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To explain the conceptual gap between classical and quantum and other, hypothetical descriptions of the world,
several principles have been proposed. So far, all these principles have not explicitly included the uncertainty
relation. Here we introduce an information content principle (ICP) which represents a constrained uncertainty
principle. The principle, by taking into account the encoding and decoding properties of a single physical system,
is capable of separation, both classicality and quanta from a number of potential physical theories, including
hidden variable theories. The ICP, which is satisfied by both classical and quantum theory, states that the amount
of nonredundant information which may be extracted from a given system is bounded by a perfectly decodable
information content of the system. We show that ICP allows one to discriminate theories which do not allow
for correlations stronger than Tsirelson’s bound. We show also how to apply the principle to composite systems,
ruling out some theories despite that their elementary constituents behave quantumly.
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I. INTRODUCTION

It is astonishing that our best theory of the fundamental
laws of physics, quantum mechanics being robust against
innumerable experimental tests, is as well robust against our
understanding of its physical origins. This is notoriously
manifested by the variety of interpretations of quantum
mechanics (e.g., [1]). One of the reasons is the way the
postulates of quantum mechanics are expressed: they refer
to highly abstract mathematical terms without clear physical
meaning. This drives physicists to look for an alternative way
of telling quantum mechanics. The problem was attacked on
different levels. On one hand it has been shown that quantum
theory can be derived from more intuitive axioms [2–11]. In
particular, it is related to the vastly developed field aiming at
reconstructing quantum theory from information properties of
the system [5–11] (cf. [12]). On the other hand, an effort was
made to derive some principles [13–16] which can separate
quantum theory (or in a narrow sense some aspects of the
theory, such as correlations) from so-called superquantum
theories i.e., the theories that inherit from quantum theory
the no-signaling principle but otherwise can offer different
predictions than quantum mechanics [17].

However, in difference to those approaches, our goal
is to find a criterion for physical theories which involves
quantitative rather than qualitative (i.e., logical) constraints.
Furthermore, in contrast to the previous information principles
based on a composite system, here we define and study a
principle that refers to a single system and represents a sort of
uncertainty principle.

To this end we propose a constraint that ties together (i) the
amount of nonredundant information which can be extracted
from the system by the set of observables and (ii) the systems’
informational content understood in terms of maximal number
of bits that may be encoded in the system in a perfectly
decodable way. We call this constraint information content
principle ICP which represents the constrained uncertainty
principle which holds in the classical and quantum theories
for two different reasons. For classical systems it is due to lack

of knowledge, while for quantum systems it reflects quantum
uncertainty [18]. To demonstrate the efficiency of the principle
we show how it is violated by some theories with relaxed
uncertainty constraints [19] and polygon theories [20], as well
as some incomplete classical theories akin to epistemically
restricted theories [21,22].

II. INFORMATION CONTENT PRINCIPLE

Our aim is to provide a principle that would bound the
information extractable from a system in a physical theory.
There are two problems here to address: first, what should
be the ultimate bound for such extractable information, and
second, how the extractable information itself is to be defined.

Regarding the bound, it is natural to employ the following
fundamental quantity, which we call information content. The
information content is the maximal number of bits that can be
encoded in a lossless way into a given system. We express it as
log2 d, where d the maximal number of messages that can be
encoded in a lossless way into a system (see Appendix A for
detailed discussion). This is a quantity intrinsic to any given
theory, for example, in quantum mechanics it is given by the
logarithm of the dimension of the Hilbert space of the system.

The second question is more demanding. We shall first
present some rough picture and then propose a concrete
implementation of the idea. To begin with, information can be
extracted from the system by making measurements. Rather
than trying to determine the full amount of extractable infor-
mation, we will consider information obtained from measuring
some set of observables. We might want to add information
extracted by measuring each observable; however, they may
be redundant (e.g., if one observable is a function of another
observable). Therefore, one has to subtract the redundancy.
This can be symbolized by the following expression:

∑
i

IMi
− IR � IC, (1)
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FIG. 1. Scenario of the information content principle.

where IMi
denotes information obtained by measuring observ-

able Mi , IR represents redundant information, and IC is the
total information content as defined above. Now we would
like to make the above formula more concrete so that all the
quantities can be computed in a given theory.

To see the difficulties which arise when one tries to define
redundant information IR , consider two observables M1, M2

in classical theory. Then a natural candidate is just the mutual
information of the joint probability of the outcomes of M1 and
M2:

I (M1 : M2) = H (M1) + H (M2) − H (M1,M2). (2)

[Here H ({pi}) = −∑
i pi log2 pi denotes Shannon entropy

of probability distribution {pi}; thus H (M1) and H (M2) are
entropies of distributions of M1 and M2, respectively, while
H (M1,M2) is the entropy of joint probability distribution of
M1 and M2.] Indeed, the mutual information can be interpreted
as a common information shared by both random variables.
However, in quantum theory, such joint probability does not
exist. Therefore, since our quantities are to be sensible in
any theory, including the quantum one, we have to define
redundancy in some indirect way.

We shall now present a setup which allows us to properly
grasp the idea of nonredundant extracted information. Con-
sider the scenario (for simplicity, just for two measurements)
depicted in Fig. 1.

