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Summary
Thermodynamic relaxation of internal degrees of a molecule’s freedom in a gas occurs with some characteristic
time. This makes wave processes in a gas behave differently depending on the ratio of characteristic duration
of perturbations and the relaxation time. In particular, generation of the secondary non-wave modes by intense
sound in a nonlinear flow dependens on frequency. These kinds of interaction are considered in this study. The
exact links between perturbations inside every type of a fluid’s motion (modes) and resulting weakly nonlinear
equations for interacting modes are derived. These equations are instantaneous and hence are valid for pulsed
excitation. Some kind of energy inflow makes a gas with excited degrees of oscillatory molecule’s freedom
acoustically active. That leads to anomalous acoustic cooling of a gas. The impact of standard viscosity, thermal
conductivity, and dependence of the power of energy inflow on temperature is briefly discussed.

PACS no. 43.35.Fj, 43.25.Ed

1. Introduction

All thermodynamic processes in fluids occur with some
typical times of relaxation. Some processes like Maxwell
exchange of translational degrees of molecules freedom
possess such small times of relaxation that they may be
in fact considered as instantaneous, as compared to the
characteristic duration of any macroscopic external per-
turbation. On the other hand, hydrodynamic perturbations
in fluids with internal processes with relatively large time
of relaxation, depend strongly on the frequency of exter-
nal perturbations. Among these relaxation processes, the
retarded energy exchange between vibrational, rotational
and translational degrees of molecules freedom may be
listed. This exchange of energy behaves differently at pos-
itive and negative half-periods of perturbations of velocity
in sound wave [1, 2, 3]. Chemical reactions in gases are
also of importance [4, 5]. The relaxation processes in liq-
uids are much more various. Relaxation is always associ-
ated with dispersion and frequency-dependent attenuation.

Relaxation processes in the open systems may be fol-
lowed by unusual events. This makes them of especial in-
terest in many physical applications. That concerns pump-
ing of energy into vibrational degrees of a molecule’s free-
dom and formation of a non-equilibrium two-temperature
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gas. Such two-temperature state may be unstable, when
discharge of the excess vibrational energy into transla-
tion degrees of a freedom leads to a new high-temperature
regime [1, 4, 5].

Actually, the fluid flow in the non-equilibrium media
is one of the new and still insufficiently studied fields of
modern hydrodynamics, whereas the optical phenomena
in the non-equilibrium gases are well-studied due to laser
applications.

In the non-equilibrium fluids, the distribution of en-
ergy alters the adiabatic compressibility which leads to
anomalous dispersion of sound waves. That was estab-
lished at first experimentally, and explained theoretically
by Herzfeld and Rice [6]. The mathematical content of
the nonlinear description of the wave and non-wave pro-
cesses in a relaxing medium is fairly complex. The nonlin-
ear distortions of sound itself in dispersive fluids are well-
understood, including formation of the stationary wave-
forms [7, 8, 9]. Enhancement and nonlinear distortions
of sound in acoustically active fluids have been also de-
scribed in some later references [1, 3, 10]. The nonlinear
loss of acoustic energy in the standard thermoviscous fluid
increases its background temperature. That occurs due to
nonlinear interaction of acoustic and entropy modes in a
damping fluid [11]. This transfer of energy from sound
to chaotic motion of molecules is called acoustic heating
[12, 13]. A rate of temperature increase is proportional
to the sound intensity and overall attenuation in a new-
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tonian fluid. As was pointed out by Molevich [3], the non-
linear exchange of energy between sound and the thermal
mode may lead to cooling instead of heating in the non-
equilibrium gas, if the standard attenuation of a medium is
small. The possibility of an anomaly in acoustic streaming,
was also pointed out by Molevich [14, 15]. That imposes
that the induced vortex motion may occur in an unusual
direction. Molevich has considered the harmonic sound of
arbitrary frequency in the problems of excitation of the en-
tropy mode. The nonlinear analysis in the papers by Mole-
vich makes use of the method of successive approxima-
tions. This means that the solutions to equations take the
form of series and result from the set of coupling equations
which contain terms of the same order of magnitude [16].
The acoustic force of streaming which was considered in
[15], is in fact the averaged quantity over the period of
harmonic sound. It is valid for strictly periodic sound and
small Reynolds numbers of a flow.

To the best of the author’s knowledge, this study is the
first which considers exact dispersive properties of nonlin-
ear phenomena in a gas with excited vibrational degrees
of molecules freedom caused by sound of any kind not
just single frequency excitation.

The method of projecting proposed by the author al-
lows derivation of the dynamic equations for sound and
non-wave modes accounting for their interaction in many
cases of fluid’s flow [17, 18]. That concerns flows of new-
tonian and non-newtonian fluids perhaps affected by exter-
nal forces. Equations are formulated in time domain and so
do not imply neither periodic sound nor any kind of aver-
aging.

