
INTEGRATION OF HETEROGENEOUS WEB SERVICES IN
EXCEPTIONAL SITUATIONS

Paweł L. KACZMAREK*

Abstract. Web services are intended to enable interoperability between heterogeneous
distributed systems. Although the technology has been widely adopted and accepted, there
are still differences between runtime platforms in exception structure and handling. This
results in difficulties in effective handling of exceptions during Web services invocation.
The paper presents a solution that enables coordinated exception handling between different
environments, which involves communication between the client and server to exchange
exceptional information and invocation of defined handling functions. The functions are
supplied by dedicated libraries that extend heterogeneous runtime platforms. Additionally,
IDE environments are augmented with facilities for development of Web services exception
processing code. An implementation of the solution for IBM WebSphere Application
Server and Microsoft Internet Information Server is presented

Keywords: exception handling, service integration, heterogeneous environments, self
healing, Web services

1. Introduction

The open environment of Service-Oriented Architecture (SOA) encourages the use of
existing components for application development. Integration of components-off-the-shelf
enables reducing development cost and time by using already existing modules. The
components are often run in heterogeneous environments, which makes interoperability
issues especially important. Web services standards [11] (WS) are used to enable
interoperability between components for both similar runtime platforms (Oracle AppServer
and IBM WebSphere), and for different runtime platforms (.NET and Java based).

Using an existing component, with a possibly unknown supplier, requires resolution of
dependability issues[3]. Many techniques for dependability assurance of SOA systems have
been designed such as component rating, failure modeling or fault tolerance [7]. Exception
handling is one of the fault tolerance techniques that is used in SOA systems. Although WS

* Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of

Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland, pkacz@eti.pg.gda.pl

F O U N D A T I O N S O F C O M P U T I N G A N D D E C I S I O N S C I E N C E S
Vol. 36 (2011) No. 3 – 4

standards anticipate the necessity of exception notification during service invocation[11][8]
and supply interoperability, difficulties in exception handling still exist:

 Exception handling rules differ between runtime environments.
 The reason for exception is often unknown on the client-side. Runtime libraries

typically throw few standard exceptions (for example SoapFaultException and
RemoteException) that do not immediately indicate the source of the problem.

 Coordinated handling of exceptions is often difficult or impossible.
The paper describes the REHandler (Remote Exception Handler) middleware that

supplies mechanisms for automated or coordinated exception handling. REHandler extends
runtime platforms with a dedicated service that supports integration of heterogeneous
environments. Additionally, existing IDE environments are extended with additional
mechanisms for development of exception handling code - IDE Extensions for Exceptions
(IDExx). In more detail, the contributions are as follows.

 We present the REHandler middleware and rules for handling of exceptions
during invocations. The middleware supplies client-side and server-side modules,
which enables both client-only and client-server exception processing.

 We define a method for classifying exceptional conditions in WS communication.
We propose three general purpose exception classes SoapNetworkException,
SoapServerException, SoapClientException.

 We adjusted and implemented the REHandler for two leading environments:
Microsoft Internet Information Server and IBM WebSphere Application Server.

The rest of the paper is organized as follows. The next section overviews REHandler
architecture and presents general system operation. Sect. 3 presents information about
automated handling. Sect. 4 describes the implementation of the solution. Sect. 5 describes
related work. Finally, Sect. 6 concludes the paper and presents directions of future work.

2. Architecture and behavior of the handling system

The proposed solution addresses by supplying two complementing mechanisms: extensions
for WS runtimes and extensions for IDE environments as shown in Figure 1.

Figure 1. Integration of REHandler during development and runtime

The REHandler middleware consists of two complementary modules: a client-side

library and a server-side library that are potentially deployed in different environments. If a
client service receives an exception, it may request from the client-side REHandler to

220 P. L. Kaczmarek

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

initialize exception handling. Server-side REHandler supplies automated exception
handling functions that concern either server-only or client-server cooperation.

