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Abstract: The aim of the presented research was the assessment of phosphorus speciation impact
on the precipitation of phosphorus in reject water using Ca(OH)2. To achieve this, phosphorus
speciation (organic and inorganic phosphorus in suspension and in dissolved form) in reject water
that is produced during sludge dewatering, after methane digestion in wastewater treatment plants
(WWTPs), was determined. This study covered the materials from four WWTPs with different
compositions of feedstock for anaerobic digestion (AnD). In one, the AnD process of primary and
secondary sludge was carried out without co-substrate, while in three others, co-substrate (waste
from the agri-food industry and external waste-activated sludge and fats from industrial plants) was
examined. The investigation was conducted in batch reactors using doses of Ca(OH)2 ranging from
2500 to 5500 mg Ca/dm3. The percentage of phosphorus forms determined in the raw reject water
was similar, with the dominant form being soluble reactive phosphorus (SPR) (percentage from 87 to
96%). The small differences observed were dependent on the composition of the AnD feedstock. The
results showed that, in all analysed wastewater, very high (exceeding 99.9%) phosphate phosphorus
removal efficiencies were obtained using Ca(OH)2 for short reaction times (t = 1 h). The efficiency of
phosphate removal depended on pH but not on the forms of phosphorus in the analysed reject water.

Keywords: phosphorus speciation; phosphorus precipitation; reject water; municipal wastewater
treatment plant

1. Introduction

The last two decades have seen intensive development of wastewater collection and
treatment systems in Poland, involving the construction and modernisation of wastewater
treatment plants and the expansion of water and sewage networks. The result of these
developments has been an increase in the volume of wastewater treated. In addition,
between 2000 and 2021, there has been more than doubling the amount of wastewater
treated in treatment plants with enhanced biological removal of nutrients, which now
accounts for more than 83% of total treated wastewater [1]. Highly efficient wastewater
treatment systems generate significant amounts of sewage sludge, of which a total of
1025.8 thousand tonnes of (dry mass) d.m. was generated in Poland in 2021 [1]. As
a result of wastewater treatment processes, phosphorus, whose concentrations in raw
municipal wastewater range from 5–20 mg/dm3, is bound in sewage sludge. Significant
amounts of it then find their way into reject water generated during sludge dewatering,
including sludge after methane fermentation. According to research [2,3], as a result of
sludge digestion, up to 60% of phosphate phosphorus can be re-released into reject water
through polyphosphate hydrolysis. The amount of supernatant is even 20% of the volume
of wastewater flowing into the treatment plant [4,5]. This makes reject water a valuable
material from which phosphorus can be recovered. In the context of the dwindling reserves
of this element and the ever-increasing demand for phosphorus in agriculture, its recovery
is now becoming a necessity and a key element of a circular economy [6]. It is estimated
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that agricultural production must increase by nearly 50% by 2050, compared with 2012 to
meet the growing demand for food, fibre and biofuels. According to the World Bank, the
necessary increase could be as high as 70% [7,8]. Consumption of phosphate fertilisers in
2020 in Poland already amounted to 358.8 thousand tonnes in terms of pure components,
and this represents an increase of 3% compared with 2010. At the same time, there was also
a more than twofold increase in the consumption of lime fertilisers, whose consumption in
2020 amounted to 1,340,000 tonnes of Ca [1]. Instead, current and future trends indicate
that the extraction of natural phosphorus resources occurs faster than natural geological
replenishment. The supply of phosphorus as an agricultural fertiliser depends on a limited
reserve of phosphate minerals, but inefficient use means that this resource is not being used
in a sustainable manner. In addition, the loss of phosphorus from historically accumulated
soil reserves can cause significant environmental damage. The risk of soil erosion and loss
of this element also increases as the share of heavy rainfall in total precipitation increases,
which is observed in many regions of the world [9–11]. The development of sustainable
phosphorus management will require optimising the efficiency of its use, as well as its
recovery from secondary sources, such as municipal wastewater [12].