This is the advantage of the method of projecting. The
equations governing nonlinear phenomena accompanied
sound propagation in a gas with vibrational relaxation
have been derived and analyzed by the author in the high-
and low-frequency limits in [19, 20]. The high- and low-
frequency limits are readily traceable. We start from deter-
mination of the linear modes as specific types of gas mo-
tion in which background parameters are maintained by
pumping energy into the vibrational degrees of freedom
by power I , and a heat withdrawal from the translational
degrees of freedom of powerQ (both I andQ refer to unit
mass). The relaxation equation for the vibrational energy
per unit mass ε takes the form

dε
dt

= −ε − εeq(T )
τ

+ I. (1)

The equilibrium value of the vibrational energy at a given
temperature T is denoted as εeq(T ), and τ denotes the vi-
brational relaxation time. The relaxation time in the most
important cases may be thought as a function of temper-
ature [1, 5]. The results may be easily generalized in the
case of relaxation time which depends on temperature and
density (Sections 3.3-3.5). The quantity εeq(T ) relates to a
simple model of a molecule as a harmonic oscillator [1, 8],

εeq(T ) =
ħΩ

m (exp(ħΩ/kBT ) − 1)
, (2)

where m is the mass of a molecule, ħΩ is the magni-
tude of the vibrational quantum, kB is the Boltzmann con-
stant. Equation (2) is valid over the temperatures, where
anharmonic effects are weak, i.e., below the character-
istic temperatures, which are fairly high for the major-
ity of molecules. In particular, the characteristic temper-
atures forH2, CO, O2 andN2 equal, respectively, 6300K,
3100K, 2300K and 3400K [1, 4, 5].

The momentum, energy and mass conservation equa-
tions for a flow of vibrationally relaxing gas without ther-
mal and mechanical losses read

ρ
∂v

∂t
+ (v · ∇)v = −∇p,

ρ
∂(e + ε)
∂t

+ (v · ∇)(e + ε) + p(∇ · v) (3)

= ρ(I −Q),
∂ρ

∂t
+ ∇ · (ρv) = 0,

where v denotes the velocity of a fluid, ρ, p are its density
and pressure, e is the internal energy of translation motion
of molecules per unit mass.

Apart from Equations (1), (2), two thermodynamic
functions e(p, ρ), T (p, ρ) complete the system (3). We use
these ones for an ideal gas,

e(p, ρ) =
p

(γ−1)ρ
=

R

µ(γ−1)
T (p, ρ), (4)

where γ is the isentropic exponent without account for vi-
brational degrees of freedom, R denotes the universal gas
constant, and µ is the molar mass of a gas.

2. Planar motions of infinitely small magni-
tudes of perturbations and their decom-
position

Consider a flow of infinitely small magnitudes of perturba-
tions. A flow is supposed to be planar along axis Ox with
Q = const, I = const. We will discuss the impact of ther-
mal conductivity, viscosity, and dependence ofQ and I on
the temperature in Section 3.5.

Considering every quantity q as a sum of unperturbed
value q0 (the background flows are absent, so that v0 = 0)
and its variation q , one readily rearranges the governing
equations of momentum, energy balance, and continuity
into the linear form which contains only the first powers
of perturbations [1],

∂v

∂t
+

1
ρ0

∂p

∂x
= 0,

∂p

∂t
+ γp0

∂v

∂x
− (γ−1)ρ0

ε

τ

+(γ−1)ρ0T0Φ1
p

p0
− ρ

ρ0
= 0,

∂ρ

∂t
+ ρ0

∂v

∂x
= 0,

∂ε

∂t
+
ε

τ
− T0Φ1

p

p0
− ρ

ρ0
= 0, (5)
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where

Φ1 =
Cv
τ

+
ε − εeq
τ2

dτ
dT 0

(6)

is the quantity evaluated at equilibrium state at p0, T0, and
Cv = dεeq/dT . We make use of the expansion in series of
Equations (4) to express perturbations of translation tem-
perature and internal translational energy in terms of per-
turbations of pressure and density,

e =
p0

(γ−1)ρ0

p

p0
− ρ

ρ0
. (7)

The last equation in the set (5) follows from Equations (1),
(7),

∂ε

∂t
+
ε

τ
=

Cv
τ

+
ε − εeq
τ2

dτ
dT 0

T

= T0Φ1
p

p0
− ρ

ρ0
. (8)

Without loss of generality, τ in the left-hand side of Equa-
tion (8) denotes its equilibrium value, τ0.

Studies of fluid motions of infinitely-small amplitudes
start usually with representing of all perturbations as a sum
of planar waves,

q (x, t) =
∞

−∞
q̃(k) · exp i ωt − kx dk + cc, (9)

where q̃(k) exp(iω(k)t) is the Fourier-transforms of any
perturbation q .