Processing of exceptions by REHandler is done in the following steps:
 A client-side REHandler retrieves information about the source exception from the

SOAP fault (exception) that was sent.
 REHandler decides whether to initialize automated exception handling or to throw

the exception to the client. The decision depends on availability of handling
functions, exception type and custom configuration.

 Automated client-only handling is selected for exceptions independent from server
(for example broken link). The client-side REHandler invokes one of local handling
functions.

 Coordinated client-server handling is selected for exceptions from a server error:
o The client-side REHandler communicates with the server-side REHandler

informing about the occurred exception and requesting a repair action.
o The server-side REHandler performs a repair action in its runtime

platform.
o The client-side REHandler waits for finishing the repair action and repeats

(one or more times) the original invocation
 Exception is signaled to the client if it can not be handled automatically.

As an example, suppose a client invokes a Web service that returns an exception. The

client-side REHandler processes the exception and identifies SQLException as the source
of the exception. Then, the client-side module requests from the server-side module
performing a handling action. The server-side REHandler restarts the database. After the
restart, the client repeats the invocation of the Web service.

REHandler supplies two kinds of access methods for exception handling: a local
interface and a remote interface as shown in Figure 2.

Figure 2. Main elements of REHandler architecture

The local interface is used by a local component to request REHandler to process a
received exception. The remote interface is used by a remote REHandler module that

Integration of heterogeneous web services in exceptional situations 221

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

requests handling of an exception thrown by a service hosted in the runtime platform of the
REHandler module.

REHandler identifies the type of a thrown exception using attributes of a SOAP
exception that in turn correspond to sub-elements of the fault element of SOAP.

IDE environments are extended with tooling that simplify development of exception
handling code in WS invocation - IDExx. IDExx supplies wizards and code snippets that
simplify development of handling methods invocation.

3. Methods of exception processing and handling

Web services anticipate exception transmission in the SOAP env:Fault element and its sub-
elements: faultcode, faultstring, faultactor and detail. faultcode indicates whether the Client
or Server is responsible for exception occurrence. faultstring contains textual information
describing the thrown exception, usually a simplified version of stack trace. The contents of
faultstring is not standardized, and differs between runtime platforms. detail may be used to
transport detailed and structured information about a custom exception thrown by a WS. A
WSDL definition may contain the fault element that enables defining which custom data
will be transferred if an anomaly occurs.

3.1. Identification and classification of exceptions

Typically, libraries for WS invocation throw one of few standard exceptions if SOAP
env:Fault is received (excws), for example, SoapException or RemoteException. Attributes
or the exception are filled with values from env:Fault sub-elements. Client-side REHandler
uses attributes of the thrown exception to identify the type of exception that occurred on the
server-side (the source exception excsource). Parsing of the faultstring element for exception
names is usually most efficient for identifying both the final and base exceptions. The detail
element is checked for custom exceptions defined in WSDL:fault. Finally, faultcode and
faultactor are read to check the high-level source of the exception, either client or server.

Differences and inconsistencies exist in exception processing during WS invocations.
Entirely different environments (such as .NET and JEE) supply different exception
programming models and exception classes that are not interchangeable. The work [4]
shows experimental studies of WS invocations for two Java-based environments: Sun
Microsystems WS Toolkit and IBM WS Toolkit. Significant inconsistencies in exception
handling were identified and described. For example, thrown exceptions for the same fault
are different in different runtime environments.

Considering the inconsistencies, we propose that Web services invocation libraries
throw the following standard exceptions: SoapClientException, SoapNetworkException
and SoapServerException that inherits from SoapNetworkException.

 SoapClientException - the exception results from ill-behavior of a client.
 SoapNetworkException - the exception results from a network fault or inability to

communicate with the server, for example communication time-out.

222 P. L. Kaczmarek

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

 SoapServerException - the exception is thrown if it is known that a SOAP message
has been received from the server and a server fault occurred. The returned message
contains faultcode element set to the Server.

