
This is a postprint of the paper presented at 
the 10th IET System Safety and Cyber Security Conference, 20-22 October 2015, Bristol, UK. 

 

 

Integrating Confidence and Assurance Arguments 
A. Jarzębowicz*†, A. Wardziński*† 

* Department of Software Engineering, Faculty of Electronics, Telecommunications and Informatics, 
Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland 

{olek, award}@eti.pg.gda.pl 
† Argevide sp. z o.o., Poland 

{aleksander.jarzebowicz, andrzej.wardzinski}@argevide.com 
 

 
Keywords: assurance case, safety case, confidence argument, 
assurance deficit, defeater. 

Abstract 
To be considered compelling an assurance case should 
address its potential deficits, possibly with the use of a 
confidence argument. Assurance argument and confidence 
argument should be clearly separated and consistent at the 
same time. We propose a way of their integration with the use 
of an element representing rationale for each argumentation 
strategy. The rationale integrates confidence argument for a 
given argumentation step and can be used to demonstrate 
strength of the argument. The approach is illustrated with a 
confidence argument development case study. The confidence 
argument has been created for defeaters identified with the 
use of a checklist. 

1 Introduction 
An assurance case is a reasoned and compelling argument, 
supported by a body of evidence, that a system, service or 
organisation will operate as intended for a defined application 
in a defined environment [17]. Similar definitions (usually 
based on the definition of a safety case [6]) can be found in 
e.g. [1, 22]. All of them stress that an argument expressed by 
an assurance case is supposed to be compelling and valid. 

To be compelling and valid, the assurance case should not 
only provide direct argument and evidence supporting its 
claims. It should also avoid argumentation fallacies [15,29] 
and address its own potential deficits like questionable 
reasoning, inadequate evidence, or uncertainty in general. 
Such need is being more widely recognized (e.g. [4, 8, 10, 15, 
16, 18, 19, 21, 30]). It is vital for the deficits to be identified 
and dealt with, instead of being hidden to make an assurance 
case look better – safety and other critical properties can only 
be argued by challenging assumptions and doubts, otherwise 
it’s just a “paper exercise” [23]. Some authorities, like FDA, 
recommend that a separate confidence argument is to be 
provided as part of an assurance case submission [9]. 

Our objective is to work out a systematic method of 
identifying assurance deficits and building the confidence 
argument. The method includes a way of representing 
confidence arguments in the context of assurance argument.  

2 Defeaters and confidence argument 
The concept of the confidence argument is based on 
defending the assurance argument against any doubts, 
uncertainties, deficiencies and counterarguments. To ensure 
completeness one needs a systematic approach to identify all 
the assurance case deficits. 

2.1 Defeaters 

A number of approaches of identifying assurance case deficits 
can be found in the literature. Different names and definitions 
are used like deficits, defeaters or rebuttals.  

Hawkins et al. [19] analysed the structure of assurance 
arguments developed using Goal Structuring Notation (GSN) 
[17] and identified three types of assertions related to the 
sufficiency and appropriateness of GSN elements connections 
and named them Assurance Claim Points (ACPs). 
Challenging any of the assertions results in a potential 
defeater. Each identified defeater requires to be addressed by 
an additional confidence argument: 
− Asserted inferences (ACP1) – demonstrate why it should 

be believed that the supporting premises are sufficient to 
draw the conclusion; 

− Asserted context (ACP2) – demonstrate why it should be 
believed that citing the specified context defines the 
appropriate context at this point in the argument; 

− Asserted solution (ACP3) – the assurance of the solution 
depends upon the confidence that the evidence is 
trustworthy and appropriate to support the claim. 

The alternative approach is based on Toulmin’s work on 
defeasible reasoning and model of arguments [27], shown in 
Fig. 1. Main Toulmin’s model specifies the argument as 
applying the inference rule (warrant - W) to specific data 
(premises – P1, P2) to justify the conclusion (claim - C). 
Additional elements are used to express conditions of 
argument’s validity: backing (B) as an explanation and 
support for inference rule, rebuttals (R1-R4) as the 
exceptional conditions invalidating the argument and qualifier 
as restriction of the strength of the argument e.g. “always”, 
“usually”, “possibly” (not depicted). The similarity of the 
rebuttal to the concept of a defeater is not accidental, these 
two terms can be used interchangeably. 