The approximate roots of dispersion equation for both
acoustic branches, progressive in the positive and nega-
tive directions of axis Ox, are well-known under the sim-
plifying conditions ωτ 1 (or ωτ 1), which re-
stricts consideration by the high-frequency sound (low-
frequency sound) [3, 20]. The dispersion relations that are
valid for any frequency of sound (alternatively, any wave
number k), take the forms

ω1 = ck − (γ−1)2T0kτ

2c(1 + ickτ)
Φ1,

ω2 = −ck + (γ−1)2T0kτ

2c(1 − ickτ)
Φ1, (10)

where c = γRT0/µ = γp0/ρ0 denotes the infinitely
small-signal sound speed in the ideal uniform gas. All
evaluations in this study are valid in the case of weakly
dispersive and weakly damped perturbations, that is, when

Φ1
2c2

(γ−1)2T0τ
. (11)

This is the only condition which gives possibility to ex-
pand formulas in series and to keep only leading order
terms proportional to the zero and first powers of Φ1, Φ0

1
and Φ1

1. The powerful inflow of energy makes the back-
ground inhomogeneous and hence may change the condi-
tions of acoustical activity of a gas [21, 22]. The inequality

(11) provides weak distortion of the sound wave caused by
dispersion and attenuation, if Φ1 > 0 (or amplification, if
Φ1 < 0) over its period. It does not impose restrictions on
the spectrum of perturbation in dependence on relaxation
time, τ. of sound in a gas having internal degrees of free-
dom. Two last roots of dispersive equation represent the
non-wave motions,

ω3 = i
1
τ
+

(γ−1)(γ + c2k2τ2)T0

c2(1 + c2k2τ2)
Φ1 ,

ω4 = 0. (12)

The third non-wave mode, which is determined by ω3,
originates from the vibrational relaxation, and the fourth
root represents the thermal, or entropy, mode.

According to Equations (11),(12), the characteristic
time of thermodynamic relaxation weakly differs from τ.
The perturbations specifying the first acoustic mode, and,
in particular, excess density, satisfy the dynamic equation

∂ρ1

∂t
+ c

∂ρ1

∂x
+

(γ−1)2T0

2c2
Φ1ρ1 (13)

− (γ−1)2T0

2c3τ
Φ1

∞

x

exp
x − x
cτ

ρ1(x , t) dx = 0.

We will omit prime by the specific perturbations which be-
long to the different modes. The overall velocity, pressure,
density and internal energy are a sum of specific parts:
v (x, t) = 4

n=1 vn(x, t), and so on. In accordance to the
roots (10), (12), the Fourier transforms of perturbations
may be expressed in terms of four specific Fourier trans-
forms of specific excess densities ρ̃1, ρ̃2, ρ̃3, ρ̃4 in the fol-
lowing manner:

ρ̃ =
4

n=1

ρ̃n, ṽ =
4

n=1

ṽn =
4

n=1

ωnρ̃n/k/ρ0,

p̃ =
4

n=1

p̃n =
4

n=1

ω2
nρ̃n/k

2,

ε̃ =
4

n=1

ε̃n =
T0Φ1τ

ρ0c2k2

2

n=1

ρ̃n
γω2

n − c2k2

1 + iωnτ
. (14)

The links in the (x, t) space follow from Equations (14)
and dispersion relations, Equations (10),(12). We may
readily establish the operator rows which project the over-
all vector of the Fourier transforms of perturbations into
the Fourier transforms of specific densities. The rows as
follow (ordering as third and fourth) distinguish ρ̃3 and
ρ̃4:

d̃3
1ṽ + d̃

3
2p̃ + d̃

3
3ρ̃ + d̃

3
4ε̃ = ρ̃3,

d̃4
1ṽ + d̃

4
2p̃ + d̃

4
3ρ̃ + d̃

4
4ε̃ = ρ̃4.

They are

d̃3

1
d̃3

2
d̃3

3
d̃3

4


 = (15)
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i(γ−1)2ρ0T0k
3τ4

(1+c2k2τ2)2 Φ1

− (γ−1)T0k
2τ3(γ+c2k2τ2)

c2(1+c2k2τ2)2 Φ1
(γ−1)T0k

2τ3

1+c2k2τ2 Φ1
(γ−1)k2ρ0τ

2

1+c2k2τ2 − (γ−1)2k2ρ0T0τ
3(3γ+5c2k2τ2−γc2k2τ2+c4k4τ4)
c2(1+c2k2τ2)3 Φ1


 ,



d̃4

1
d̃4

2
d̃4

3
d̃4

4


 =




0
− 1
c2 +

(γ−1)T0τ

c4 Φ1

1 + (γ−1)T0τ

c2 Φ1

− (γ−1)ρ0

c2 + (γ−1)2ρ0T0τ

c4 Φ1


 .