Consider two persons: the sender and the receiver. Let the
sender hold classical information stored in two registers A and
B. She wants to provide access to that information for the
sender but she does not know which register is interesting for
him. She prepares the system S in a state which depends on
the content of A and B. Then she sends S to the receiver. After
transmission of S, the sender and the receiver share the state

ωSAB =
∑
i,j

pi,jω
S
i,j ⊗ σA

i ⊗ σB
j , (3)

where pi,j is the distribution of the content of the classical
registers, whose states are here labeled as σA

i and σB
j ; ωS

i,j

denotes the state of the system, given the classical registers are
in the state σA

i ⊗ σB
j ; and the classical registers A and B are in

hands of the sender, while the system S is held by the receiver.
The receiver extracts information from S by performing
one of two measurements, X and Z. In this way he learns
about the content of A or B, respectively. The information
extracted by observables X and Z are defined, respectively,
as I (A : X) and I (B : Z)—the Shannon mutual information
between classical system and outcomes of measurement. The

redundant information will be the mutual information between
the classical systems I (A : B). The formula (1) then takes the
following concrete form [23] (see also [24]):

I (X : A) + I (Z : B) − I (A : B) � log2 d, (4)

where log2 d is the information content of a system. Note that
here all the quantities I are mutual information of classical
variables. For more than two measurements {Xi} the formula
takes the form (see Appendix B for details)∑

i

I (Xi : Ai) − I (A1 : . . . : An) � log2 d. (5)

Now, the central postulate of the present paper is that the
above formula (5) represents the information content principle
which should be valid for any physical system (either an
elementary or a composite one) in any physical theory. In
particular, the principle holds for quantum theory, which can
be proved in the spirit of [13]. Namely, any theory in which one
can define a notion of entropy satisfying some natural axioms
obeys the principle. In Appendix B we give the list of axioms
and derive ICP from those axioms. The axioms are satisfied
by von Neumann entropy in quantum theory and by Shannon
entropy in classical theory and hence both theories obey the
principle.

Note that the ICP incorporates idea of impossibility of
encoding more information using complementary observ-
ables [25], which is a basic ingredient of information-type
principles [8,9,13,26,27]. (This idea differs from the bounding
capacity of quantum systems, as well as bounding the classical
memory required for their simulation; see, e.g., [28].)

Below we shall show violation of (4) in two elementary
examples: (i) nonlocal theories represented here by so-called
sbit (square bit) [19]; (ii) epistemically restricted theories
where, as an example, we consider hbit (hidden bit) [21,22]
and postpone discussion of more advanced cases to the further
part of the paper. To show violation for sbit and hbit, we
evaluate (4) on the state of (3), with ωS

i,j being such a state
of sbit or hbit that the outcome i,j after measuring X,Z,
respectively, is certain (i.e., p(a = i|x = X) = 1 and p(a =
j |x = Z) = 1). Information encoded in the observables is
completely uncorrelated, i.e., I (A : B) = 0 for ωSAB . Since
there is no uncertainty in the system, information encoded in
each observable might be recovered completely; hence I (X :
A) = I (Z : B) = 1. Taking that together we obtain violation
of (4), since I (X : A) + I (Z : B) − I (A : B) = 2 > 1. At this
point it is worth noticing that in the case of hbit, violation
comes from the fact that the observed dimension d is different
from what we could call an “intrinsic” system dimension:
the observables available in theory have two outputs while
the internal state of the system is described by two classical
bits. The theory is incomplete because of lack of a fine-grained
observable with four outputs that could access full information
available in the system. Note that lack of such observable
excludes the possibility of measuring the two observables one
after another (in which case, one would eventually access both
bits): indeed, then one could define the fine-grained observable
as the subsequent measurement of the dichotomic observables.

For a classical bit, if the observables are nontrivial, they
must be a function of one another, so that we have actually
only one observable up to relabeling the outputs, and the
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information is highly redundant. Indeed, if I (A : X) = 1 and
I (A : Z) = 1, then we must have I (A : B) = 1. Both mutual
informations are maximal, but they are redundant. To discuss
the quantum case, let us assume that marginal entropies
H (A) = H (B) = 1. Then for X and Z complementary, we
have that I (A : B) can vanish. Hence we have I (A : X) +
I (B : Z) − 0 � 1. Thus, although the information is nonre-
dundant, they are restricted. Thus, unlike in the classical case,
here we have two independent “species” of information and
there is room only for one of them. If we rotate the observable
Z towards X, we observe that I (X : A) + I (Z : B) grows
up together with I (A : B). The observables disclose more
information; however, the information is more redundant.
Extractable information cannot exceed the bound given by
ICP.

To see that ICP can be interpreted as an uncertainty of a
new kind, suppose that we fix I (A : B) to be some number
strictly less than 1, i.e.,

I (A : B) < 1. (6)

Then we obtain restrictions on the values I (A : X) and
I (B : Z), namely, they cannot be both equal to 1. This would
look like Hall’s exclusion principle, which also bounds the
sum of two mutual informations [29]. However, unlike in
the exclusion principle, in the present case the restriction is
the same regardless of whether the observables commute or
not. Indeed, if the observables commute (i.e., in classical the-
ory) the restriction comes from the fact that up to the relabeling
of outcomes, there is only one fine-grained observable on a

classical system, so that any other observable carries the same
information. Therefore it is impossible to fit more than one bit
into a binary system, as ICP states.

If the observables do not commute, the reason is less
obvious because the different observables, especially if they
are complementary, surely do not carry the same information.
However, again the restriction posed by ICP holds, this time
because of the quantum uncertainty.