Precipitation of phosphorus from municipal wastewater or reject water from sludge
dewatering can be carried out to obtain struvite [13–15] or various forms of calcium
phosphate, such as hydroxyapatite [16]. Struvite is a product that contains phosphorus
in a form that is difficult for plants to access, which severely limits its use as a fertiliser,
while calcium phosphates can be a valuable agriculturally slow-release fertiliser [16]. Using
Ca(OH)2 to precipitate phosphorus compounds can be advantageous compared with other
reactants—it is a low-cost formulation, and ions such as Cl−, SO4

2−, Al3+ or Fe3+ are not
introduced into the wastewater. In addition, as a result of the alkalisation that occurs as a
result of dosing Ca(OH)2, the correct pH for the process is ensured, and there is no need to
add NaOH, which is often a necessary procedure during struvite digestion [16–18].

Sewage sludge is also a valuable raw material for biogas production through methane
fermentation. Furthermore, through the production of electricity in cogeneration systems,
they contribute to improving the energy balance of wastewater treatment plants. A signifi-
cant increase in biogas production can be achieved by co-digesting sewage sludge with
waste from the agri-food industry, but this can affect the quality of the reject water and thus
the potential for biogen recovery [19,20].

The composition of feedstock is crucial for nitrogen and phosphorus content and the
forms in which they occur in digestates from agricultural biogas plants. A high content of
inorganic phosphorus has been observed in sewage sludge and animal manure AnD, while
the use of fruit and vegetable waste is characterised by the lowest values [21,22]. Moreover,
the fermentation process affects the mobility of phosphorus forms in post-fermentation
fractions (solid and liquid) [23,24]. It was found that P speciation in digestates depends
on the temperature and composition of the feedstock [25]. This has been observed in the
highest concentrations of organic phosphorus in the liquid fraction of digestates from the
fermentation of distillery brew and livestock manure and the lowest in the fermentation
of fruit and vegetable waste. Although there are publications concerning the effect of the
composition of feedstock on the characteristics of the digestate from agricultural biogas
plants, there is still a lack of research into co-digestion in WWTPs (e.g., wastewater sludge
and agricultural wastes) and its effect on post-digestion product quality. The novelty of
this work is the assessment of the impact of co-digestion on phosphorus forms in reject
water and subsequent removal efficiency. The purpose of this study was to determine the
occurrence of phosphorus fraction in reject water from AnD in municipal WWTPs varying
feedstock composition (only sewage sludge and their co-digestion with waste from the
agro-food industry), and the effect of this speciation on the efficiency of its precipitation
using Ca(OH)2. The study was conducted for different doses of Ca(OH)2, determining the
optimal dose for phosphate removal.
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2. Materials and Methods
2.1. Research Material

The study of the phosphate precipitation process was performed for samples of reject
water from digestate dewatering taken from four municipal wastewater treatment plants
located in northern Poland. All treatment plants are classified as large facilities with a
population equivalent (PE) of more than 100,000. The wastewater treatment system for
all these plants includes the biological removal of nitrogen and phosphorus for various
configurations of the activated sludge method. The primary sludge and excess primary
sludge produced in these treatment plants are subjected to methane digestion. The pro-
duced biogas is burned in cogeneration systems with the generation of heat and electricity.
Three of the four WWTPs surveyed conduct co-digestion of sewage sludge with waste
from the agro-food industry. Basic information on these treatment plants is summarised in
Table 1.

Table 1. Basic characteristics of the studied WWTPs.

WWTP Size Flow Rate Configuration of
Bioreactor Sludge Handling

PE m3/d - -

Debogorze
515,500 56,000

A2/O with final
simultanic

denitrification

AnD * of primary and secondary
sludge without the use of

co-substrates

Poznan
1,200,000 102,200 JHB

AnD of primary and secondary
sludge with use of co-substrates

(waste from the agri-food industry
and external waste activated

sludge)

Slupsk
200,000 20,000 JHB modified to 5-stage

reactor

AnD of primary and secondary
sludge with use of co-substrates

(fats from industrial plants)

Swarzewo
150,000 14,000

SBR with final
sedimentation in

settling tanks

AnD of primary and secondary
sludge with use of co-substrates

(waste from the agri-food industry
and external waste activated

sludge)
The composite samples of reject water were collected in an eight-hour working time sludge dewatering devices.
* AnD—anaerobic digestion.