Thereby, projecting distinguishes the specific disturbance
from the total vector of perturbations at any time. Project-
ing is in fact a certain way of linear combination of equa-
tions in order to keep one specific quantity in the linear
part of equations (in this study, the specific excess density;
the choice of reference specific variable may be different).
It is based on the linear links between perturbations which
determine every mode as well as the correspondent disper-
sion relations. The projectors in (x, t) space readily follow
from Equations (15).

3. Nonlinear effects of sound

3.1. Weakly nonlinear system of conservation equa-
tions

The governing dynamic system with account for quadratic
nonlinear terms differs from (5) by the quadratic right-
hand side. It has been derived by the author in [20]:

∂v

∂t
+

1
ρ0

∂p

∂x
= −v ∂v

∂x
+
ρ

ρ2
0

∂p

∂x
,

∂p

∂t
+ γp0

∂v

∂x
− (γ−1)ρ0

ε

τ
+ (γ−1)ρ0T0Φ1

p

p0
− ρ

ρ0

= −v ∂p
∂x

− γp ∂v
∂x

+ (γ−1)ρ
ε

τ
− T0Φ1

p

p0
− ρ

ρ0

− (γ−1)ρ0 T0
1
τ2

dτ
dT 0

ε
p

p0
− ρ

ρ0

+ T0Φ1
ρ 2

ρ2
0

− p ρ

p0ρ0
+ T0Φ2

p

p0
− ρ

ρ0

2

,

∂ρ

∂t
+ ρ0

∂v

∂x
= −v ∂ρ

∂x
− ρ ∂v

∂x
, (16)

∂ε

∂t
+
ε

τ
− T0Φ1

p

p0
− ρ

ρ0

= T0
1
τ2

dτ
dT 0

ε
p

p0
− ρ

ρ0
+ T0Φ1

ρ 2

ρ2
0

− p ρ

p0ρ0

+ T0Φ2
p

p0
− ρ

ρ0

2

− v ∂ε
∂x
,

where we made use of the leading order series with respect
to powers of perturbations in Equations (1), (4):

T = T0
p

p0
− ρ

ρ0
+
ρ 2

ρ2
0

− p ρ

p0ρ0
,

dε
dt

= −ε
τ
+ T0

1
τ2

dτ
dT 0

ε
p

p0
− ρ

ρ0

+ T0Φ1
p

p0
− ρ

ρ0
+
ρ 2

ρ2
0

− p ρ

p0ρ0

+ T0Φ2
p

p0
− ρ

ρ0

2

,

Φ2 = T0 − 1
τ2
Cv

dτ
dT

− (ε − εeq)
τ3

dτ
dT

2

+
1

2τ
dCv
dT

+
(ε − εeq)

2τ2

d2τ

dT 2
0

. (17)

We consider nonlinear effects in the leading order, that is,
these ones connected with the quadratic nonlinear terms
which are of the most importance in the nonlinear acous-
tics.

3.2. Links of perturbations in the intense sound

The problems of generation of the non-acoustic types of
motion by the intense sound are of the major importance
among all problems which refer to the nonlinear interac-
tion of modes. In turn, the non-wave modes affect the prop-
agation of sound. In the setting of these problems, sound
is intense as compared with other types of motion, that is,
magnitudes of its perturbations are much larger than that
of the non-wave modes. Without loss of generality, we will
consider exclusively rightwards propagating disturbances,
assuming that all other modes, though may enlarge their
magnitudes in time due to nonlinear interaction, are rel-
atively small. Since the order of magnitude of secondary
modes is no higher, than the squared Mach number M2,
the accurate account for the quadratic corrections in the
dominative sound, which are of the same order, are neces-
sary [17, 18]. The dynamic equation governing the dom-
inative sound which includes nonlinear term of order M2

readily follows from the weakly nonlinear corrections to
the links between specific acoustic perturbations. Vectors
ψ1,l and ψ1,nl below represent the linear links and non-
linear corrections for the perturbations in the rightwards
progressive sound in the leading order, as it follows from
Equations (16).

ψ1,l =



v1

p1

ρ1

ε1


 (18)

=




1
ρ0c − (γ−1)2T0ρ0τ

2c2τ
Φ1

∞
x

exp x−x
cτ dx ·

ρ0
c + (γ−1)2T0ρ0τ

2c4τ
Φ1

∞
x

exp x−x
cτ dx ·

(γ−1)T0

c2 Φ1
∞
x

exp x−x
cτ dx ·


 v1,
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ψ1,nl =




0
(3−γ)ρ0

4c2 v1
(γ+1)ρ0

4 v1

0


 v1.