To see more clearly the connection with quantum uncer-
tainty, let us assume that H (X) = 1 and H (Z) = 1, i.e.. that
the outcomes are random. Then ICP is written as

H (X|A) + H (Z|B) � 1 − I (A : B), (7)

while the standard quantum uncertainty principle is of the
form [18]

H (X|A) + H (Z|B) � c(X,Z), (8)

where c(X,Z) quantifies the lack of a common eigenvector
for X and Z. For commuting observables c = 0, and the
uncertainty relation is trivial, i.e., there is no uncertainty. In
our case, when I (A : B) < 1, the right-hand side is constant
independent of observables; hence the relation is always—
both classically and quantumly—nontrivial. Thus any theory
which obeys ICP exhibits uncertainty of outcomes under the
constraint I (A : B) < 1. Yet, as we show below, there are
theories that do not exhibit this uncertainty, and in this sense
they are too “certain” to be physical. The above considerations
are illustrated in Fig. 2.
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FIG. 2. ICP as a constrained uncertainty principle. In the picture we present on the plain H (X|A) + H (Z|B) ≈ I (A : B) the areas attainable
by a quantum 1-qbit system for some fixed observables X and Z: (a) complementary observables; (b) observables where the angle between
axes representing them on the Bloch sphere is π/4 (they are still noncommuting but are not complementary anymore); and (c) a commuting
observable (X = Z), which we interpret as the classical case. The blue dots correspond to states ρSAB chosen randomly from a set of states
satisfying H (X) = H (Z) = 1. The blue solid line represents schematically the boundary of the area. The purple line depicts the ICP bound.
The area attainable by quantum and classical theory is placed above this line. In item (d) we put together the areas from (a), (b), and (c). We
can observe that in the setup when registers A and B keep completely independent information [i.e., I (A : B) = 0], in both the classical and
quantum case there is unavoidable uncertainty. However, when registers A and B hold the same information, uncertainty in the classical case
vanishes. On the other hand, in some nonlocal theories like polygon theories, for I (A : B) = 0 there are states that are “more certain” than
classical and quantum states. These states are depicted by an “x” on (d) and correspond to polygon theories with parameters n = 4 (cyan),
n = 6 (magenta), and n = 8 (red).
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III. VIOLATIONS OF ICP IN GENERAL
PROBABILISTIC THEORIES

In this section we briefly discuss violation of ICP in two
families of theories that originate from general probabilistic
theories (GPT) (see Appendix A). We start with the p general
nonsignaling theories (p-GNSTs) introduced in [19]. (For
more details see Appendix A.) These theories violate the quan-
tum uncertainty relation for anticommuting observables and
they were originally developed to study how Tsirelson’s bound
for the Clauser-Horne-Shimony-Holt inequality emerges from
the uncertainty relation.

The elementary system of p-GNST theory is a box with
two observables X and Z. Its state space is bounded by the
uncertainty relation

(sx)p + (sz)
p � 1, (9)

where p ∈ [2,∞] is a parameter of the theory and sx = p(a =
+|x = X)ψ − p(a = −|x = X)ψ is the mean value of the
observable X measured on the system in state ψ (analogically
for sz and Z). By varying the parameter p one can move from
the state space of sbit to qbit.

In Appendix E 1 we show that violation of the quantum
uncertainty relation by states from p-GNST (i.e., for theories
with p > 2) not only leads to violation of Tsirelson’s bound (as
proved in [19]) but also to violation of ICP by the elementary
system. Violation of ICP in these theories follows from
the existence of sufficiently many states for which entropic
uncertainty for the observables X and Z is smaller than in
the quantum case. Relaxation of the uncertainty relation also
was shown to increase the maximum recovery probability for
so-called 2 �→ 1 random access codes (RACs). Specifically,
one can encode two bits into a system from the theory in such
a way that the probability of decoding (recovery) for each
bit separately reads as prec = (1/2)1/p. Therefore, excluding
p-GNSTs with p > 2, ICP puts a bound on the performance
of random access codes.

ICP not only applies to elementary systems but may also
be used in a natural way to study composite systems. It is able
to exclude theories which are nonphysical, but nevertheless
their state space of the elementary system is quantum. Here
an example is p-GNST with p = 2, where violation of ICP
occurs for a system with at least five parties. This result is
based on the existence of super-strong RAC in p-GNST.

It is interesting to ask what other geometrical constraints
(e.g., other uncertainty relations, consistency constraints
(cf. [19]), and local orthogonality [16]) have to be added to
theory to conform with ICP. In the opposite direction, one
may ask how ICP limits the strength of nonlocal correlations
achievable in GPT for systems whose elementary subsystems
obey quantum mechanics.

We move to polygon theories [20]. They are described
in more detail in Appendix E 2. Here we just mention that
state space in those theories is given by a polygon with
n vertices. For those theories ICP is more sensitive than
Tsirelson’s bound, since it allows one to discriminate theories
which do not allow for correlations stronger than Tsirelson’s
bound. Namely, ICP is violated in all nonphysical polygon
theories. For theories with even n, it is again connected with
the existence of states with lower entropic uncertainty than in

the quantum case. For odd n violation of ICP links rather to the
fact that in this case polygon theories allow for communication
of more than 1 bit per elementary system in the Holevo sense
(i.e., in the asymptotic limit) [30]. Interestingly, we found
examples of polygon theories that are not ruled out by a
principle proposed in an independent development [27] based
on so-called dimension mismatch.