2.2. Research Methodology

In samples of raw reject water, the following parameters were determined: ammonia
nitrogen, total phosphorus (TP), orthophosphate (PO4–P), chemical oxygen demand (COD),
calcium and magnesium. Additionally, phosphorus speciation (organic and inorganic
phosphorus in suspension and in dissolved form) was determined.

Phosphorus precipitation studies were conducted in a laboratory model consisting
of three 1 dm3 reactors placed in a water bath (Figure 1). Each reactor was equipped
with a mechanical stirrer and a pH probe. Precipitation of phosphorus from reject water
was carried out using various doses of Ca(OH)2, ranging from 2500 to 5500 mg Ca/dm3

administered in the form of milk of lime, which allowed the reject water to become alkaline
enough for the process. The doses of calcium hydroxide used are shown in Table 2.
Experiments were conducted at 30 ◦C. Samples were stirred using mechanical stirrers for
the first 5 min at 400 rpm and then at 130 rpm. The pH was measured continuously, and
in addition, samples were taken after 1 h, 2 h, 3 h, 12 h and 24 h of the study, except for
experiments in which more than 99% phosphorus precipitation efficiency was achieved
after just 1 h. Total phosphorus and phosphate phosphorus concentrations were determined
in the samples.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Energies 2023, 16, 1260 4 of 12

Energies 2023, 16, x FOR PEER REVIEW 4 of 13 
 

 

Experiments were conducted at 30 °C. Samples were stirred using mechanical stirrers for 
the first 5 min at 400 rpm and then at 130 rpm. The pH was measured continuously, and 
in addition, samples were taken after 1 h, 2 h, 3 h, 12 h and 24 h of the study, except for 
experiments in which more than 99% phosphorus precipitation efficiency was achieved 
after just 1 h. Total phosphorus and phosphate phosphorus concentrations were deter-
mined in the samples. 

Table 2. Doses of Ca(OH)2 used in the study. 

WWTP 
Dose of Ca(OH)2 [mg/dm3] 

2250 2500 2750 3000 3250 3500 3750 4000 5500 
Debogorze + + + + + + - - - 

Poznan + + + + + + + + - 
Slupsk + - + + + + + + * + 

Swarzewo + + + + + + - - - 
* doses used only for WWTP Slupsk: 4250; 4500; 4750. 

 
Figure 1. Measuring the effectiveness of phosphorus precipitation in laboratory model—overview 
diagram. 

2.3. Analytical Methods 
The ammonia nitrogen (NH4-N), total phosphorus (TP), orthophosphate (PO4–P), 

chemical oxygen demand (COD), calcium and magnesium were measured using a 
DR20000 spectrophotometer (Hach Company, Loveland, Colorado, USA ). The pH was 
measured using a portable multi-parameter meter (WTW InoLab pH 720). All chemical 
parameters were determined in the samples filtered through a 1,6 μm glass membrane 
filter Millipore (Billerica MA, USA). 

2.4. Procedure for the Determination of Phosphorus Speciation 
Phosphorus forms were determined in the analysed reject water using the generally 

accepted vanadomolybdic acid method of phosphorus determination. This method is 
used for the determination of phosphorus fractions in wastewater and water samples to 
assess the potential bioavailability of phosphorus and the risk of eutrophication [26–28]. 
With this analytical method, total phosphorus (TP), total dissolved phosphorus (TDP), 
and reactive and non-reactive molybdate phosphorus in dissolved and suspended forms 
(SRP and SNRP and PRP and PNRP fractions, respectively) were distinguished (Figure 2). 
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Figure 1. Measuring the effectiveness of phosphorus precipitation in laboratory model—overview
diagram.

Table 2. Doses of Ca(OH)2 used in the study.

WWTP
Dose of Ca(OH)2 [mg/dm3]

2250 2500 2750 3000 3250 3500 3750 4000 5500

Debogorze + + + + + + − − −
Poznan + + + + + + + + −
Slupsk + − + + + + + + * +

Swarzewo + + + + + + − − −
* doses used only for WWTP Slupsk: 4250; 4500; 4750.