SoapServerException inherits from SoapNetworkException as there exist cases in
which it is impossible to determine whether the reason for a failure is server or network (for
example, a server crashes after receiving a request).

3.2. Automated handling of exceptions

The following cases may be distinguished considering client-server cooperation:
 The client-side has not received any information from the server side. excws contains

only information specific for the local environment.
 The client-side has received some information from the server side. excws may contain

information specific for the server-side environment, in particular excsource
Coordinated handling may be necessary in the first case, as the server side may have

received some information from the client. For example server crashed after receiving a
request from the client. The second case requires coordinated handling or propagation of
the exception depending on exception type.

Automated exception handling in REHandler is initialized by the client-side REHandler
middleware after identification of the source exception (excsource). Typically, REHandler
does not attempt to handle anticipated exceptions that result from client-side faults, with
faultcode set to client and exceptions defined in the WSDL fault element.

The middleware enables definition of handling functions and supplies exemplary ones.
Logically, three types of handling are distinguished: (i) client-side, (ii) client-server and
(iii) coordinated handling.

Client-side handling concerns the client-side REHandler only. This kind of handling is
applied if the client is the reason of the exception or the excsource is empty. For example, a
client is configured to use an alternative service if it can not locate the original service.

Client-server handling is initialized by a client-side REHandler that requests a repair
action from the server-side. For example, the server-side REHandler handles a
FileNotFoundException exception by creating an appropriate file in the server file system.
Then, the client is notified about the repair action and it repeats the original invocation.

Coordinated handling is initialized if it is required that more parties participate in the
process, for example many clients or many servers. REHandler modules are available
through WS under defined endpoints, which enables their communication. Handling of
SQLException is an example that may require coordination of different parties. REHandler
gathers information about thrown exceptions from different clients. If the frequency of
exceptions reaches a limit, the database is restarted or reconfigured to use a replica.

Figure 3 shows the communication between runtime environments with both client-side
and server-side REHandler modules.

Integration of heterogeneous web services in exceptional situations 223

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Figure 3. Communication between Web service modules and REHandler modules

3.3. Mechanisms supporting exception handling

REHandler processes the following types of handling functions:
 Language classes. A handler class implements a common interface with the handle

method that performs actual handling.
 Operating system scripts. System scripts usually address repairing system-wide issues.
 Reinvocation mechanism. REHandler supplies a built-in mechanism in two variants: a

simple reinvocation, and a reinvocation with a delay.
Types of potential exception handling on the client-side include: reinvocation,

reinvocation with a delay, N-version invocation of a service, replicated invocation, or
selection of alternative services.

4. Prototypical implementation of the handling system

The designed solution has been implemented in two environments: Microsoft IIS/.NET
Framework 3.5 and IBM WebSphere Application Server 6.5. The implementation is a
framework that covers functionality of the designed solution: exception retrieval from
SOAP and invocation of handling functions. Exemplary handling functions were included
to verify correctness of the solution. Source and binary packages of the current
implementation can be found at author web page.

http://www.eti.pg.gda.pl/~pkacz/rehandler.html
Both solutions supply a similar application programming interface and configuration

options. We used the Threx prefix in custom names of classes and packages during
implementation. Two most important methods include (i) requestRepairAction - handles
exceptions from remote requests and (ii) ProcessException - retrieves a specific exception
from a Soap exception and performs a handling function. Figure 4 shows the general flow
of exception processing and handling in both modules.

224 P. L. Kaczmarek

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Figure 4. General flow of exception processing in the REHandler system

Each REHandler is configured using an XML configuration file. Information about
local processing of exceptions concerns: propagation strategy and local exception handling
functions (scripts, classes, reinvocation strategies).