IV. SUMMARY

We have identified a constrained uncertainty informational
principle (ICP) based on a single physical system which puts
new constraints on physical theories. The principle has a
form of uncertainty-type inequality with an extra information
constraint. This is the feature that allows the principle to filter
out both “superquantum”and “superclassical”(epistemically
restricted) theories, leaving the two “modest” ones, i.e.,
classical and quantum, within the scope of its validity. If
applied to classical theory, ICP reflects the fact that there
is basically one type of information and all fine-grained
observables in classical discrete systems are equivalent up
to relabeling. On the contrary, in quantum mechanics, there
are much different “species” of information, which is reflected
by the presence of incompatible observables which are only
partially redundant. At the same time, only one type of
information may be completely present in the system [31,32],
as stated in Bohr’s principle of complementarity [33], which is
connected to entropic uncertainty relations. Only one observ-
able from the complementary set may be measured perfectly.
However, two observables which are “less incompatible” than
complementary reveal information which is redundant. ICP
gives the tradeoff between how much information may be
extracted and how redundant the information is. In particular,
the power of the principle is illustrated by the fact that it
rules out some theories (so-called polygonic theories) that do
not violate Tsirelson bound, which therefore are not detected
neither by information causality nor by local orthogonality.
An intriguing feature of the ICP is that two thus-far-distinct
fundamental concepts, uncertainty and random access coding,
are inextricably and quantitatively linked within a single
constrained uncertainty. It sheds light on the question of
why quantum mechanics is so restrictive, or in other words,
why it has such and only such strength. We believe that the
information content principle may be a useful tool for analysis
of forthcoming theories, yet to be discovered. It seems also
that it may help in deeper understanding of the laws governing
physical reality in general.
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APPENDIX A: GENERALIZED PROBABILISTIC
THEORIES

A generalized probabilistic theory consists of a convex state
space � ⊆ Rn, i.e., the set of admissible states the system
may be prepared in, and the set of measurements M. The
measurement outcome is represented by the effect e, which is
a linear map e : � → [0,1]. e(ω) is the probability of outcome
e when the measurement is performed on the system in state
ω. The special effect is the unit effect u such that for every
ω ∈ � there is u(ω) = 1 (here we consider only normalized
states). The measurement is the set of effects {ei} summing up
to a unit effect u.

The state of the system is entirely determined by the
probabilities p(a|x) it assigns to the outcomes a of every
measurement x. However, there exists a subset of measure-
ments called fiducial measurements F ⊆ M, which is enough
to describe the state [6].

Particular examples of systems which may be expressed in
terms of GPT (see Fig. 3) are classical bit, qbit, and sbit (square
bit). The last one, sometimes called gbit for generalized bit, is
the building block of the PR box [34].

p(+|X)

p(+|Z)

1

10
0

p(+|X)

p(+|Z)
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10
0

p(+|X)

p(+|Z)

1

10
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(a) (b)

(c) (d)

FIG. 3. Elementary systems in exemplary GPT from the per-
spective of two distinguished dichotomic observables X and Z. (a)
classical bit and (b) hidden bit (hbit): This system is an example
from epistemically restricted theories consisting of two classical bits
where if one of them, chosen by the observer, is read out then the
second necessarily disappears or becomes unreadable by any physical
interaction. (c) quantum bit (qbit) and (d) square bit (sbit): This is
an example from nonlocal theories and may be viewed as a building
block of PR boxes. A qbit differs from the sbit and hbit by the amount
of uncertainty. A classical bit admits no uncertainty; however, X and Z

reveal the same information. This is reflected in perfect correlations
of X and Z. The state space of sbit and hbit observed from the
perspective of two observables may seem to be equivalent. What is
missing on that picture is the issue of decomposition into pure states.
Measurements X and Z have two outcomes, + and −. The axis
represents probability of outcome + when measurement X or Z is
performed on the system in a given state.

If the set of measurements does not reach enough, one may
obtain a classical system with hidden variables. For example,
the elementary system in epistemically restricted theories,
consists of two classical bits. One of two observables can
be measured on the system giving access to a chosen bit.
After measurement, information from the complementary bit
is unavoidably lost. This property reflects a lack of fine-grained
observable in hidden variable theory. A more sophisticated
example of the hidden variable theory may be found in [21].

Given two systems A and B, we may define in GPT a
composite system AB. The global state of the system AB is
completely determined by joint probabilities of outcomes for
fiducial measurements performed at the same time on each
subsystem. This is called a local tomography assumption. All
effects for the composite system AB are of the form eAeB ,
which means that the effect eA was measured on the subsystem
system A and eB on the subsystem B. The state space �AB is
not defined in the unique way. It contains all states of the form
ωAωB , i.e., states which result from preparation of states ωA

and ωB independently of the subsystems A and B. [For ωAωB

it holds that eAeB(ωAωB) = eA(ωA)eB(ωB).] Other states ωAB

may also belong to �AB , provided eAeB(ωAB) � 0 is true for
every pair of effects. Therefore starting from elementary sys-
tems, we may obtain different composite systems depending on
the restrictions imposed on �AB (cf. generalized nonsignaling
theory and generalized local theory in [34]). In every case,
�AB contains only nonsignaling states. The dimension of state
space �AB is bounded by

dim(�AB) + 1 � [dim(�A) + 1][dim(�B) + 1]. (A1)

For a given GPT, we may ask for a maximal number
of states that can be perfectly distinguished in a single-shot
measurement [4,6]. We will call this value the observed
system dimension and denote it by d. In terms of GPT, we
look for the biggest set {ωi} ∈ � such that there exists a set
of effects {ej } which obeys ej (ωi) = δi,j . The set of states
{ωi} together with set of effects {ej } may be interpreted as
a maximal classical subsystem of GPT, and {ej } represents
a generalization of the quantum projective measurement, cf.
complete measurement [35]. The observed system dimension
is bounded by

d � dim(�) + 1, (A2)

where equality holds only for classical systems [36]. Combin-
ing Eqs. (A1) and (A2) one may obtain a bound for composite
systems.