ψ1,nl reflects the nonlinear corrections which agree with
that in the Riemann wave [12]. They in fact support adia-
baticity of sound in the lossless flow.

The total vector of acoustic perturbations is a sum of
ψ1,l and ψ1,nl, and weakly nonlinear dynamic equation for
the acoustic excess density takes the form

∂ρ1

∂t
+ c

∂ρ1

∂x
+

(γ−1)2T0

2c2
Φ1ρ1

− (γ−1)2T0

2c3τ
Φ1

∞

x

exp
x − x
cτ

ρ1(x , t) dx

+
(γ + 1)c

2ρ0
ρ1
∂ρ1

∂x
= 0. (19)

The nonlinear term in Equation (19) manifests the well-
celebrated nonlinearity originating from nonlinearity in
equation of state and hydrodynamic nonlinearity [12, 7]
which is of order M2.

3.3. Acoustic heating or cooling

The linear projecting is fruitful in investigations of non-
linear interactions of different modes [17, 18, 19]. After
application of some projecting row at the system of equa-
tions, contributions of all other modes in the linear part of
the final dynamic equation are reduced, but the nonlinear
terms become distributed between equations. At this point,
we make routine manipulations to decompose the dynamic
equation for the specific excess density of the entropy
mode by means of applying the row (d4

1 d4
2 d4

3 d4
4) at

the system (16) and collecting together terms of the lead-
ing order. Among all coupling nonlinear terms, only pure
acoustic ones are considered which are the biggest. They
form acoustic force of heating. The links of acoustic per-
turbations are represented by ψ1 = ψ1,l +ψ1,nl. The result-
ing equation governing the acoustic heating is

1
T0

∂T4

∂t
= − 1

ρ0

∂ρ4

∂t
= Fheat

= − (γ−1)2T0Φ1

2c5τ
cτ(γ + 1)

∂v1

∂x

+ (3 − γ)v1

∞

x

exp
x − x
cτ

v1(x , t) dx

− cτ(3 − γ)v2
1 , (20)

where T4 is an excess temperature specific for the entropy
mode during an isobaric transfer of acoustic energy into
the energy of the entropy mode. On the other hand, veloc-
ity in the right-hand side of Equation (20) should satisfy
the dynamic equation for sound. Equation (20) is valid at
any characteristic frequency of sound. The limits of low-
and high- frequency sound may be readily traced.

In the low-frequency limit, ckτ 1, and the term
∞
x

exp[(x − x )/(cτ)]v1(x , t) dx may be replaced in the
leading order with cτv1(x, t) in Equation (20). In the high-
frequency limit, ckτ 1, this term may be replaced in the
leading order with ∞

x
v1(x , t) dx . In view of difficulty in

establishing the exact solution to Equation (19), the simple
estimations of acoustic source Fheat in the case of periodic
sound of any frequency may be implemented on the base
of solution of the linear version of equation, into which
the governing equation (19) transforms when Φ1 tends to
zero, that is,

c

ρ0
ρ1 = v1 = V0 sin Ω(t − x/c) , (21)

where V0 denotes the amplitude of velocity. Acoustic force
of heating, averaged over the sound period, takes the form

Fheat =
Ω
2π

t+2π/Ω

t

Fheat dt

=
V 2

0 (γ−1)3T0Φ1Ω2τ2

2c4(1 + Ω2τ2)
, (22)

which rearranges in the low-frequency and high-frequency
limits, respectively, into

Fheat,low =
V 2

0 (γ−1)3T0Φ1Ω2τ2

2c4
,

Fheat,high =
V 2

0 (γ−1)3T0Φ1

2c4
. (23)

It follows from the above equations, that the low-fre-
quency sound (Ωτ 1) is fairly ineffective in gener-
ation of acoustic heating since the acoustic force is pro-
portional to (Ωτ)2 [19]. In turn, the high-frequency sound
with Ωτ 1 produces heat per unit time proportional
to 1 − (Ωτ)−1. The expression for Fheat,high coincides with
Equation (25) from [20].