2.3. Analytical Methods

The ammonia nitrogen (NH4-N), total phosphorus (TP), orthophosphate (PO4–P),
chemical oxygen demand (COD), calcium and magnesium were measured using a DR20000
spectrophotometer (Hach Company, Loveland, CO, USA). The pH was measured using
a portable multi-parameter meter (WTW InoLab pH 720). All chemical parameters were
determined in the samples filtered through a 1.6 µm glass membrane filter Millipore
(Billerica, MA, USA).

2.4. Procedure for the Determination of Phosphorus Speciation

Phosphorus forms were determined in the analysed reject water using the generally
accepted vanadomolybdic acid method of phosphorus determination. This method is used
for the determination of phosphorus fractions in wastewater and water samples to assess
the potential bioavailability of phosphorus and the risk of eutrophication [26–28]. With this
analytical method, total phosphorus (TP), total dissolved phosphorus (TDP), and reactive
and non-reactive molybdate phosphorus in dissolved and suspended forms (SRP and
SNRP and PRP and PNRP fractions, respectively) were distinguished (Figure 2). Reactive
molybdate phosphorus in dissolved form is often identified with orthophosphate ions. In
contrast, organic and most condensed phosphorus compounds are classified as non-reactive
molybdate phosphorus (both in dissolved and suspended form). The determination of
phosphorus fractions in the digestion reject water was performed according to the test
methodology proposed [27–30] [31]. Total phosphorus and dissolved phosphorus were
determined according to the spectrophotometric method using vanadomolybdic acid after
digestion with potassium peroxydisulfate in non-filtered and filtered samples, respectively,
through a 0.45 µm pore diameter filter [32]. Total reactive phosphorus (TRP) and dissolved
reactive phosphorus (SRP) were determined according to the spectrophotometric method
using vanadomolybdic acid. The fraction of PNRP was calculated as the difference between
TP, SP and PRP. The SNRP fraction was calculated as the difference between SP and SRP.
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Figure 2. Scheme of phosphorus fractionation.

3. Results and Discussion
3.1. Characteristics of Reject Water

The characteristics of raw reject water from digestate dewatering for the four wastew-
ater treatment plants analysed are shown in Table 3. The total phosphorus concentrations
for three of the four treatment plants ranged from 192.8 to 278.0 mg P/dm3, with the
highest values observed for reject water from WWTP Slupsk. Significantly lower val-
ues were recorded for WWTP Swarzewo (39.0 mg P/dm3), which is probably due to
the high dose of iron salts used for the chemical precipitation of phosphorus in SBR re-
actors. Phosphate phosphorus accounted for 96.4% and 99.3% of the total phosphorus
(for WWTP Swarzewo and Slupsk, respectively). The reject water was characterised by a
high concentration of phosphorus: over 122 mg P-PO4/dm3 [33], 125 mg P-PO4/dm3 [34]
60–130 mg P/dm3 [35], and 208 mg P-PO4/dm3 [36]. Malinowski [37] estimated these
values (thermophilic aerobic stabilisation) at around 128.5 mg P/dm3 for TP. Ammonium
nitrogen concentrations ranged from 504 mg N-NH4/dm3, in reject waters from WWTP
Debogorze to 1524 mg N-NH4/dm3 in reject water from WWTP Slupsk, and COD from
378 mg O2/dm3 (WWTP Debogorze) to 519 mg O2/dm3 (WWTP Poznan). The reject water
pH varied in a narrow range from 7.24 (WWTP Debogorze) to 7.88 (WWTP Poznan). The
high concentrations of ammonium nitrogen in reject water from sludge dewatering are due
to the hydrolysis and ammonification of organic nitrogen compounds that occur during
anaerobic digestion [38]. Similarly, high values, more than 1700 mg N-NH4/dm3, have also
been reported [33]; values of 891 mgTKN/dm3 and COD 592 mgO2/dm3 have also been
observed [34].