 
 

 

 
Fig. 1. Toulmin argument example with mapping to defeaters 

The first application of defeaters derived from Toulmin’s 
model to assurance cases was proposed by Kelly [21], as part 
of a multi-staged process of the argument review. The last 
stage (named “Argument criticism and defeat”) includes two 
forms of defeating an argument: 
− Rebuttal – defeating conclusion by providing the 

information that contradicts it (note that the term 
Rebuttal used here has narrower meaning than the same 
term in Toulmin model); 

− Undercutting – challenging the inference rule by 
providing additional information about conditions under 
which the claim is not necessarily true even if the 
premises are true. 

Goodenough et al. [10] distinguish 3 kinds of defeaters: 
Rebutting, Undercutting and Undermining. The first two are 
identical to the Kelly’s defeaters [21], while the third one is 
defined as: 
− Undermining – defeater invalidating one or more 

premises (in which case even if the inference rule is valid 
and all rebutting defeaters have been eliminated, we still 
have a reduced basis for believing in the truth of the 
associated claim). 

Grigorova and Maibaum [16] explore further the 
classification of defeaters applicable to Toulmin’s model. 
They use the classification developed by Verheij [28] as part 
of the attempt to formalise Toulmin’s argument model. As the 
result five types of defeaters have been listed [16]: 
− Providing arguments against the evidence (D1);  
− Providing arguments directly against the claim, usually 

counterevidence (D2); 
− Attacking the validity of the inference rule (D3);  
− Attacking the connection between premises and the 

conclusion usually caused by misuse of the inference 
rule, when the premises are true and the reference rule is 
valid, but their combined use does not justify the claim 
(D4);  

− Attacking the applicability of the inference rule (D5); 

We will use the mnemonics D1-D5 when discussing defeaters 
in our paper. The list expands the classification by 
Goodenough et al. [10]: D1 is Undermining defeater, D2 is 
Rebutting defeater, and Undercutting defeater type is split 
into three more detailed types: D3, D4 and D5. 

The illustration of Toulmin’s argument model is presented in 
Fig. 1. The line of reasoning goes from premises P1 and P2 
through the inference rule (warrant W) to the conclusion C. 
The reasoning will fail when the backing B is false or when 
any of the rebuttals R1 to R4 is true. We can map the backing 
and rebuttals to defeater types denoted D1 to D5. 

2.2 Confidence argument 

Defeaters are a tool for identification and classification of all 
the assurance case deficiencies and weaknesses, which are 
then to be addressed by providing a confidence argument. The 
need for confidence arguments is widely recognised, but a 
few solutions are available (other than just introducing 
additional confidence-increasing elements to the assurance 
case and mixing them with “core” assurance elements). 

Hawkins et al. [19] provide a number of reasons why the  
confidence argument should be created as a separate 
argument, not mixed with the primary assurance argument. 
Their approach is to identify Assurance Claim Points and then 
to develop a separate confidence argument structure 
addressing them. The top claim of the confidence argument is 
that the sufficient confidence is demonstrated in assurance 
argument. It is decomposed according to the ACPs categories. 
The lower levels of argument relate to particular ACPs. 

Ayoub et al. [2] also build a separate confidence argument 
using the “common characteristics map” structure covering 
relevant process-based issues. The structure provides 
guidance what confidence aspects should be addressed. 

An alternative approach proposed by Goodenough et al. is to 
use “confidence maps” [11] - additional graphical diagrams 
associated with GSN assurance case elements. Confidence 
maps show defeaters (three types defined in [10]) together 
with the argument and evidence provided to eliminate them. 
Interestingly, also inference rules are explicitly modelled in 
confidence maps (but not included in GSN assurance 
argument). 

