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a b s t r a c t

In this paper1 we study the problem of interval incidence coloring of bipartite graphs. We
show theupper bound for interval incidence coloring number (χii) for bipartite graphsχii ≤

2∆, and we prove that χii = 2∆ holds for regular bipartite graphs. We solve this problem
for subcubic bipartite graphs, i.e. we fully characterize the subcubic graphs that admit 4, 5
or 6 coloring, and we construct a linear time exact algorithm for subcubic bipartite graphs.
We also study the problem for bipartite graphs with ∆ = 4 and we show that 5-coloring
is easy and 6-coloring is hard (N P -complete). Moreover, we construct an O(n∆3.5 log∆)
time optimal algorithm for trees.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Problem definition

In the followingwe consider connected simple nonempty graphs only, andwe use standard notations of the graph theory.
For a given simple graph G = (V , E), we define an incidence as a pair (v, e), where vertex v ∈ V is one of the endpoints of
edge e ∈ E. The set of all incidences of G will be denoted2 by I , thus I := {(v, e): v ∈ V ∧ e ∈ E ∧ v ∈ e}. We say that two
incidences (v, e) and (w, f ) are adjacent if and only if one of the following holds: (1) v = w and e ≠ f ; (2) e = f and v ≠ w;
(3) e = {v, w}, f = {w, u} and v ≠ u.

By an incidence coloring of G we mean a function c: I → N such that c(v, e) ≠ c(w, f ) for any adjacent incidences (v, e)
and (w, f ). The incidence coloring number of G, denoted by χi, is the smallest number of colors in an incidence coloring of G.

A finite nonempty set A ⊆ N is an interval if and only if it contains all integers between min A and max A. For a given
incidence coloring c of graph G and v ∈ V let Ac(v) := {c(v, e): v ∈ e ∧ e ∈ E}. By an interval incidence coloring of graph
G we mean an incidence coloring c of G such that for each vertex v ∈ V the set Ac(v) is an interval. By an interval incidence
k-coloring we mean a coloring using all colors from the set {1, . . . , k}. The interval incidence coloring number of G, denoted
by χii(G), is the smallest number of colors in an interval incidence coloring of G. An interval incidence coloring of G using
χii colors is said to be minimal. We say that v ∈ V is minimal if min Ac(v) = min c(I), and we say that v ∈ V is maximal if
max Ac(v) = max c(I).

✩ This project has been partially supported by Narodowe Centrum Nauki under contract DEC-2011/02/A/ST6/00201.
∗ Corresponding author. Tel.: +48 58 347 10 64.
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2 To simplify notation, we write I instead of I(G) whenever G is clear from the context. The same rule applies to other parameters of G appearing in the
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1.2. Background, previous results and our contribution

In this paper we consider a restriction of the incidence graph coloring problem, in which the colors of incidences at a
vertex form an interval. The considerations in this paper are motivated by the multicasting communication in a multifiber
WDM (wavelength-division multiplexing) all-optical star network [2,4,5].

Alon et al. [1] defined a problem of partitioning a graph into a minimal number of star forests as a model of the possible
fastest exchanging messages in a network with the assumption of the ability of sending messages to all neighbors at the
same time and blocking receivingmore than onemessage (a dual model is also possible). Brualdi andMassey [6] formulated
a model of incidence graph coloring with references to some other models of graph coloring, such as strong edge and vertex
coloring of graphs. Guiduli [14] observed that the problem of incidence graph coloring is a special case of the problem
of partitioning a symmetric digraph into directed star forests. See [7,9,8,19,20] for more information about the incidence
coloring of graphs.

The interval edge coloring of graphs was proposed by Asratian and Kamalian [3] who analyzed the complexity and the
basic properties of interval edge coloring, defined also as consecutive coloring. A detailed reviewof the interval edge coloring
problem is described in [11,13]. This problem has applications in open-shop scheduling, especially in dedicated systems
without breaks [12].