The current implementation imposes some limitations to the designed model. The main
limitation in J2EE is that some UI elements that have been substituted with code snippets
available for application developer. The main limitation of the solution in .NET concerns
the support for custom exception types which results from insufficient processing of WSDL
files during exception generation.

4.1. Exception handler in the J2EE environment

The implementation consists of two main modules: ThrexUtil and ThrexWeb. The first
module supplies core functions that enable exception processing on the local runtime
platform. The ThrexWeb module supplies the WS interface. ThrexWeb calls ThrexUtil
functions to invoke exception handling functions. The J2EE version is implemented using
IBM Rational Application Developer and IBM WebSphere AS 6.5.

A configuration file RemoteExceptionsRuleset.xml defines rules for exception
processing for both local and remote requests. Currently, the system implements the
following types of handling functions: custom code invocation, script execution, request
retry, request retry with timeout, generic mapping and remote requests for repair actions.

Client-side application developer uses the HandlerProxy class to invoke remote
methods with REHandler support. The solution intends to minimize coding effort as it
enables encapsulation of REHandler operations and frees the developer from direct
invocation of REHandler methods. Processing depends however on detailed description of
individual exceptions in the configuration file, rather than on general configuration.

Integration of heterogeneous web services in exceptional situations 225

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

4.2. Exception handler in the .NET environment

The .NET version of the implemented system distinguishes a module for local exception
handling (ThrexModule) and a module for WS access (ThrexWS). Additionally, a UI
module for Visual Studio supplies code snippets and dialog boxes for inserting Threx-based
invocations. The implementation is addressed for the Microsoft .NET framework 3.5, but it
may also be applied in the 2.0 version with minor modifications.

A configuration file (ThrexConfig.xml) specifies general settings (propagation strategy,
local ports), exception mapping, and repair actions for locally and remotely signaled
exceptions. Below we show a snippet of XML-based configuration file for client-side
processing of SQLException after receiving it from a remote Web service invocation:

 <LocalException name="java.sql.SQLException">
 <ProcessingStrategy>
 <RequestRemoteRepair />
 <Wait timeout="100" />
 <Reinvoke />
 </ProcessingStrategy>
 </LocalException>
The IDExx implementation extends the Visual Studio environment with a new menu

option enabling insertion of REHandler exception handling and supplies code snippets for
WS invocation. The snippets may be used manually by a developer or configured in the
IDExx module to insert the code automatically.

The current implementation has a limited functionality compared to the designed
solution. The UI part of the system is not fully integrated with the REHandler part, which
results in the necessity of manual code development in some cases.

5. Related work

Exception handling in parallel and distributed systems has been researched for years,
enabling design of both algorithmic and technological solutions. Programming guidelines
for correct exception use in WS have been designed for different programming
environments [10]. The guidelines rely mainly on displaying error messages from the
env:Fault sub-elements as few types of exceptions are available on the client-side. The
work [8] proposes a library for processing contents of SOAP env:Fault on the client-side.
The library is addressed for the Apache SOAP runtime and assumes that stack trace is
available in the detail element. Our solution differs in that we address heterogeneous
environments and supply distributed handling of exceptions.

The work [12] presents an algorithm that resolves concurrent exception occurrences in
distributed systems. The presented algorithm enables recovery of a distributed system if
components throw simultaneously different exceptions. The work [5] also focuses on
concurrent exception handling using an extended termination. A global exception is
introduced that is used to exceptional termination of cooperating processes.

Solutions that enable automated handling of exceptions are usually based on a
middleware layer that supplies exception handling or processing functions. The work [9]
presents a container-managed exception handling framework that is based on intercepting a

226 P. L. Kaczmarek

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

component method call and dispatching exception events at a variety of points during the
invocation. High level design of exception handling has been addressed in [2]. The work
focuses on UML modeling of exceptions and automated generation of exception
management features. The WS-Mediator [1] system addresses a wider problem of
dependable service composition. The system employs dependability monitoring and
resilience-explicit dynamic reconfiguration of service composition. Our solution differs in
that we enhance programming capabilities with exception handlers for WS environments.