3 Proposed approach 
We propose an approach for building confidence argument 
and a method of its representation. We assume the method 
should: 
a) provide a systematic way for confidence argument 

development; 
b) keep clear distinction between the assurance argument 

and the confidence argument; 
c) present a consistent and easy to comprehend view on the 

relation between the assurance argument and related 
confidence argument for every argumentation step; 

d) provide a tool for managing the scope of the argument 
presentation (assurance argument, confidence argument 
and both integrated). 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


 
 

 

Our approach to confidence argument structure is based on 
two observations. First, despite that in Toulmin’s theory the 
backing and the rebuttal play different roles, they both can be 
mapped to defeaters (see Fig. 1). Depending on whether they 
are satisfied or not, the reasoning step from premises to the 
claim is valid or not. The difference is that the backing is to 
be true and the rebuttals are to be false to ensure that the 
claim is satisfied. Our conclusion is that the confidence 
argument should address both the backing and the rebuttals. 

The second observation is that the confidence argument is 
strongly context-related. For example a testing method may 
be effective for one software module but not adequate for 
another one which uses concurrent programming environ-
ment. Therefore, the confidence argument can be analysed 
only in a precisely defined context of the main assurance 
argument. We agree that it is useful to create a confidence 
case separate from the assurance case (possibly starting with a 
reliable development process), however we regard as equally 
important to present and verify the confidence argument for 
each step of the assurance argument. 

Our approach refers to the concept of an assurance case 
element usually named justification of an argumentation 
strategy. The objective of a justification is to provide 
“rationale for its inclusion or its phrasing” [17] or 
“justification for the validity or merit of its method of 
reasoning” [20]. Justification usually is used to demonstrate 
the inference rule to be valid and reasonable for a given type 
of the claim. It is often regarded to be context-free in the 
sense that it can be applied multiple times for a given type of 
claims. 

Our proposal is to define the justification as rationale that a 
given argumentation strategy supported by listed premises 
justifies cited claim in the specified context. We will use the 
name “rationale” in this paper to describe this kind of a 
justification. We can say that the rationale provides a 
confidence argument specific for a given argumentation step. 
Note that the definition of rationale is different from the 
typical use of the justification element. The rationale 
definition does not contradict the idea and the role of the 
justification in the argument, but instead expands it. This 
approach allows to integrate the assurance argument and the 
confidence argument in a way presented in Fig. 2. 

The approach allows to present a consistent view on 
assurance and confidence premises for each argumentation 
step. This does not prevent the creation of a separate and 
complete confidence argument as links can be used to connect 
the rationale premises with it. The user can work focusing on 
the assurance argument or on the confidence part or on the 
coupled arguments jointly. 

The approach can be compared to ACP approach [19] which 
specifies assertions on GSN elements relationship (edges on 
diagrams). ACP approach keeps separate confidence and 
assurance arguments and it makes more difficult to provide a 
user with an integrated view on both arguments using APCs. 
The advantage of ACPs is that the assertion type can be easily 
identified by the location of a small black square on a 

relationship connecting strategy or context or evidence. This 
can be mapped to defeaters types. Information on the defeater 
type is not presented graphically in our approach. 
 

 
Fig. 2. General schema of argument integration 

 
The main formal difference between our approach and the 
ACP concept is the role of the justification element of the 
argument. In our approach we regard it as a root element for a 
local confidence argument. 

In ACP approach each Assurance Claim Point is an assertion 
providing a reference to the confidence claim, which is a part 
of the confidence case. In our approach we use links in a 
similar way. A separate confidence case can be created which 
contains the overall decomposition of confidence argument.  
Each of confidence case claim can be connected by a link 
with a local confidence argument covered by a rationale in the 
main assurance argument. 

Some similarities can be found between our approach and the 
concept of confidence maps [11]. The main difference is that 
we integrate assurance and confidence arguments, both 
having a unified representation, while confidence maps 
introduce new type of diagrams which explicitly show 
defeaters and countermeasures for them. 