In [16] the authors introduced the concept of interval incidence coloring modeling message passing in networks, and
in [17] the authors studied the applications in amodel of one-multicast transmission per node inmultifiberWDMnetworks.
In [18] the authors proved some lower and upper bounds for the interval incidence coloring number (χii), and determined the
exact values of χii for selected classes of graphs: paths, cycles, stars, wheels, fans, necklaces, complete graphs and complete
k-partite graphs. In [18] the authors also studied the complexity of the interval incidence coloring problem for subcubic
graphs for which they showed that the problem whether χii ≤ 4 is easy, and χii ≤ 5 is N P -complete.

In this paper, we study the problem of interval incidence coloring for bipartite graphs. In Section 2 we obtain an upper
bound for the interval incidence coloring number of bipartite graphs, namelyχii ≤ 2∆, andwe prove thatχii = 2∆ holds for
regular bipartite graphs. In Section 3 we construct a linear time exact algorithm for subcubic bipartite graphs. In Section 4
we study the problem for bipartite graphs with ∆ = 4 and we show that 5-coloring is easy and 6-coloring is hard (N P -
complete). In Section 5we construct a polynomial time exact algorithm for trees.Moreover,we fully characterize all bipartite
graphs that admit 4-colorings (Section 3.1) and 5-colorings (Sections 3.2 and 4.1).

2. Bounds on χii for bipartite graphs

In this section, we construct some lower and upper bounds on interval incidence coloring number for bipartite graphs.
Observe that χi ≤ χii and hence any lower bound for χi is a lower bound for χii.

Theorem 1. For any nonempty bipartite graph G we have

∆ + 1 ≤ χi ≤ χii ≤ 2∆.

Proof. It is easy to prove that the first two inequalities hold for all nonempty graphs and therefore we omit this part of the
proof.

To prove the right-hand side inequality, we divide the vertex set into 2 independent sets denoted by V1 and V2. We create
a coloring c from I to N in the following way: if v ∈ V1, then we assign colors to incidences at vertex v (i.e. of form (v, e))
in such a way that Ac(v) = {1, . . . , deg v}, and if v ∈ V2, then we assign Ac(v) = {∆ + 1, . . . , ∆ + deg v}. Hence we have
Ac(v) ∩ Ac(w) = ∅ for any v ∈ V1 and w ∈ V2, thus c is an interval incidence 2∆-coloring of G. �

Let G be any regular bipartite graph of degree ∆. It is easy to observe, that in any interval incidence χii-coloring c of
G, there is at least one vertex v that is minimal, i.e. min Ac(v) = 1. Moreover, there is a vertex u adjacent to v such that
c(v, {v, u}) = ∆, hence min Ac(u) > ∆, and by Theorem 1 we have

Theorem 2. χii(G) = 2∆ for any regular bipartite graph G. �

3. Polynomial time algorithm for subcubic bipartite graphs

In this section, we focus on the interval incidence coloring problem for subcubic bipartite graphs. Observe, that χii(P2) =

2 and χii(P3) = χii(P4) = 3, where Pn is a n-vertex path. If G is a path with at least 5 vertices or a cycle, then it is easy to
observe that χii(G) = 4. In the following, let G be a bipartite graph with ∆(G) = 3. By Theorem 1 the interval incidence
chromatic number χii(G) is between 4 and 6. We construct an efficient algorithm for coloring such graphs with minimum
number of colors (i.e. using 4, 5 or 6 colors).

3.1. Interval incidence 4-coloring of bipartite graphs with ∆ = 3

Lemma 1. If χii(G) = 4 then
(i) each vertex v of degree 3 has at most one neighbor of degree 3,
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(ii) each vertex v of degree 3 has at least one neighbor of degree 1,
(iii) no two vertices of degree 3 have a common neighbor of degree 2.

