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Abstract. In this paper, intelligent audio signal processing examples are shortly 
described. The focus is, however, on the machine learning approach and da-
tasets needed, especially for deep learning models. Years of intense research 
produced many important results in this area; however, the goal of fully intelli-
gent signal processing, characterized by its autonomous acting, is not yet 
achieved. Therefore, a review of state-of-the-art concerning this area is given. 
The aspect of showing the importance of acquiring an appropriate dataset con-
taining audio samples dedicated to the task is also shown. The paper starts with 
samples of audio-related datasets resulting from the search engine inquiry. 
Then, examples of research studies along with results are given. Also, several 
works carried out by the author and her collaborators are presented. Some 
thoughts on future work are included with answering a question of whether an-
notated datasets are still needed.  
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1. Introduction

The International Year of Sound, a global initiative envisioned to highlight the im-
portance of sound and related sciences and technologies for all in society, was ex-
pected to be a year full of activities at regional, national, and international levels. 
However, the COVID-19 pandemic stopped these festivities even before they were 
due. Still, understanding sound, whatever its nature and role, i.e., communication, art, 
bridging the semantic gap in music, speech, and audio, i.e., looking for a strong corre-
lation between human knowledge and audio object description that utilizes signal 
features and labels, audio-based warning systems, environmental control, etc., is of 
great importance, especially when an automated approach is sought to be applied. 
There is a lot of progress in all the mentioned topics, often called auditory scene 
recognition,  as machine learning is no longer a frequented visitor but is interrelated 
with all the aspects of audio-related tasks. Overall, this concerns the audio ecosystem, 
defined as an inventory controlled by computer-based technology, which nowadays 
includes not only audio but also its users. Thus, whatever we listen to audio, talk to a 
machine, download or stream audio is duly noted and annotated, creating another 
record in a specific dataset.   

This version of the article has been accepted for publication, after peer review (when applicable) and 
is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect 
post-acceptance improvements, or any corrections. The Version of Record is available online at: 
https://doi.org/10.1007/978-3-031-21967-2_55
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In this paper, examples of research are cited, along with machine learning algo-
rithms and datasets available for the effective training of machine learning algorithms 
and particularly deep models that solve audio signal-related problems.  

2. Audio-Related Research 

2.1. Machine Learning Applied to Audio-Related Topics  

Overall, a variety of machine learning (ML) techniques are used in audio-related top-
ics. They concern the so-called baseline algorithms, such as k-NN (k-nearest neigh-
bor) decision trees, Random Forest (RF), SVM (Support Vector Machine) [1], Self 
Sequential Minimal Optimization (SMO), Organizing Maps (SOM), Naïve Bayes, 
XGBoost (regression models) [2], etc., or deep model architectures. Such models − to 
name a few − can be given as Convolutional Neural Networks (CNN), Multilayer 
Perceptrons, Generative Adversarial Networks (GANs), Recurrent NN (RNN), Long 
Short Term Memory Networks (LSTMs), autoencoders, etc.  

These algorithms are well-known, so only some of them are recalled here as they 
cover either working principles of statistical models or the selection of the hyperpa-
rameters of deep models. The Naïve Bayesian classifier is a simple model that uses 
the assumption of independent variables, which is often not true [3]. The a posteriori 
maximum likelihood method is often used in such a case. A Random Forest concerns 
a set of independent random trees. Each random tree makes a decision based on given 
zero-one parameters placed at successive levels. The final decision of a random forest 
is the decision that is made more often among its constituent trees. Often, individual 
trees are trained on only a subset of the parameters to reach a solution of greater gen-
erality. Thus, a random forest consists of a large number of decision trees, each of 
which solves the problem individually in a binary fashion, and the final decision is the 
sum of the scores of the individual trees (the decision corresponds to the highest 
number of votes). Critical in this case is the low correlation between the trees. In this 
way, the trees protect each other from individual errors [4]. The algorithm is based on 
regression trees, which differ from decision trees in that the leaves contain an actual 
value instead of a binary decision. Classification is performed based on the values 
predicted by the corresponding leaves. Model learning is conducted in an additive 
manner, and the selection of the next splits considered is based on the gradient of the 
given loss function, with its second-order approximation used instead of the exact 
value. Weight regularization based on L1 and L2 norms is used. As in a random for-
est, multiple parallel trees can be used. If multiple trees are used, each tree is con-
structed based on some subset of samples from the learning set. 