We have used NOR-STA assurance case tool [13] to develop 
the integrated assurance and confidence arguments. The tool 
has been developed at Gdańsk University of Technology 
(GUT) and is using TCL notation (Trust Case Language). 
TCL is an assurance case notation developed at GUT since 
2001 as part of TRUST-IT methodology [12]. The notation is 
similar to GSN [17] and CAE [6] and is compliant with 
ISO/IEC 15026 [20] and OMG’s SACM [24]. 

NOR-STA allows to present and filter confidence arguments 
and to make assessment of assurance case arguments with 
respect to both assurance and confidence. It uses assessment 
mechanism based on Dempster-Schafer theory [26, 7]. This 
allows for assessment aggregation [5, 8, 27] and also for 
expressing uncertainty instead of giving a choice between 
“true” and “false” [5, 8]. 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


 
 

 

4 Case study 
The presented concept has been implemented in a case study 
of extending an existing assurance case with a confidence 
argument. The objectives of the case study were twofold. 
First to demonstrate the approach for a non-trivial assurance 
case and also to experience the process of transformation 
from an ordinary assurance case to the assurance case with 
the associated confidence arguments. 

The case study for a selected assurance case has been 
conducted in the following steps: 
1. For each argumentation step going top-down: 

a. review the argument to identify defeater 
2. For each identified defeater: 

a. analyse defeater criticality and decide if it requires 
actions 

b. identify possible ways for resolution if required 
c. implement resolution: 

− option 1: modify assurance argument structure to 
eliminate the defeater cause 

− option 2: develop confidence argument to address the 
defeater 

− option 3: no action required 

The argument selected for our case study was the Open PCA 
Infusion Pump assurance case developed by Kansas State 
University [25]. The safety part of the assurance case contains 
over 600 elements, including 96 claims. It covered a broad 
range of infusion pump hazards and failure modes required by 
FDA regulations [9], including human aspect, software, 
hardware and mechanical elements failures. We were aware 
of the fact that this assurance case is on the concept design 
level and some of the claims remained undeveloped but 
nevertheless it suited well for the purpose of the 
demonstration of our approach. 

We planned the review to be conducted by one person, then 
independently verified by another. To provide the reviewer 
with some guidance, we decided to use the 5-item list of  
defeater types (D1-D5) presented in section 2.1. We chose 
this defeater classification as we considered it to be the most 
comprehensible one. The reviewer was supposed to 
immediately assign category (D1-D5) to each defeater. One 
of the recognised problems related to defeaters is that it is 
quite easy to raise doubts regarding every piece of 
information included in the assurance argument and therefore 
producing a large number of defeaters expressing more and 
more incredible conditions [11]. We focused on a more 
practical approach: a defeater was identified only if the 
reviewer really considered something as a credible doubt e.g. 
questionable reasoning based on unclear inference rule, 
missing premises (indicated by inference rule), inadequate 
hazard mitigation leaving out some causes or conditions. 

During the review 127 defeaters have been identified. This 
was the first such review and it is hard to judge if it is a 
normal, low or high level. We should also be aware that:  
− the reviewed assurance case had the draft status and it 

was an research case study intentionally not complete 
(e.g. missing some of the evidence); 

− it focused on assurance aspect only, little attention was 
paid to confidence aspects e.g. related to the process; 

− inference rules were seldom explained and justified thus 
creating reasons for doubt. 

Initially the reviewer used the list of defeater types as a 
checklist, however soon it turned out that free, unguided 
searching for argument deficiencies was more efficient. The 
list was too general and difficult to apply to the concrete 
claims and arguments of the assurance case. Moreover, 
classification of defeaters, especially those related to 
inference rules was problematic. For example when the 
reviewer finds a scenario when the claim is not satisfied, it 
can be classified as counterevidence (D2). Deeper analysis 
however may reveal that it is caused by incomplete inference 
rule for a given context of the claim (D5). 