Table 3. Characteristics of raw reject water, average values, n = 3.

WWTP
pH TP P-PO4 N-NH4 COD Ca Mg

- mg/dm3 mg/dm3 mg/dm3 mg O2/dm3 mg/dm3 mg/dm3

Debogorze 7.24 232 228 504 378 52.1 26.7
Poznan 7.48 196.2 192.8 926 519 55.3 23.4
Slupsk 7.88 278 276 1524 494 64.5 32.8

Swarzewo 7.80 39 37.6 724 437 72.1 58.4

3.2. Phosphorus Speciation

Based on the results, phosphorus in reject water was also in the form of suspension
(PP fraction = PRP fraction + PNRP fraction) and dissolved (SP fraction = SRP fraction +
SNRP fraction), with the dissolved fraction clearly predominating. The phosphorus for the
analysed reject waters was characterised by a similar fractional distribution, regardless of
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the composition of the inputs directed to the digesters. For 3 of 4 WWTPs, the distributions
of P (mean values) were as follows:

SRP fraction > PRP fraction > SNRP fraction > PNRP fraction

Only for reject water from the Swarzewo WWTP was the order of the last two fractions
reversed (PNRP fraction > SNRP fraction), probably due to the coagulant phosphorus
precipitation used at this WWTP. The percentage of SRP fraction varied from 86.7% to 96.4%
and the percentage of PRP fraction varied from 2.9% to 7.4% (Figure 3). The concentrations
of phosphorus forms are reported in Table 4.
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Figure 3. The percentage of phosphorus fraction in reject water from 4 WWTP: (a) Debogorze,
(b) Poznan, (c) Slupsk, and (d) Swarzewo.

Table 4. The concentrations of phosphorus forms in reject water from 4 WWTP, mg P-PO4/dm3

average values, n = 4.

WWTP TP PRP PNRP SRP SNRP SP

Debogorze 232 16 2.9 201.3 11.8 213
Poznan 196.2 13.4 1.6 179.4 1.8 181.2
Slupsk 278 8 0 268 2 270
Swarzewo 39 2.9 0.9 34.7 0.5 35.2

TP, total phosphorus; PRP, particulate reactive phosphorus; PNRP, particulate non-reactive phosphorus; SPR,
soluble reactive phosphorus; SNRP (OP), soluble non-reactive phosphorus (organic phosphorus); SP = SRP +
SNRP—soluble phosphorus, n, number of tests.

The mean values of the concentration of phosphorus in suspension (PP fraction) and
phosphorus present in dissolved form (SP fraction) in the analysed reject water changed
from 3.8 to 19 mg PO4

3−/dm3 and from 35.2 to 270 mg PO4
3−/dm3, respectively.

A similar percentage of phosphorus fraction was observed in the liquid fraction of
digestates from agricultural biogas plants, obtained from the fermentation of three different
waste groups: agricultural lignocellulosic waste, food waste and animal manure [25]. The
predominant share of the SRP fraction is probably related to the hydrolysis of phosphorus-
containing organic compounds that occur during sludge digestion processes. The research
lacks comprehensive data on the speciation of phosphorus in reject water from the dewa-
tering of sewage sludge, which was co-fermented with the use of agricultural waste in
WWTPs. However, according to a researcher [24], the authors expected that the composition
of feedstock may be an important factor that affects phosphorus forms of reject water and
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the phosphorus precipitation process. In the case of reject water from WWTP Dębogórze,
the only one where anaerobic digestion was provided without the use of co-substrates, a
higher proportion of the SNRP fraction was observed (Figure 3). The influence of batch
composition on phosphorus speciation is also indicated by the very similar percentage
fraction of phosphorus in the reject water from the Swarzewo and Poznan WWTPs, where
co-digestion was carried out using comparable materials (primary and secondary sludge
with waste from the agro-food industry and waste-activated sludge externally) (Figure 3). It
is worth noting that the distribution of phosphorus fractions is very similar despite the large
difference in phosphorus concentrations in wastewater (WWTP Swarzewo: 39 mgP/dm3

and WWTP Poznan 196.2 mgP/dm3).