It is essential to mention that, regardless of the algorithm used, quality metrics 
should be used for the algorithm’s efficiency. So, accuracy, precision, recall, F1-
score, the Area under the Curve (AUC), Receiver Operating Characteristics (AUC-
ROC) method [5], [6], or other measures are used to evaluate the classification quali-
ty. The AUC-ROC is a performance measurement for the classification problem at 
different threshold settings. The ROC represents the probability curve, while the AUC 
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represents the degree or measure of separability. The ROC curve is plotted using TPR 
(True Positive Rate) versus FPR (False Positive Rate). 

Since the rise of GPU-based computations, audio-based studies are easier to be car-
ried out, as the GPU-accelerated calculation can be employed [7]. Machine learning 
(ML) methods using deep structures are a rapidly growing field of knowledge, with 
multiple applications in areas of expertise such as speaker and source localization [8], 
audio rendering [9], analysis of acoustic signals originating from urban-related 
sources [10], [11], [12], [13], acoustic-based terrain classification [14], or music-
related tasks [15], or even for obtaining results associated with “creative” tasks [16]. 
Reinforcement learning algorithms are a group of ML methods for tackling problems 
involving interaction with the environment and managing getting knowledge from 
such an interaction, so the agent interacts with the environment by taking actions. In 
return, it obtains feedback through the reward signal [17].  

When using machine learning algorithms, critical is the hyperparameter selection 
as they impact the results obtained. Hyperparameter selection in reinforcement learn-
ing algorithms, especially ones based on a deterministic way of determining future 
actions, is the concept of greedy policies. It enhances the ability of the algorithm to 
explore the state space instead of exploiting known trajectories [18]. It should also be 
noted that much of the research is carried out in the Python environment, and deep 
models are implemented using the Keras framework and functional API [19]. So, the 
proposed architecture, the number of filters, kernels, activation function, etc., are 
easily available to build one’s model.  

In a recent paper by Lerch and Knees, a review of audio-related papers belonging 
to the special issue on Machine Learning Applied to Music/Audio Signal Processing 
[20,] is to be found. This is a subset of subjects and machine learning approaches 
covering the area; however, these papers are state-of-the-art [21]−[35], so some of the 
techniques are to be recalled in the context of their practical application. 

Recurrent Convolutional Network and HRNet are used in vocal/singing voice sepa-
ration [21][23]. U-net architecture is applied to jazz bass transcription [24]. Some 
other deep models, such as Convolutional Neural Networks (CNN) [25] – investigate 
polyphony; Convolutional NMF − an integration of Non-Negative Matrix Factoriza-
tion (NMF) with Convolutional Neural Network [27] – solves the problem of drum 
mixture decomposition. Generative Adversarial Networks [30] is a basis for the resto-
ration of compressed musical audio. Also, automatic melody harmonization is carried 
out using reinforcement learning [35]. 

Additional examples of such will be given further on when referring to research 
carried out by the author and her collaborators and students. 

2.2. Audio Datasets 

This Section should start with whether we still need datasets annotated and how large 
they should be. For the purpose of audio-related classification tasks, when baseline 
algorithms were employed, individuals added tags and labels to music files manually. 
Such a method of dataset creation is not only arduous but has a subjective bias and is 
also time-consuming. Another approach is called social tagging, when a statistically 
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significant number of people participate in the process, resulting in collaborative 
filtering. Still, the process is time-taking and biased by a person’s performance and 
choices; however, this is used in music social services. In contrast, based on low-level 
descriptors, labeling may be automatized to some extent. This method searches for 
similarities within the audio signals to carry out automatic tagging. However, parame-
terization quality depends on the algorithm used in automatic classification, so the 
process is not without problems. Nevertheless, many datasets were created in music 
for challenges,  e.g., GZTAN, ISMIR2004, MIREX2005, Million Song Dataset 
(Magnatune), ISMIS [36], SYNAT, containing 1,000 to approx. 50,000 music ex-
cerpts [37]. In parallel, manually annotated datasets for speech (e.g., MODALITY 
[38], SAVEE (Surrey Audio-Visual Expressed Emotion) [39], RAVDESS [40], TESS 
[41], and environmental sound [42] processing were created, often containing more 
than one modality. Deep learning brought new, often huge datasets, especially when 
compared to the existing ones, as these models are greedy and need a lot of data. It 
should be noted that many corporations created technology and devices to gather data 
when communicating with them. However, for many years, the datasets were still 
manually labeled, and only recently has the process been revolutionized.  

