incorrect behavior of the system was due to the fact that the bar-
rier posts did not properly disconnect from the guardrail at the appropriate moment.
The failure of the post to disconnect prevented the barrier from working as a belt re-
straining the vehicle, and in this case, the post pulled the guardrail downwards. It
was the lighting column that prevented the post from properly detaching itself from
the guardrail, as the lighting column limited the unconstrained deflection of the system.
Pulling the guardrail down caused it to form a ramp, which allowed the bus to run over to
the other side of the system.

It is worth noting the fact that both analyzed systems, the barrier and the lighting
column, had been previously certified for common use on European roads. Each of them
individually is considered as safe road equipment; however, as presented in the current
study, the combination of these systems may lead to dire consequences.
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