The sign of the right-hand acoustic source is determined
by the sign of Φ1. In the equilibrium regime, Φ1 is posi-
tive and corresponds to decrease in density and relative
increase in temperature of the entropy mode with time.
Hence, acoustic heating of the background takes place.
When Φ1 < 0, a gas is acoustically active. The anoma-
lous cooling takes place, that is, the background density in-
creases, and its temperature constantly gets smaller. Some
simple estimations may be carried out for the case of typ-
ical laser mixture CO2 : N2 : He = 1 : 2 : 3 at pressure
p0 = 1atm and temperature T0 = 300K. We make use of
thermodynamical data from [5, 23, 10]. By using γ = 1.33
and c = 422m · s−1, Equation (22) takes the form

Fheat =M2 Ω2τ2

1 + Ω2τ2
6.65 · 10−7 Ith − I ,

where the acoustic force is measured in 1/s, I is measured
in W/kg, and Ith is the threshold quantity, Ith = 1.99 ·
106 W/kg. Hence, the absolute value and sign of the acous-
tic force depend on the squared Mach number of sound,
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2 1 1 2
t x c

2

1

1

2

c4

V0
2

1 Γ 1 2 T0

Fheat

11.5 0.5 0.5 1 1.5 2
t x c

1

1

2

3

c4

V0
2

1 Γ 1 2 T0

Fheat

Figure 1. The dimensionless acoustic force of heating (cooling)
c4Fheat/(V 2

0 Φ1(γ−1)2T0) for the symmetric pulse (Equation (24),
upper plot) and asymmetric pulse (Equation 25, lower plot). The
dotted line corresponds to Ωτ = 0.5, the normal line corresponds
to Ωτ = 1, and the dashed line relates to Ωτ = 10.

product Ωτ, and difference between I and Ith. The relax-
ation time equals approximately 5 · 10−5 s. The exemplary
acoustic force at Ω = 1 MHz,M = 10−2 (this corresponds
to the magnitude of velocity 4.2 m/s and to the magnitude
of acoustic pressure 1013 Pa) and I = 2.5 · 106 W/kg,
equals −3.4 · 10−5/s, that is, the gas tempreature decreases
every minute by 0.6 degrees. Equation (20) allows evalu-
ating heating (or cooling) produced by any waveform, for
example, by the pulses

v1(x, t) = V0 exp −Ω2(t − x/c)2 , (24)

and

v1(x, t) = 2V0 exp 0.5 − 2Ω2(t − x/c)2

·Ω(t − x/c). (25)

The production of dimensionless excess temperature per
unit time in dimensionless quantities and different Ωτ for
γ = 1.33 is shown in Figure 1.

Deviation from symmetry of the acoustic force in these
examples is one of manifestations of relaxation. The resid-
ual excess temperature of a gas after pulse passes away
is determined by integral of Fheat over time. Figure 2
shows dependence of the dimensional residual tempera-
ture, c4T4/(EΦ1(γ−1)2T 2

0 ), on Ωτ. E = ∞
−∞ v

2
1 dt mea-

sures the energy of a pulse. The conclusion is that the
symmetric pulse produces larger variations in tempera-
ture at large enough characteristic frequency of a pulse,

1

2

5 10 15 20
Τ

0.1

0.2

0.3

0.4

0.5

0.6

c4

E 1 Γ 1 2 T0
2

T4

Figure 2. Residual dimensionless variations in the background
temperature c4T4/(EΦ1(γ − 1)2T 2

0 ) as a function of Ωτ. E =
∞
−∞ v

2
1 dt measures the energy of a pulse per unit mass of a gas.

The case of symmetric pulse (Equation 24) is numbered by 1,
and the case of asymetric pulse (Equation 25) is numbered by 2.

Ω > 2τ−1. For the laser mixture CO2 : N2 : He = 1 : 2 : 3
at normal conditions, M = 10−2 and I = 2.5 · 106 W/kg,
the residual excess temperature equals −2.1 ·10−7 K in the
case of symmetric pulse, and −1.9 · 10−7 K in the case of
asymmetric pulse at Ω = 300 kHz. The acoustic heating
(cooling) excited by a single pulse is hardly expected to
be significant. It enhances in the case of series of pulses.
Equation (20) is suitable for evaluation of instantaneous
heating (cooling) for any waveform including series of
pulses.

3.4. Generation of the relaxion mode

Applying the row (d3
1 d3

2 d3
3 d4

3) at the system (16)
and considering the first sound mode as dominative, one
readily obtains the leading-order equation which governs
an excess density in the relaxation mode

∂ρ3

∂t
= − (γ−1)T0

c2
l(x, t) (26)

+
(γ−1)T0

2c3τ

∞

−∞
exp − |x − x |

cτ
l(x , t) dx ,

where

l(x, t) = − (γ−1)T0

4c3τ
2cΦ1(γ + 1)τ

∞

x

exp
x − x
cτ

v1(x , t)
∂v1

∂x
dx

+ v1 4Φ1 (γ−1)T0
1
τ

dτ
dT 0

− 1

∞

x

exp
x − x
cτ

v1(x , t) dx

+ cτ 4Φ2(γ−1) + Φ1(γ + 3) v1) .

The average acoustic source in the case of harmonic (21)
or nearly harmonic velocity in the sound wave equals zero
at any sound frequency. That is, efficiency of production of
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perturbation in the relaxation mode by this kind of sound
is insignificant.