It is worth looking for available audio datasets through a search machine, one of a 
wide array of existing search engines. For example, Google opens such lists with “40 
Open-Source Audio Datasets for ML,” a collection of datasets covering 2 TBs of 
labeled audio datasets. They are publicly available and parseable on DagsHub [43]. 
For each sample, additional information such as 2D representation in the form of 
waveforms, spectrograms, as well as file metadata is available. Moreover, these da-
tasets contain seven languages and refer to various domains and sources. Then comes 
a description of another source of the labeled 25 Large audio datasets [44]. This 
source contains over 1.5 TBs of Labeled Audio Datasets. They are music-related, i.e., 
Free Music Archive, Million Song dataset, speech such as Free Spoken Digit, Li-
briSpeech, VoxCeleb, The Spoken Wikipedia Corpora, FlickrCaptionCorpus, and 
many others. Among them, one can find datasets used in various challenges. They 
cover audio-only, audio in noise,  audio-video,  emotions contained in audio, a com-
bination of them, or multimodal data. Other categories belong to nature-related da-
tasets, containing bird sounds and environmental or urban audio. The Google list 
continues with 6,182 machine learning datasets [45], some of them can be found un-
der various links, but some others – are unique. Most of the datasets are open to the 
public  [46], even though examples of commercial usage are also to be seen.  

Another example is AudioSet which consists of a collection of 2,084,320 human-
labeled 10-second sound clips drawn from YouTube videos that are structured in the 
form of an ontology of audio event classes [47].   

A comprehensive explanation behind the audio event categories is given by the da-
taset creators. They list several recommendations such as, e.g., the categories should 
refer to sounds existing in real-world, and the relationship between the sound and its 
label should be obvious, the labels should be unique in the sense that a listener can 
easily identify the sound and the assigned label, the hierarchy should also be easily 
identified and its structure not too deep, etc. On the other hand, it is assumed that the 
ontology may be expandable. Obviously, this is not the only attempt to categorize 
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audio datasets. There are many such examples in the literature [42][48] 
[49][50][51][52][53]. 

Finally, the characteristics of the datasets are diverse and given in hours, bytes, 
events, classes, languages, samples, speakers, and – as already mentioned  – contain-
ing different modalities, e.g., MODALITY [38], etc., and their availability seems to 
grow exponentially.  

3. Examples of Audio-Related Work Performed 

Examples of research work carried out by the author and their collaborators and 
students are plenty, so it would not be possible to recall them all. So, this Section 
starts with some topics researched, and then an example of such will be shown in 
more detail. Overall, they concern music, speech, and ambient noise recognition, i.e., 
the mood in music classification [54]; classifying emotions in film music [55]; dis-
covering the relationship between personality types and preferred music genres [56]; 
musical instrument identification [57], [58]; detection of lexical stress errors in non-
native English speakers [59];  analysis of 2D feature spaces for deep learning-based 
speech recognition [60]; highlighting interlanguage phoneme differences [61]; cross-
linguistic speech emotion recognition [62]; recognition of types of vehicle-associated 
noise [63]; acoustic sensing analytics applied to speech in reverberation [64].  