Proof. Suppose that χii(G) = 4 and let c be any interval incidence 4-coloring of G. Property (i) follows from the fact that in
the set {1, 2, 3, 4} one can find only two intervals of length 3, i.e. {1, 2, 3} and {2, 3, 4}, and in each of them there is only one
element not belonging to the other, which are needed for the incidences on edges between two vertices of degree 3. To prove
property (ii) observe that if Ac(v) = {1, 2, 3} (Ac(v) = {2, 3, 4}, respectively) then vertex u for which incidence (v, {v, u})
is colored with 3 (with 2, respectively) must be a leaf. Now, we prove property (iii). For v ≠ u let deg(v) = deg(u) = 3.
Suppose conversely that there is vertex x of degree 2 that is a common neighbor of v and u. Obviously, c(x, {x, v}) ∉ {2, 3}
and c(x, {x, u}) ∉ {2, 3}. Because deg(x) = 2, Ac(x) is {1, 2} or {2, 3} or {3, 4}, hence 2 ∈ Ac(x) or 3 ∈ Ac(x), a
contradiction. �

Lemma 2. If G satisfies properties (i)–(iii), then χii(G) = 4.

Proof. Suppose that G satisfies properties (i)–(iii). Because G is bipartite, there is a proper vertex coloring p of G that uses
two colors a and b. Now, we construct an interval incidence coloring q of the graph G. Let us assign a set of colors to each
vertex v as follows:

• if p(v) = a, then 1 ∈ Aq(v) (i.e. Aq(v) ∈ {{1}, {1, 2}, {1, 2, 3}}),
• if p(v) = b, then 4 ∈ Aq(v) (i.e. Aq(v) ∈ {{4}, {3, 4}, {2, 3, 4}}).

Let {u, v} ∈ E(G). From the properties of the graph G and the coloring p we can distribute colors from the sets defined
above among incidences as follows:

• let deg(u) = 3 and deg(v) = 3, if p(u) = a and p(v) = b, then q(u, {u, v}) = 1 and q(v, {v, u}) = 4;
• let deg(u) = 2 and deg(v) = 3, if p(u) = a (p(u) = b) and p(v) = b (p(v) = a), then q(u, {u, v}) = 1 (q(u, {u, v}) = 4)

and q(v, {v, u}) ≥ 3 (q(v, {v, u}) ≤ 2);
• let deg(u) = 2 and deg(v) = 2, if p(u) = a and p(v) = b, then q(u, {u, v}) ≤ 2 and q(v, {v, u}) ≥ 3;
• let deg(u) = 1 and deg(v) ≤ 3, if p(u) = a (p(u) = b) and p(v) = b (p(v) = a), then q(u, {u, v}) = 1 (q(u, {u, v}) = 4)

and q(v, {v, u}) = 2 or q(v, {v, u}) = 3.

The above method guarantees that q(u, {u, v}) ≠ q(v, {v, u}) for all adjacent vertices u, v (if deg(u) = deg(v) = 3 then it
follows from property (i), if deg(u) = 2 and deg(v) = 3—from property (iii), deg(u) = deg(v) = 2—it follows obviously
from the degree, deg(u) = 1 and deg(v) ≤ 3—from property (ii)). Therefore q is a proper interval incidence 4-coloring of
the graph G. �

By Lemmas 1 and 2 the problem of interval incidence 4-coloring for subcubic bipartite graphs is equivalent to verifying
properties (i)–(iii), which can be done in linear time.

3.2. Interval incidence 5-coloring of bipartite graphs with ∆ = 3

By Theorem 1 for bipartite subcubic graphs we have 4 ≤ χii ≤ 6. Obviously, every interval of length 3 included in
{1, 2, 3, 4, 5} contains 3, hence

Lemma 3. If χii(G) = 5 then

(iv) each vertex v of degree 3 has at most two neighbors of degree 3. �

Lemma 4. If G satisfies property (iv), then χii(G) ≤ 5.