The results may be generalized in the case of relaxation
time τ which depends not just on temperature, but also
on density. In the case of τ(T, ρ), dynamic equations for
sound and entropy modes (Equations 19, 20) are valid with
the rearranged Φ1 [10]:

Φ1 =
Cv
τ

+
ε − εeq
τ2

dτ
dT

+
ρ

T (γ−1)
dτ

dρ 0
.

As for Φ2, it also should be rearranged in view of de-
pendence of τ on ρ. Equations (19),(20) do not contain
Φ2 at all. Perturbation of density specifying the relaxation
mode, is described by Equation (26), which includes Φ2

by means of l(x, t). Production of the relaxation mode by
periodic or nearly periodic sound is weak independently
on the form of l(x, t). Dependence of τ on both T and ρ
is taken into account in all evaluations in this study which
concern CO2 : N2 : He = 1 : 2 : 3.

3.5. Inclusion of viscosity, thermal conductivity, and
dependence of power I and heat withdrawal Q
on temperature

We consider only temperature-dependent power and heat
withdrawal in this section, although they may also depend
on density. Newtonian attenuation alone always leads to
attenuation of sound and heating of a medium, and the
analysis depends on balance of degree of non-equilibrium,
newtonian attenuation and that due to thermal conduction.
Taking into account thermal conductivity and shear and
bulk viscosity results in corrections in the dispersion rela-
tions. Two acoustic ones are

ω1 = ck − (γ−1)2T0kτ

2c(1 + ickτ)
Φ1 −

i(γ−1)2T0

2c2(1 + ickτ)
IT

+
i(γ−1)2T0

2c2
QT +

ibk2

2ρ0
,

ω2 = −ck + (γ−1)2T0kτ

2c(1 − ickτ)
Φ1 −

i(γ−1)2T0

2c2(1 − ickτ)
IT

+
i(γ−1)2T0

2c2
QT +

ibk2

2ρ0
, (27)

where IT = (dI/dT )0, QT = (dQ/dT )0, and b denotes
the total attenuation, which depends on shear viscosity η,
bulk viscosity ζ and thermal conduction of a gas, χ,

b = ζ + 4/3η + χ
(γ−1)2µ

γR
.

Acoustic harmonic wave of frequency Ω is damped in the
non-equilibrium regime if the standard attenuation is large
enough. This is expressed by inequality

bΩ2

2ρ0
+

(γ−1)2T0

2
Ω2τ2

1+Ω2τ2
Φ1 −

IT

1+Ω2τ2
+QT > 0.

(28)

It is remarkable that while newtonian attenuation of sound
depends on frequency, as well as attenuation and disper-
sion due to degree of non-equilibrium, Φ1, and that due to

non-zero IT , the part of attenuation due to non-zero QT is
frequency independent. If we neglect IT and QT , the con-
dition of acoustical activity takes the form

Φ1 < − b(1 + Ω2τ2)
(γ−1)2ρ0T0τ2

instead of Φ1 < 0. One may easily evaluate variation in
the threshold pumping intensity Ith for the typical laser
mixture CO2 : N2 : He = 1 : 2 : 3 at normal condi-
tions p0 = 1 atm, T = 300 K, which is in a frictionless gas
equals Ith = 1.99 · 106 W/kg.

The dependence of the relaxation time τ on temperature
and density is as

τ = 10−7µ

ρ
0.22 exp − 62.75T−1/3

+ 0.99 exp − 75.46T−1/3

+ 0.55 · 10−2 T exp − 58.82T−1/3
−1
,(29)

where τ is measured in seconds, µ = 0.019 in kg · mol−1,
T in Kelvins, ρ in kg · m−3 [5]. That gives approximately
equal values of terms (T/τ)(∂τ/∂T ) = −3.4 and ρ/[(γ−
1)τ](∂τ/∂ρ) = −3. Taking into account thermal conduc-
tivity results in the threshold intensity which depends on
the sound frequency, Ith = (2.00 + 0.08Ω2τ2) · 106 W/kg.
The impact of viscosity is important in the case of high-
frequency sound. The threshold intensity doubles at fre-
quency 287 kHz due to taking viscosity into account.

The dispersion relations for the non-wave modes are

ω3 = i
1
τ
+
T0(γ−1)(γ + c2k2τ2)
c2(1 + c2k2τ2)

IT , (30)

ω4 = i
χkµ(γ−1)
γRρ0

+
(γ−1)T0

c2
(QT − IT ) .