Among the works performed are such as musical instrument sound separation and 
identification supported by baseline algorithms as well as deep learning models [57],  
[58]. For the purpose of the research carried out with the baseline algorithms, a da-
taset of approximately 50,000 audio excerpts was created [37]. In contrast, for the 
deep learning approach, data from the Slakh dataset [65] was used, which contains 
2100 audio tracks with aligned MIDI files, and separate instrument stems along with 
tagging. It should be noted that the deep model-based approach brought higher accu-
racy, though the task was, to some extent – different. The classification effectiveness 
was close to 100% in some instrument configurations [58]. However, the first study 
[57]  focused on automatic music genre classification while using the original and 
separated tracks. The instrument separation approach was selected to improve the 
results of music genre classification and, in particular, decrease the misclassification 
between selected genres in the context of the influence of the specific instrument on 
selected genres [57]. Moreover, such studies employing baseline and deep models, 
even though devoted to the same task, are comparable only to some extent. This is 
because, along with a difference in ML approach, different feature extraction is ap-
plied. At the same time, it should be pointed out that feature extraction, regardless of 
its representation, i.e., a feature vector, 2D representation, or an audio stream, plays a 
crucial role in the overall audio recognition process.  

Earlier research used a variety of algorithms and their combination. Notably, a 
fuzzy logic-based approach was combined with other ML techniques when applied to 
the automated evaluation of singing voice quality [66] or gesture-based system for 
sound mixing [67]. In both cases, datasets were created by the authors as the recogni-
tion tasks were unique at that time. 
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Another example focuses on showing the problem of speech analysis in the pres-
ence of ambient noise [68]. 

The environmental noise changes the manner of expression. This concerns the so-
called Lombard effect, which involuntary affects speech production. Speech with the 
Lombard effect is more intelligible in noisy environments than normal/neutral speech. 
So, the idea behind this study was that the speech synthesis model might retain Lom-
bard effect characteristics. Therefore, the main goal of the experiment was to check 
how the Lombard-based speech models are recognizable and at what type of noise 
and threshold a particular model stops working. The investigations were carried out in 
the context of speech enhancement. So, the ultimate goal is to prepare a system capa-
ble of synthetically generating Lombard speech through noise profiling for enhancing 
speech automatically in the presence of noise.  

An illustration of discerning between neutral and Lombard speech by CNN is 
shown in Fig. 1 (a. neutral speech, b. Lombard speech; the upper part corresponds to 
the time-domain signals, the middle part – spectral domain – mel spectrogram visuali-
zation; the lower part to the recognition by employing CNN). It refers to a sentence 
uttered by a male speaker in the presence of noise. The system is capable of recogniz-
ing this effect in speech. The data include information on F0, and the first two MFCC 
(Mel Frequency Cepstrum Coefficients) for the entire recordings (Number of samples 
used for training: 3156, no. of samples for validation: 790; accuracy on validation set: 
0.9899; loss on validation set: 0.0370; recognition accuracy: 0.9594; precision: 
0.9681; recall: 0.95).   

a.                                                        b. 
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Fig. 1. Discerning between neutral and Lombard speech by CNN; a. neutral speech, b. Lom-
bard speech; the upper part corresponds to the time-domain signals, the middle part – spectral 
domain – mel spectrogram visualization; the lower part to the recognition by employing CNN). 

Conclusion 
 
In conclusion, challenges that could be identified within the audio processing tech-

nology area are related to the role of human factors such as, for example, the user’s 
personality and experience, emotions in the user’s models, the naturalness of the pro-
cessed sound, and personalized services. This means that machine learning-based 
approaches should have a built-in evaluation module, mimicking the human way of 
assessing the quality of audio or judging the match between the audio content and the 
application envisioned. These elements still need a lot of attention. In contrast, in the 
era of statistical and deep models, it occurred that manually annotated audio sets may 
no longer be required as two domains, i.e., analysis and synthesis, become one. So, 
instead of recording and tagging audio, synthesized audio signals are employed. Their 
quality is not any more questionable; thus, speech can be reconstructed from the 
TTS (Text-to-Speech) model outputs [69]. Moreover, deep models help to transfer 
speech style, so voice conversion across different speakers is now achievable−this 
time, it is based on the speech-to-speech approach [70]. The same notion refers to 
music–music style transfer between musical pieces. The family of such tasks is called 
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one-shot  music style transfer [71]. This may sound like a simple task, but it has at 
least several elements to be dealt with, such as overall composition and performance 
translating into accompaniment, harmonic structure, timbre, etc., transfer [72].  

Finally, a concept presented in a recent paper entitled “Computer-assisted pronun-
ciation training—Speech synthesis is almost all you need” may be of interest in this 
context as it answers the posed question [73]. 
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