Although it was not planned in our case study, we decided to 
analyse the defeaters found, try to identify similarities and 
create a “defeater checklist” using “bottom-up” approach. The 
resulting checklist is shown in Table 1, together with the 
percentage share of defeaters found using each checklist item. 
Quite surprisingly, we found out that grouping the items of 
the checklist into more general categories resembles 3 types 
of ACPs [19]. The defeaters we found were either related to 
the inference rule, premises (evidence but also sub-claims) or 
the context (e.g. of using the device). The category for each 
defeater is indicated by the first letter of its identifier. 

The next step of our case study was to address a subset of the 
identified defeaters. The analysed subset covered all the types 
of defeaters. Some of them were addressed by altering the 
assurance argument (e.g. refining context), some by 
developing confidence argument and some by both. The 
result was the improved assurance case supported by 
confidence argument. 

Let’s consider an example of a claim that given software 
function works correctly what is argued by module tests 
where test scope covers function requirements. The argument 
is presented in thick lines in Fig. 3. The argument review may 
produce three possible defeaters (however more are possible): 
a) premise may be faulty: test report may be incorrect if the 

testing process is unreliable; 
b) argumentation strategy may be faulty: the chosen test 

method may not be sufficient to provide sufficient 
confidence that the function works correctly; 

c) counterevidence may be available: some function errors 
may be reported by other tests or operation personnel and 
not fixed. 

Each of the described defeaters can be resolved by adding a 
confidence claim as presented in Fig. 3. 

The main experience from extending the assurance case with 
supporting confidence argument was that the process 
involved thorough analysis of the assurance case 
completeness and consistency. Some of argument deficits 
were resolved by modification of the main argument without 
adding any confidence argument. 

Some other approaches are focused on building exhaustive 
confidence argument structure based on trustworthy system 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


 
 

 

lifecycle and safety management process [2]. In our opinion 
both directions are important. A reasonable approach would 
be first to create confidence argument based on the safety 
management and system development process, then integrate 
it with the assurance argument for subsequent stages of the 
assurance case development and periodically review the 
assurance case to ensure confidence argument completeness. 

 

 
Fig. 3. Confidence argument example 

 
This raises a question how to efficiently build and maintain 
completeness and consistency of the confidence argument and 
the main assurance argument. Assurance case review 
techniques like the checklist presented in Table 1 can be 
helpful. Moreover, it is not normally achievable to 
demonstrate complete confidence, therefore a judgement has 
to be made what level of confidence should be demonstrated 
for a given part of an assurance case. For example a higher 
confidence would be required for critical hazards, while for 
other issues with limited impact on safety a lower confidence 
level can be accepted and some confidence deficits can be 
tolerated. We consider that rationale element is suitable to 
indicate how much confidence is required/demonstrated. 
Efficient methods for managing the confidence level and 
consistency between the assurance and confidence argument 
are needed. Part of the possible solution is the proposed 
argument integration and the use of reviews and checklists to 
ensure its completeness.  

5 Summary 
In this paper we presented an approach for confidence and 
assurance argument integration and the checklist of defeaters 
to facilitate the process of building confidence arguments. 

The argument integration is based on the idea of extended 
role of argumentation strategy justification element to 
represent rationale specific for a given argumentation step. 
Rationale’s objective is to ensure confidence in the 
argumentation step through decomposition into confidence 
argument. The approach allows to present comprehensible 
view of integrated assurance and confidence argument. This 
does not exclude the construction of separate confidence case 

as we can use links to connect to “local” confidence 
arguments. 

Confidence argument can be developed using the results of 
the checklist-based assurance case review. We presented the 
defeater checklist developed in our case study of a confidence 
argument development for an Open PCA Infusion Pump 
assurance case [25]. The checklist can be helpful in 
maintaining completeness of confidence argument, however it 
still requires validation with real-life assurance cases.  
Argumentation reviews and searching for defeaters to develop 
confidence arguments helps to improve assurance argument 
quality and eliminate its gaps, ambiguities and weak spots. 