APPENDIX B: INFORMATION CONTENT PRINCIPLE
FOR TWO OBSERVABLES

Here we provide detailed proof of ICP. To make our
argumentation easier to follow, first we consider only the case
with two observables M = {X,Z}. Then we generalize results
to a multiple observables scenario.

We start with the definition of a tripartite state of the form

ρSAB =
∑
i,j

pi,j ρ
S
i,j ⊗ σA

i ⊗ σB
j , (B1)

where the state ρS defined on system S belongs to the
considered theory (e.g., bit, qbit, sbit), while σA and σB are
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classical registers. Their role is to keep classical information
measured by observables X and Z, respectively. {pi,j } is
the classical probability distribution. The state ρSAB is an
analog of the quantum-classical system utilized in analysis
of communication tasks.

We are in a position to prove that (B2) holds for classical
and quantum systems ρS :

I (X : A) + I (Z : B) − I (A : B) = IC � log2 d, (B2)

where I (X : A),I (Z : B),I (A : B) are classical mutual infor-
mation and d is an observed system dimension.

Here we define mutual information and conditional entropy
in the standard way as I (A : B) = H (A) − H (A|B) and
H (A|B) = H (AB) − H (B). In the proof we make use of
the following properties of classical and quantum entropies:
(i) entropy of the system is bounded by H (S) � log2 d; (ii)
conditional entropy of any system S correlated with the
classical one C is non-negative H (S|C) � 0, where C is a
classical system; (iii) strong subadditivity H (SAB) + H (S) �
H (SA) + H (SB); and (iv) information processing inequality
for measurement I (S : A) � I (X : A), where X denotes the
measurement outcome. In Appendix D we discuss these
properties on the ground of GPT.

First, we use (i) and (ii) to obtain the upper bound for mutual
information between system S and AB for a state ρSAB :

I (S : AB) = H (S) − H (S|AB)

� H (S) � log2 d. (B3)

Using the chain rule for mutual information, we get

I (S : AB) = I (S : A) + I (S : B|A),
(B4)

I (AS : B) = I (S : B|A) + I (A : B).

Putting this together with strong subadditivity and an informa-
tion processing inequality for measurements, we obtain

I (S : AB) = I (S : A) + I (AS : B) − I (A : B)

� I (S : A) + I (S : B) − I (A : B)

� I (X : A) + I (Z : B) − I (A : B). (B5)

In this way we proved (B2).

APPENDIX C: INFORMATION CONTENT PRINCIPLE
FOR MULTIPLE OBSERVABLES

Now we prove ICP for the setup with n observables {Xi}.
For the classically correlated state [cf. (B1)]

ρSA1...An =
∑

i1,...,in

pi1,...,inρ
S
i1,...,in

⊗ σ
A1
i1

⊗ · · · ⊗ σ
An

in
, (C1)

where ρS represents system S belonging to considered theory
and {σAj

ij
} denotes classical registers, we show that∑

i

I (Xi : Ai) − I (A1 : . . . : An) � log2 d. (C2)

d is an observed system dimension [cf. Eq. (3)], and I (A1 :
. . . : An) = ∑

i H (Ai) − H (A1, . . . ,Hn) is multivariable mu-
tual information. The upper bound I (S : A1, . . . ,An) � log2 d

comes in exactly the same way as in (B3); hence we omit this

part of the proof and focus on the left-hand side of Eq. (C2).
We start using the chain rule and write

I (S : A1, . . . ,An) = I (S : A1) + I (S : A2|A1)

+I (S : A3|A1,A2) + · · ·
+I (S : An|A1, . . . ,An−1). (C3)

We use the chain rule once again to express express conditional
mutual information in the form

I (S : A2|A1) = I (A1,S : A2)

−I (A1 : A2)

I (S : A3|A1,A2) = I (A1,A2,S : A3)

−I (A1,A2 : A3) . . .

I (S : An|A1, . . . ,An−1) = I (A1, . . . ,An−1,S : An)

−I (A1, . . . ,An−1 : An).

Combining these together with strong subadditivity we get

I (S : A1, . . . ,An) � I (S : A1) + . . . + I (S : An)

−I (A1 : A2) − . . .

−I (A1, . . . ,An−1 : An). (C4)

From the classical mutual information properties [I (A : B) =
H (A) + H (B) − H (A,B)], it is easy to see that I (A1 : A2) +
· · · + I (A1, . . . ,An−1 : An) = I (A1 : . . . : An) holds. Putting
that to (C4) and applying information processing inequality
for measurements, we finally get

I (S : A1, . . . ,An) �
∑

i

I (Xi : Ai) − I (A1 : . . . : An).

That finishes the proof.

APPENDIX D: ENTROPY IN GPT

In this section we would like to focus on the properties
(i)–(iv) of entropy, which was used in the proofs presented in
Appendices B and C. We may define some general notion of
entropy H which measures our uncertainty about the system S

which belongs to GPT. The natural assumption is thatH should
reduce to classical or quantum entropy if we are restricted to
these theories.

Moreover, as it was pointed out in [37], properties (iii)
and (iv) follow from the reasonable assumption that local
transformation can destroy but not create correlations. This
assumption is expressed in the formal way as

	H (AB) � 	H (A), (D1)

where the transformation is performed on system A. We expect
that the theory provides at least transformations like system
preparation, measurement, and discarding.