3.3. Precipitation of Phosphorus
3.3.1. Reject Water from Debogorze WWTP

Phosphorus precipitation was carried out for 6 increasing doses of Ca(OH)2 In the case
of the effluent from this treatment plant, at the lowest applied dose of 2250 mg Ca/dm3

and pH = 11.7, phosphorus removal occurred with an efficiency of more than 99.4%, and at
a dose of 2500 mg Ca/dm3 and pH = 11.8 with an efficiency of more than 99.9%, after 1 h of
the experiment. At the same time, a reduction in the concentration of ammonium nitrogen
was observed to a value of 178 mg N-NH4 (a reduction of 64.7%) for a maximum dose of
3500 mg Ca/dm3 and pH = 12.1. This is associated with its transformation into gaseous
form and diffusion into the atmosphere from the surface of the liquid.

3.3.2. Reject Water from Poznan WWTP

A range of 8 doses of 2250–4000 mg Ca/dm3 was tested for reject water from this
treatment plant. A 99.3% reduction in phosphate phosphorus was recorded for a dose of
3000 mg Ca/dm3 and pH = 10.4 after 1 h of the experiment. For higher doses (from 3250 to
4000 mg Ca/dm3), the efficiency of P-PO4 removal was more than 99.9% at a pH ranging
from 11.3 to 12.2 (experiment time of 1 h). The highest decrease in ammonium nitrogen
concentration occurred after 24 h for the highest dose (4000 mg Ca/dm3) and was 82%.

3.3.3. Reject Water from Slupsk WWTP

Achieving more than 99% phosphate phosphorus removal efficiency required a dose
of 4500 mg Ca/dm3 (pH = 10.4). A dose of 5000 mg Ca/dm3 (pH = 11.9) and higher
resulted in a P-PO4 reduction of more than 99.9%. On the other hand, for ammonium
nitrogen removal, the best results were obtained after 24 h (75% reduction for the dose of
4500 mg Ca/dm3, pH =10.3 and 84.8% for the dose of 5500 mg Ca/dm3, pH = 11.9).

3.3.4. Reject Water from Swarzewo WWTP

The effluent from this facility was characterised by a significantly lower range of
phosphate phosphorus concentrations (37.6 mg P-PO4/dm3 on average) due to phosphorus
precipitation with iron coagulants used at the treatment plant. At a precipitation rate
of 2250 mg Ca/dm3 and pH = 10.7, a phosphate phosphorus removal efficiency of more
than 99.3% was achieved, and at a rate of 2500 mg Ca/dm3–99.9% (pH = 11.1). Ammo-
nium nitrogen removal efficiency of 71% was achieved for the highest applied dose of
3500 mg Ca/dm3 after 24 h (pH = 12.2).

The results of phosphorus precipitation tests using Ca(OH)2 conducted for reject
water from 4 wastewater treatment plants are shown in Figure 4a–d. They clearly show
that very high phosphate phosphorus removal efficiency was achieved for reject water
from each facility, in each case for different doses of reactant and at different pH. The
process was rapid, with a reduction of more than 99.9% achieved after just 1 h of the
experiment. At the same time, the analyses indicate that for lower doses (for WWTP
Poznan and Slupsk), increasing the precipitation time has no effect on the efficiency of
phosphate phosphorus removal (Figure 5a,b). It was observed that the values of phosphate
phosphorus concentrations obtained after 1 h did not decrease any further, showing only
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slight fluctuations. The process of ammonium nitrogen removal was different, in which
the highest efficiencies were achieved for a time of 24 h (Figure 6). However, in this case,
the removal of ammonia took place from the surface of the mechanically stirred reactors
without assisting the process by blowing with air.
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Figure 4. Changes in reject water P-PO4 concentrations and pH changes for increasing doses of
Ca(OH)2 in the 4 analysed WWTP (a) Debogorze (b) Poznan (c) Slupsk (d) Swarzewo.
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Figure 5. Changes in P-PO4 concentrations in reject water over time for different doses Ca(OH)2 for
(a) WWTP Poznan and (b) WWTP Slupsk.
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Figure 6. Changes in N-NH4 concentrations in reject water during a series of 24-h tests for 4 WWTPs.
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It is noteworthy that a very high phosphorus removal efficiency of 99.9% was obtained
for all tested reject water. This indicates that, despite the observed differences in the
percentage of phosphorus fractions in the four WWTPs, phosphorus speciation did not
affect phosphorus precipitation. In fact, all forms of phosphorus were precipitated.