We plan to strengthen the process of managing confidence 
argument completeness and consistency with the assurance 
argument. Rationale integrates confidence claims necessary to 
demonstrate the strength of the argumentation step. This can 
serve as basis for managing the argument strength level 
depending on assurance argument goals criticality. 

References 
[1]  T. Ankrum, A. Kromholz, “Structured assurance cases: 

Three common standards”, Proc. of High-Assurance 
Systems Engineering Symposium (HASE'05), 
Heidelberg, Germany, (2005). 

[2]  A. Ayoub, B. Kim, I. Lee, O. Sokolsky, “A systematic 
approach to justifying sufficient confidence in software 
safety arguments”, Proc. of 31st International 
Conference on Computer Safety, Reliability and Security 
(SAFECOMP 2012), LNCS 7612, pp. 305-316, (2012). 

[3]  P. Bishop, R. Bloomfield, “The SHIP Safety Case 
Approach”, Proc. of 14th International Conference on 
Computer Safety, Reliability and Security 
(SAFECOMP'95), (1995). 

[4]  P. Bishop, R. Bloomfield, S. Guerra, “The future of 
goal-based assurance cases”, Proc. of Workshop on 
Assurance Cases, 2004 International Conference on 
Dependable Systems and Networks, pp. 390-395, (2004). 

[5]  P. Bishop, R. Bloomfield, B. Littlewood, A. Povyakalo, 
D. Wright, “Toward a formalism for conservative claims 
about the dependability of software-based systems”, 
IEEE Transactions on Software Engineering, Vol. 37 
(2011), pp. 708–717, (2011). 

[6]  R. Bloomfield, P. Bishop, C. Jones, P. Froome, 
“ASCAD - Adelard Safety Case Development Manual”, 
Adelard, (1998). 

[7]  Ł. Cyra, J. Górski, “Support for Argument Structures 
Review and Assessment”, Reliability Engineering and 
System Safety, Vol. 96, Elsevier, pp. 26-37, (2011). 

[8]  E. Denney, G. Pai, I. Habli, “Towards Measurement of 
Confidence in Safety Cases”, Proc. of Symposium on 
Empirical Software Engineering and Measurement, 
Banff, Canada, (2011). 

[9]  US Food and Drug Administration, “Infusion Pumps 
Total Product Life Cycle. Guidance for Industry and 
FDA Staff”, (2014). 

[10]  J. B. Goodenough, C. B. Weinstock, A. Z. Klein, 
“Toward a Theory of Assurance Case Confidence”, 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


 
 

 

Technical Report CMU/SEI 2012 TR 002, Carnegie 
Mellon University, (2012). 

[11]  J. B. Goodenough, C. B. Weinstock, A. Z. Klein,  
“Eliminative induction: A basis for arguing system 
confidence”, Proc. of  35th International Conference on 
Software Engineering, pp. 1161-1164, (2013). 

[12]  J. Górski, A. Jarzębowicz, R. Leszczyna, J. Miler, M. 
Olszewski, “An approach to trust case development”, 
Proc. of 22nd International Conference on Computer 
Safety, Reliability and Security (SAFECOMP 2003), 
LNCS Vol. 2788, pp. 193-206, (2003). 

[13]  J. Górski, A. Jarzębowicz, J. Miler, M. Witkowicz, J. 
Czyżnikiewicz, P. Jar, “Supporting Assurance by 
Evidence-Based Argument Services”, Proc. of 
SAFECOMP 2012, LNCS 7613, pp. 417-426, (2012). 

[14]  J. Górski, A. Jarzębowicz, J. Miler, “Comparative 
conformance cases for monitoring multiple 
implementations of critical requirements”, Proc. of  
32nd International Conference on Computer Safety, 
Reliability and Security (SAFECOMP 2013),  LNCS 
Vol. 8153, pp. 8-20, (2013). 

[15]  W. S. Greenwell, J. C. Knight, C. M. Holloway, J. J. 
Pease, “A taxonomy of fallacies in system safety 
arguments”, Proc. of the 2006 International System 
Safety Conference, (2006). 