Property (ii) refers to the procedure of system preparation
where we randomly choose one of the several possible states
of the system. Knowledge of the way the system was prepared
should reduce our uncertainty.

To motivate (i), first we would like bring to attention that
the general entropy H is often linked with the minimal output
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uncertainty on the distinguished subset of measurements MF :

H(S) = inf
M∈MF

H (M(S)), (D2)

where M is measurement on the system S. This distinguished
subset MF consists of maximally informative, i.e., fine-
grained measurements [38,39]. In an analogy to quantum
mechanics, we may think of them as a set of rank-1 positive
operator-valued measures.

In the quantum case a special role is played by the projective
measurements. The von Neumann entropy is the output
entropy for the measurement which consists of projectors on
the eigenvectors of the state. In GPT we call a measurement a
projective measurement if for every outcome e there is a state ω

that the probability of the outcome e on the state ω is e(ω) = 1.
We observe that nonprojective measurements contain some
intrinsic noise, i.e., some outcomes cannot be obtained with
probability one. On the other hand, information encoded in
states {ωj } can be perfectly retrieved, since ei(ωj ) = δi,j .

For those reasons, we assume that entropy should refer
to the uncertainty of the outcome of fine-grained projective
measurements and in this way it should be bounded by the
number of bits d that may be encoded in the system in a
perfectly decodable way.

Interestingly, with some additional assumptions on the
postmeasurement state, if H(S) attains its value for projective
measurement, then it has operational interpretation in terms of
information compression [39].

APPENDIX E: VIOLATIONS OF ICP IN GENERAL
PROBABILISTIC THEORIES – DETAILS

In this section we provide technical details which support
the discussion of violations of ICP in general probabilistic
theories which was presented in the main part of the paper.
We will base this discussion on the fact that normalized states
of p − GNSTs and polygon theories are real vectors ω ∈ R2.
The maximal number of perfectly distinguishable states thus
satisfies d � 3. Equality holds if and only if the states space is
a simplex [36]. Therefore any nonclassical theory has d � 2
so that the information content of the system satisfies IC � 1.

1. Violation uncertainty relation for anticommuting observables

We consider the p − GNST with two dichotomic observ-
ables X and Z. Admissible states fulfill the uncertainty relation

(sx)p + (sz)
p � 1, (E1)

where p ∈ [2,∞] is a parameter of the theory and sx =
p(a = +|x = X)ψ − p(a = −|x = X)ψ is the mean value of
observable X measured on the system in state ψ (analogically
for sz and Z). It is straightforward to see that (E1) is an
uncertainty relation, since it bounds the probability that the
state has a well-defined outcome of each observable. p-GNST
is a simplified version of the model discussed in [19], since
we only deal with the case of the two observables available
in the elementary system. However, our results may be easily
generalized to the case of three observables X,Y,Z.

The set of admissible states for p = 2 correspond to the set
of states from the great circle of the Bloch ball. [In the case of

three observables, the set of admissible states becomes a full
Bloch ball and a relation of type (E1) defines the state space
of a single qbit.] On the other hand, for p → ∞ we approach
the state space of an sbit. Therefore the increase of p leads to
relaxation of the uncertainty relation.

Now we show that each theory with p > 2 violates ICP.
For that purpose, (i) we show that there exists a state ψ++
with entropic uncertainty small enough (i.e., H (X)ψ++ +
H (Z)ψ++ < 1), and (ii) then by symmetry of the state space
we construct the state ρSAB , which we use to prove violation.

Let us parametrize by sx states ψ that saturate (E1). For
simplicity we assume that sz > 0. Due to (E1), we have
sz = p

√
1 − s

p
x . For sx = 1, the outcome of the observable

X is certain but we have no knowledge on the outcome of
observable Z. As sx decreases, the knowledge of the outcome
of Z increases by the cost of certainty of the outcome of
X. The rate of this exchange depends on the uncertainty
relation and interestingly, for p > 2, some states near to sx = 1
have entropic uncertainty smaller than in the quantum case.
Precisely, we show that there exist δx that any state with
1 − δx < sx < 1 fulfills:

H (X)ψ + H (Z)ψ < 1. (E2)

For the parametrization of state ψ by sx , entropies of mea-
surements take a form H (X)ψ = H ( sx+1

2 ),H (Z)ψ = H ( sz+1
2 )

and are bounded in the following way: H ( sx+1
2 ) � ( 1−sx

2 )1+ε

for ε > 0 and 1−sx

2 < δε and H ( sz+1
2 ) � 1 − ( sz

2 )2. This allows
us to rewrite condition (E2) as

(
1 − sx

2

)1+ε

<
1

4

(
1 − sp

x

)2/p
. (E3)

Now let us observe that(
1 − sx

2

)1+ε∣∣∣
sx=1

= 1

4

(
1 − sp

x

)2/p
∣∣∣
sx=1

= 0, (E4)

and for (1 + ε)p > 2,

lim
sx→1

(
1 − s

p
x

)2/p

(1 − sx)1+ε
= ∞. (E5)

It means that that the left-hand side of (E3) converges to 0 faster
than the right-hand side as sx → 1. Since both sides of (E3) are
positive, it implies that (E3) holds for 1 − δx < sx < 1 with δx

small enough.
Since we have shown that states with the desired property

exist, we can take any state ψ++ that H (X) + H (Z) = H̃ < 1.
The state is described by (s̃x ,s̃z). By the symmetry of (E1)
and (E2), we know that states ψ+−,ψ−+,ψ−− obtained from
ψ++ by negation of the proper parameter are also admissible
and have the same entropic uncertainty H̃ . This allows us to
construct the state

ρSAB = 1

4

∑
i,j∈{−,+}

ψS
ij ⊗ iA ⊗ jB. (E6)

It is easy to observe that the outcome of X and Z for the
reduced state 1

4

∑
i,j∈{−,+} ψS

ij is completely random. Hence
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we may write

I (X : A) + I (Z : B) = H (X) + H (Z)

−
∑

i,j∈{−,+}

1

4
[H (X)ψi,j

+ H (Z)ψi,j
]

= 2 − H̃ > 1. (E7)

Since, in addition, from (E6) we have I (A : B) = 0, the above
shows the expected violation and finishes the proof.