The minimum doses at which the highest phosphate phosphorus removal efficiencies
(99.9%) were obtained were as follows:

• WWTP Debogorze: 2500 mg Ca/dm3 and pH = 11.8
• WWTP Poznan 3250 mg Ca/dm3 and pH = 11.3
• WWTP Slupsk 5000 mg Ca/dm3 and pH = 11.9
• WWTP Swarzewo 2500 mg Ca/dm3 and pH = 11.1

Analysing the above data, the pH range at which the phosphorus precipitation process
proceeded most effectively was from 11.1 to 11.9, with the highest pH values determined
for the highest initial concentrations of phosphate phosphorus (Figure 7).
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The pH of solutions and mixtures affects the solubility of phosphorus compounds,
and raising the pH shifts the chemical equilibrium towards the formation of dissociated
phosphate ions, which facilitates their precipitation as insoluble Ca and Mg phosphates.
According to the research, the optimal pH values for the calcium phosphate precipitation
process should be in the range of 10–12.5 [17,39–41]. The pH values obtained in the study
in question to achieve 99.9% phosphate reduction confirm these observations. A high
phosphate removal efficiency of more than 85% was obtained in several locations [39,42,43].
According to one example [16], the key parameter determining the efficiency of calcium
phosphate precipitation is the Ca:P molar ratio, as well as the Ca/P molar ratio and the
initial pH are dependent parameters. The authors reported that for Ca/P equal to 2.07,
98% of phosphorus was removed. The molar ratio calculated in this paper ranged from 8.5
(WWTP Debogorze) to 51.5 (WWTP Swarzewo), but the efficiency was E = 99.9%. Thus,
it appears that a significant portion of calcium hydroxide is consumed to raise the pH.
A further study also observed a greater than 99% efficiency of phosphate removal using
Ca(OH)2 as a pH adjustment reagent [42].

The observed increasing values of ammonium nitrogen removal efficiency with increas-
ing pH obtained in the analysed studies are related to the characteristics of the conversion
of ammonium ions to gaseous NH3 in the ammonia removal process. Analogous relation-
ships were found in further studies [44,45], which examined the effect of pH values on the
removal efficiency of nitrogen and phosphorus.

Further research directions should address the fertiliser values of precipitated sludge,
which is a potentially rich and valuable source of phosphorus and calcium for agriculture.
Taking into consideration the increasing recognition of pre-fermentation disintegration
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technologies prior to co-digestion [46,47], it may also be very important to analyse their
impact on post-digestion products and their ability to process and recover nutrients.

4. Conclusions

1. The concentration of phosphate phosphorus and ammonium nitrogen in reject waters
from the dewatering of digested sewage sludge (with or without co-substrates) varies
over a relatively wide range and depends on the wastewater treatment technology
adopted at the plant, the co-substrate used for the digestion process and the efficiency
of sludge dewatering.

2. In all analysed reject waters, very high (exceeding 99.9%) phosphate phosphorus
removal efficiencies were obtained using Ca(OH)2 for short reaction times (t = 1 h).

3. The efficiency of phosphate phosphorus removal depends on the pH value of the
reaction obtained during the precipitation process.

4. The percentage of phosphorus forms determined in the raw reject water was similar
for the four analysed treatment plants. Phosphorus in reject water was mainly bound
in the SPR (soluble reactive phosphorus) fraction. However, slight differences were
observed due to the composition of the feedstock.

5. The forms of phosphorus in the analysed reject water did not affect the efficiency of
the phosphorus precipitation process with calcium hydroxide. This means that the
phosphorus precipitation method used in this work is very effective for both mono-
and co-digestion processes, regardless of the composition of the feedstock.
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