Coordinated exception handling in EJB invocations in the J2EE environment is
addressed by the author in [6]. The concept of Remote Exception Handler (REH) is
proposed that enables invocation of predefined actions in case of exception occurrence.
Current work is focused on WS, which results in different exceptional situations and the
necessity to handle heterogeneity.

6. Conclusions

The presented solution enables automated handling of exceptions during Web services
invocation. The solution extends existing runtime platforms with advanced exception
processing that should result in an increase of application fault tolerance. The
implementation work that was performed in Microsoft .NET and IBM WebSphere gave
promising results. The implementation supplies a middleware that enables identification of
a source exception, handling of selected exceptions from both local and remote requests,
and propagation of exceptions if necessary. The middleware may be extended with detailed
exception handling procedures depending on application functionality.

The current implementation may be further extended, which will be the main scope of
future work. Dynamic propagation of information about exception handling actions is
highly recommended in the system. Now, a REHandler module allows dynamic
configuration of its local behavior, but the information is not exchanged with remote
modules. Additionally, the .NET part of the system should be extended with processing of
WSDL definitions and generation of custom exception types. The Java part should be
extended with graphical UI elements that simplify development of REHandler invocations.

6.1. Acknowledgment

The author would like to thank students: Łukasz Błoński, Mateusz Bronk and Marcin
Sasinowski for implementation work and important remarks concerning practical
application of the solution. This work was supported in part by the Polish Ministry of
Science and Higher Education under research project N N519 172337.

Integration of heterogeneous web services in exceptional situations 227

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

References

[1] Y. Chen, WS-Mediator for Improving Dependability of Service Composition. PhD
thesis, Newcastle University, Newcastle upon Tyne, UK, 2008.

[2] S. Entwisle, H. Schmidt, I. Peake, and E. Kendall, A Model Driven Exception
Management Framework for Developing Reliable Software Systems. In 10th IEEE
Intern. Enterprise Distributed Object Computing Conference, 2006.

[3] A. Gorbenko, V. Kharchenko, P. Popov, A. Romanovsky, and A. Boyarchuk,
Development of Dependable Web Services out of Undependable Web Components.
Technical Report CS-TR-863, University of Newcastle upon Tyne, 2004.

[4] A. Gorbenko, A. Mikhaylichenko, V. Kharchenko, and E.K. Iraj, Exception Analysis
In Service-Oriented Architecture. In 6th Intern. Conf. Information Systems Technology
and its Applications, ISTA, Ukraine, 2007.

[5] V. Issarny, Concurrent Exception Handling. Advances in Exception Handling
Techniques, LNCS 2022, 2001.

[6] P.L. Kaczmarek, B. Krefft, and H. Krawczyk, Coordinated Exception Handling in
J2EE Applications. In 6th Intern. Conf. on Computational Science, LNCS 3991, 2006.

[7] ReSIST: Resilience for Survivability in IST, A European Network of Excellence.
Resilience-Building Technologies: State of Knowledge, 2006.

[8] R. Shen and E. Choi, Build error-proof Web services. IBM developerWorks, 2002.
[9] K. Simons and J. Stafford, CMEH: Container Managed Exception Handling for

Increased Assembly Robustness. In Component-Based Software Engineering, LNCS
3054. 2004.

[10] P. Wang and R. Butek, Throw the Right Exception from the Service Endpoint. IBM
DeveloperWorks, 2004.

[11] The World Wide Web Consortium, Web Services Activity,
http://www.w3.org/2002/ws/, 2009.

[12] J. Xu, A. Romanovsky, and B. Randell, Concurrent Exception Handling and
Resolution in Distributed Object Systems. IEEE Transactions on Parallel and
Distributed Systems, 11(10), 2000.

228 P. L. Kaczmarek

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