2. Polygon theories

Polygon theories (parameterized by n) were developed
in [20] to study the connection between the strength of nonlocal
correlations and the structure of the state spaces of individual
systems. They may be viewed as a progressive relaxation of
the superposition principle (cf. relaxation of the uncertainty
relation in p-GNSTs) moving from the quantum case n →
∞ to sbit (n = 4) and classical trit (n = 3). Relaxation of
the superposition principle means that more restrictions are
imposed on the way the states can be superposed.

The proof of violation of ICP by unphysical (i.e., with
n > 3 and n < ∞) polygon theories is quite technical and
based mostly on construction of the state ρSAB with proper
measurement entropies. We start with a short description of
polygon theories mainly following [20]. For more details see
the original paper [20].

The state space � of a single system in polygon theory is a
regular polygon with n vertices. For fixed n, � is represented
as a convex hull of n pure states {ωi}ni=1:

ωi =

⎛
⎜⎝

rn cos
(

2iπ
n

)
rn sin

(
2iπ
n

)
1

⎞
⎟⎠ ∈ R3, (E8)

where rn = 1/
√

cos(π/n).
The set of effects is the convex hull of the unit effect, zero

effect, and the extreme effects. The unit effect has the form

u =
⎛
⎝0

0
1

⎞
⎠. (E9)

Extreme effects for even n are given by

ei = 1

2

⎛
⎜⎝

rn cos
( (2i−1)π

n

)
rn sin

( (2i−1)π
n

)
1

⎞
⎟⎠ ∈ R3, (E10)

and for odd n in slightly different form,

ei = 1

1 + r2
n

⎛
⎜⎝

rn cos
(

2iπ
n

)
rn sin

(
2iπ
n

)
1

⎞
⎟⎠,e′

i = u − ei ∈ R3. (E11)

e(ω) = e · ω is the Euclidean inner product of the vectors
representing the effect and the state.

Now we are in a position to construct states which violate
the information content principle in the polygon theories. We
will consider separately the case of even and odd n.

For even n we use the state

ρSAB = 1
4

(
ωS

2 ⊗ σA
0 ⊗ σB

0 + ωS
1 ⊗ σA

0 ⊗ σB
1

+ωS
n/2+1 ⊗ σA

1 ⊗ σB
0 + ωS

n/2+2 ⊗ σA
1 ⊗ σB

1

)
, (E12)

along with measurements X and Z given by the effects
{e2,u − e2} and {e�n/4�+2,u − e�n/4�+2}, respectively. It is easy
to see that I (A : B) = 0, since each combination σA

i ⊗ σB
j

occurs with the same probability 1/4. To calculate I (X : A)
and I (Z : B) we need a conditional entropy of measurement
outcome which may be obtained from the probability of
given effects for a particular state [i.e., ej (ωi)]. For I (X : A)
the probabilities are e2(ω1) = e2(ω2) = 1 and e2(ωn/2+1) =
e2(ωn/2+2) = 0; hence I (X : A) = 1. For I (Z : B), straight-
forward calculations lead to

p(Z = 0|B = 0) = p(Z = 1|B = 1)

= 1

2

[
1 + sin

(
2π

⌊
n
4

⌋
n

)
tan

(π

n

)]
.

It shows that I (Z : B) > 0, and hence the violation of the
information content principle was proved.

For odd n we use the state

ρSAB = 1
4

(
ωS

1 ⊗ σA
0 ⊗ σB

0 + ωS
1 ⊗ σA

0 ⊗ σB
1 + ωS

�n/2�+1

⊗ σA
1 ⊗ σB

0 + ωS
�n/2�+2 ⊗ σA

1 ⊗ σB
1

)
. (E13)

In this case measurements X and Z are given by the
effects {e1,u − e1} and {e�n/4�+1,u − e�n/4�+1}, respectively.
Once again we have that I (A : B) = 0 and I (X : A) = 1.
Formulas for p(Z = 0|B = 0) and p(Z = 1|B = 1) are more
complicated:

p(Z = 0|B = 0) = 1

4

[
2 cos

(π

n

)
+ cos

(
2π

⌊
n
4

⌋
n

)

+ cos

(
2π

⌊
n
4

⌋ − ⌊
n
2

⌋
n

)]
sec

(
π

2n

)2

,

(E14)

p(Z = 1|B = 1) = 1

4

[
2 − cos

(
2π

⌊
n
4

⌋
n

)

− cos

(
2π

⌊
n
4

⌋ − ⌊
n
2

⌋ − 1

n

)]
sec

(
π

2n

)2

.

(E15)

However, we get that p(Z = 0|B = 0) > 1/2 and p(Z =
1|B = 1) > 1/2; hence I (Z : B) > 0, which proves violation
also in this case.