Equations (27), (30) are valid up to terms proportional to
Q1
T and I1

T . The linear modes and projectors take the new
form. Links for the rightwards progressive sound are

ψ1,l =



v1(x, t)
p1(x, t)
ρ1(x, t)
ε1(x, t)


 (31)

=





1

ρ0c − (γ−1)2T0ρ0

2c2 (Φ1 + IT ) ∞
x

exp x−x
cτ dx ·

− (γ−1)2ρ0T0QT
2c2

∞
x

dx · +χ(γ−1)2

γRµ
∂
∂x

ρ0
c + (γ−1)2T0ρ0

2c4 (Φ1 + IT ) ∞
x

exp x−x
cτ dx ·

+ (γ−1)2ρ0T0QT
2c4

∞
x

dx · + b
2c2

∂
∂x

(γ−1)T0

c2 (Φ1 + IT ) ∞
x

exp x−x
cτ dx ·




v1.

In accordance to the dispersion relations (27), the linear
governing equation for the excess density in the first sound
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mode, takes the form

∂ρ1

∂t
+ c

∂ρ1

∂x
+

(γ−1)2T0

2c2
(Φ1 +QT )ρ1 −

b

2c2ρ0

∂2ρ1

∂x2

− (γ−1)2T0

2c3τ
(Φ1 + IT )

∞

x

exp
x − x
cτ

ρ1(x , t) dx = 0.

(32)

The linear equation for an excess density which specifies
the thermal mode, is

∂ρ4

∂t
− χ(γ−1)µ

γRρ0

∂2ρ4

∂x2
+

(γ−1)(QT − IT )T0

c2
ρ4 = 0.

The nonlinear terms which account for nonlinear interac-
tion of modes, includes expressions proportional to QT

and IT but also terms proportional to QTT = (d2Q/dT 2)0

and ITT = (d2I/dT 2)0. The leading-order averaged form
of the dynamic equation of heating which considers effects
due to relaxation exclusively, and referes to the periodic
sound (21), is

1
T0

∂T4

∂t
+

(γ−1)T0(QT − IT )
c2

T4 = Fheat

=
V 2

0 (γ−1)3Ω2τ2T0Φ1

2c4(1 + Ω2τ2)
+
V 2

0 (2γ − 3)(γ−1)2T0QT

4c4

+
V 2

0 (γ−1)2(5 − γ + (3γ + 1)Ω2τ2)T0IT

8c4(1 + Ω2τ2)
(33)

+
V 2

0 (γ−1)3T 2
0

4c4
(QTT + ITT ) .

Equation (33) with constant acoustic force if QT = IT ,
has a solution

T4 =
c2

(γ−1)(QT − IT )
Fheat (34)

· 1 − exp − (γ−1)T0(QT − IT )t
c2

,

which satisfies zero initial condition, that is, an excess
temperature specific for the entropy mode achieves posi-
tive maximum with time if Fheat > 0, and negative min-
imum otherwise. Taking into account for temperature-
dependent Q and T yields in the diffusion equation for T4.
That imposes better extension of entropy perturbations in
the space. The coefficient of diffusion may be negative. If
QT = IT , Equation (33) is readily integrated. The part of
acoustic force which associates with Φ1, is always positive
for positive Φ1 and dependeds Ωτ, but this one which as-
sociates with QT , QTT , ITT does not depend on Ωτ at all.
We drop the terms proportional to product of the first and
second derivatives of Q and I with respect to temperature
in Equation (33).

4. Concluding remarks

The main result of this study is the equation governing an
excess density which specifies the thermal mode, Equation

(20). Perturbations in density and temperature of the ther-
mal mode vary due to nonlinear interaction with sound.
This interaction is anomalous in acoustically active gas.
Equation (20) is instantaneous and consequently valid at
any time for any type of acoustic excitation.

The only limitations are small nonlinearityM 1, and
conditions of weak attenuation or amplification of sound
over its period, determined by Equation (11).

This last inequality also corresponds to small gradients
of the background parameters of a gas, which we set con-
stants in this study. The non-uniformity of the background
may play important role in the evaluations of domain of
equilibrium.

Reference [21] studies amplification of sound in a flat
layer of the non-equilibrium gas. It has revealed some new
properties, as compared to the case of the uniform gas. In
particular, the domain of instability in the plane pumping
intensity - an inverse time of relaxation becomes smaller.
We consider unbounded volumes of a relaxing gas. The
boundary conditions in close volumes lead to a discrete
spectrum of sound wavenumbers and frequencies.

The standard thermoviscosity always results in sound
attenuation and heating in a nonlinear fluid flow. It en-
larges the threshold power of pumping Ith making it de-
pendent on sound frequency. The results may be useful
in evaluations of variations in the background tempera-
ture and density which reflect the nonlinear phenomena
of sound. The domains with residual excess temperature
form thermal lenses that in turn have impact on the sound
propagation. Finally, the results may be useful for evalua-
tions of degree of non-equilibrium, threshold power, sound
intensity and viscosity of a gas by means of acoustic ob-
servations.
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