[16]  S. Grigorova, T. Maibaum, “Argument evaluation in the 
context of assurance case context modeling”, Proc. of 
IEEE Int. Symposium on Software Reliability 
Engineering Workshops, (2014). 

[17]  GSN Community Standard Working Group, “GSN 
community standard version 1”, (2011). 

[18]  R. Hawkins, T. Kelly, “A structured approach to 
selecting and justifying software safety evidence", Proc. 
of 5th IET International System Safety Conference, 
Manchester, UK, IET, (2010). 

[19]  R. Hawkins, T. Kelly, J. Knight, P. Graydon, “A New 
Approach to creating Clear Safety Arguments”, Proc. of 
19th Safety Critical Systems Symposium, (2011). 

[20]  ISO/IEC, “ISO/IEC 15026-2:2011 Systems and software 
engineering – Systems and software assurance – Part 2: 
Assurance case”, (2011). 

[21]  T. Kelly, “Reviewing Assurance Arguments - A Step-
by-Step Approach”, Proc. of Workshop on Assurance 
Cases for Security, Edinburgh, UK, (2007). 

[22]  Z. Langari, T. Maibaum, “Safety cases: a review of 
challenges”, International Workshop on Assurance 
Cases for Software-intensive Systems (ASSURE 2013), 
San Francisco, (2013). 

[23]  N. Leveson, “The use of safety cases in certification and 
regulation”, Journal of System Safety, Vol. 47, No. 6, 
System Safety Society, (2011). 

[24]  Object Management Group, “Structured Assurance Case 
Metamodel (SACM),” version 1.0, (2013). 

[25]  B. R. Larson, “Open PCA Pump Assurance Case”, 
SAnToS research group, Kansas State University, 
http://openpcapump.santoslab.org/, (2014). 

[26]  G. Shafer, “Mathematical theory of evidence”, 
Princetown University Press, (1976). 

[27]  S. Toulmin, “The Uses of Argument”, Updated Edition, 
Cambridge University Press, (2003). 

[28]  B. Verheij, “Evaluating arguments based on Toulmin's 
scheme”, Argumentation 19 (3), pp. 347-371, (2005). 

[29] D. Walton, “Defeasible reasoning and informal 
fallacies”, Synthese Vol. 179, no. 3, pp. 377-407 (2011). 

[30]  R. Weaver, P. Mayo, T. Kelly, “Gaining Confidence in 
Goal-based Safety Cases”,  Proc. of 14th Safety Critical 
Systems Symposium, Springer, (2006). 

 

 

 Defeater description % found 

I-1 No defined inference rule. It is unknown how the conclusion is drawn from premises. 3,1% 

I-2 Wrong inference rule 9,4% 

I-3 Inference rule not sufficiently justified (unknown reasons, doubts about completeness)  9,4% 

I-4 Inference rule incomplete: not all requirements regarding premises specified. As a result, some premises may be 
missing. 17,3% 

I-5 Inference rule leaves out a specific situation/factor or counterevidence. As a result, some premises are missing. 5,5% 

I-6 Inference rule does not consider mutual influence of premises. 4,7% 

P-1 One or more premises required by the inference rule are missing 11,0% 

P-2 Superfluous premise(s) of unclear role in the inference rule. 0,8% 

P-3 Superfluous premise(s) which should be a part of the confidence argument instead of the assurance argument. 0,8% 

P-4 Unreliable or faulty premise(s). 15,7% 

P-5 Premise not properly defined (unclear, unverifiable). 15,7% 

C-1 Required context not specified. 4,7% 

C-2 Wrong context assumed. 1,6% 

Table 1. Defeater checklist 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://openpcapump.santoslab.org/
http://mostwiedzy.pl

	A. Jarzębowicz*†, A. Wardziński*†
	* Department of Software Engineering, Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
	{olek, award}@eti.pg.gda.pl
	Abstract
	1 Introduction
	2 Defeaters and confidence argument
	3 Proposed approach
	4 Case study
	5 Summary
	References