ICP violation in polygon theories is connected, as in the
case of p − GNST, with uncertainty relations. It is easy to see
especially for even n. We notice that for n = 4m + 2, where m

is the integer, noncomplementary observables are measured.
In the case of odd n, the role of uncertainty is less obvious
because of asymmetry of the state ρSAB .

Correlations obtained in models with odd n do not violate
Tsirelson’s bound [20]. It means that this class of theories
cannot be separated from the quantum theory using standard
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argumentation [13]. Since nonlocality is tightly connected
with uncertainty relations, it might be interesting to apply ICP
to explain the impossibility of steering to maximally certain
states [40].

Very recent results on the classical information transmission
in polygon theories [30] provide some more insight into this
issue. It turns out that polygon theories with odd n allow for
communication of more than 1 bit per elementary system in
Holevo sense (i.e., in asymptotic limit). This means that (B2)
is violated even in one observable setup when a nonpure
measurement is performed. Therefore our result for odd n

may be viewed as a simple consequence of the fact that a
Holevo-like capacity exceeds the number of bits which may
be encoded in the system in a perfect decodable way. This is
contrary to what we observe for classical and quantum systems.
For even n, the Holevo-like capacity of the elementary system
is 1 bit. This emphasizes the advantage of a multiobservable
rather than Holevo-like approach in discrimination of nonlocal
theories. It is interesting that for odd n, the information content
for multiple observables may exceed the Holevo limit.

At the end of this section we use polygon theories to
compare ICP with criterion based on the mismatch between the
measurement dimension and information dimension [27]. Here
the measurement dimension denotes the number of perfectly
decodable states and information dimension the number of
pairwise perfectly distinguishable states. For polygon theories
with n ∈ {4, . . . ,13}, mismatch between the measurement
dimension and information dimension take place only for
n ∈ {4,6}. Using this approach, only two cases may be ruled
out while ICP rules out all of them. However, it cannot
be excluded that the mismatch criterion will rule out these
theories, if we consider composite systems, with an appropriate
choice of composition rules.

3. Composite systems

At this point we go back to p-GNSTs. We will consider p-
GNSTs in their original formulation from [19], i.e., where three
dichotomic and anticommuting observables may be measured
on an elementary system.

We show that ICP is able to exclude nonlocal GPT,
even if the elementary system state space is a Bloch sphere.
Namely, we show that for p-GNST with p = 2, a big enough
multipartite system violates ICP. For this purpose we take
advantage of a superstrong RAC present in those theories. This
will also demonstrate that ICP can be applied to composite
systems.

As it was shown in [19], p-GNST with p = 2 allows for
encoding 3n bits in an n-gbit state with single-bit recovery
probability equal prec = 1

2 + 1
2
√

2n+1
. Since each bit is decoded

by a different observable and the bits are distributed uniformly
and independently, we obtain

∑
i

IMi
− IR =

3n∑
i=1

I (Oi : Ai) = 3n[1 − H (prec)], (E16)

where i denotes bit Ai , which is decoded by observable Oi and
H is classical entropy. On the other hand, for an n-gbit system,

the maximal number of perfectly decodable states is bounded
by d � (3 + 1)n [cf. (A1) and (A2)]. Putting this together
we get that a 5-gbit system violates ICP (i.e.,

∑
i IMi

− IR =
16.18 > 10 = log2 45). This result relates to [41–45], where
it was shown that a locally quantum state space with no-
signaling conditions implies a fully quantum state space for
bipartite systems; however, the situation changes dramatically
in multipartite scenarios.

The difference
∑

i IMi
− IR depends strongly on the state

space of the composite system. As we have seen, the
uncertainty relations for anticommuting observables do not
restrict state space strongly enough to ensure that ICP is
satisfied. Therefore it is interesting to ask what other geomet-
rical constraints [e.g., other uncertainty relations, consistency
constraints, (cf. [19]), local orthogonality] have to be added to
the theory to conform with ICP. In the opposite direction, one
may ask how ICP limits the strength of nonlocal correlations
achievable in GPT for systems whose elementary subsystems
obey quantum mechanics.

APPENDIX F: ICP VERSUS EXISTING AXIOMS
AND PRINCIPLES

It should be noted here that postulating ICP we do not
search for “physical” justification for inequality (4), but rather
in the spirit of information theoretical principles such as
information causality [13] (IC) or local orthogonality [16],
we aim for understanding the physical reality by means of
an information approach. In this context it is natural to ask
how ICP is related to the existing principles and axioms. As
we mentioned in the Introduction, there are, in substance, two
paradigms within which we try to understand the peculiar
role of quantum mechanics in the set of possible theories
of the physical world. The first one is to derive quantum
mechanics from more intuitive axioms. The other is to pose
a single principle which is more complicated than simple
axioms but has a chance to at least rule out many theories
with different predictions than quantum ones. For the sake of
clarity we will refer further to these two different paradigms
as “axioms” and “principles.” Note that these two paradigms
are not comparable. Clearly any principle can be derived
from axioms as they reproduce quantum mechanics. However,
there is never a simple connection between axioms and
principles. For instance, the IC, we now know, is not capable
of reproducing quantum mechanics (i.e., to be “worse” than
axioms), but this clearly does not mean that it is indeed less
important.

Since the crux of our constrained uncertainty principle is its
information theoretic flavor and usage of strong subadditivity
that holds for both the quantum and classical world, it cannot
be a simple consequence of axioms such as, e.g., [9,10].
But how is it related to existing principles? There is a basic
difference between them. Our principle applies to a single
system, while all the existing principles involve correlations
between subsystems and hence cannot be applied to a single
system.
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