Proof. Suppose that G satisfies property (iv). Because G is bipartite, there is a coloring p of G that uses two colors a and
b. Now, we construct an interval incidence coloring q of the graph G. Let us assign a set of colors to each vertex v as
follows:

(c1) if p(v) = a, then 1 ∈ Aq(v) (i.e. Aq(v) ∈ {{1}, {1, 2}, {1, 2, 3}}),
(c2) if p(v) = b, then 5 ∈ Aq(v) (i.e. Aq(v) ∈ {{5}, {4, 5}, {3, 4, 5}}).

Let {u, v} ∈ E(G). If deg(u) = deg(v) = 3, then we put colors satisfying q(u, {u, v}) ≤ 2 and q(v, {v, u}) ≥ 4 (it can be done
since G satisfies property (iv)). If deg(u) ≤ 3 and deg(v) ≤ 2, then by properties (c1) and (c2) we have Aq(v) ∩ Aq(u) = ∅.
Hence, the rest of colors from sets Aq(v) can be distributed in any way resulting in a proper interval incidence coloring using
at most 5 colors. �

If χii(G) > 4, then by Lemmas 3 and 4 the problem of interval incidence 5-coloring is equivalent to verifying property
(iv), which can be done in linear time.
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3.3. Algorithm for interval incidence coloring of subcubic bipartite graphs

Suppose that G is a connected subcubic bipartite graph. If ∆(G) = 2, then G is a cycle or a path, and this was discussed
above. If ∆(G) = 3, then we use the following algorithm that runs in linear time and is optimal.
Step 1: if G satisfies properties (i)–(iii), then by Lemma 2 color it with 4 colors.
Step 2: otherwise, by Lemma 1 we have χii(G) > 4, so if G satisfies property (iv), then by Lemma 4 color it with 5 colors.
Step 3: otherwise, by Lemma 3 we have χii(G) > 5, and by Theorem 1 it can be colored with 6 colors.

Theorem 3. Finding a minimal interval incidence coloring of a subcubic bipartite graph can be done in linear time. �

4. Coloring of bipartite graphs with ∆ = 4: 5 is easy, 6 is hard

In this section, we study the problem of interval incidence coloring for bipartite graphs with ∆ = 4. We prove that
5-coloring is easy, i.e. we fully characterize all graphs that admit a 5-coloring, and we prove that 6-coloring is hard (N P -
complete). In the following, let G be a bipartite graph with ∆(G) = 4.

4.1. 5-coloring of bipartite graphs with ∆ = 4 in linear time

Lemma 5. If χii(G) = 5 then
(i) each vertex has at most one neighbor of degree 4;
(ii) each vertex of degree at least 3 has at most two neighbors of degree at least 3;
(iii) each vertex of degree 4 has at least one neighbor of degree 1.

Proof. Suppose that ∆(G) = 4 and χii(G) = 5 and let c be any interval incidence 5-coloring of G. Observe, that for each
vertex v of degree four we have Ac(v) = {1, 2, 3, 4} or Ac(v) = {2, 3, 4, 5}. Hence if there is a vertex u with two neighbors
of degree four, then 1 ∈ Ac(u) and 5 ∈ Ac(u), thus Ac(u) is not an interval, a contradiction, so the property (i) follows. To
prove property (ii) observe that 3 ∈ Ac(v) for each vertex v of degree at least three. Suppose conversely, that some vertex
v of degree at least three has three neighbors of degree at least three. If deg(v) = 3, then there is a vertex u of degree
at least three adjacent to v, such that c(v, {v, u}) = 3, which contradicts 3 ∈ Ac(u). Let deg(v) = 4 and assume that
Ac(v) = {1, 2, 3, 4} ({2, 3, 4, 5} analogously). As before, there is no vertex u of degree at least three adjacent to v such that
c(v, {v, u}) = 3, hence there is a vertex u of degree at least three adjacent to v such that c(v, {v, u}) = 4, but this implies
that Ac(u) = {1, 2, 3} ⊂ Ac(v), a contradiction. Now, we prove (iii). Let deg(v) = 4 and assume that Ac(v) = {1, 2, 3, 4}
({2, 3, 4, 5} analogously). Suppose conversely that each neighbor of v has degree at least two. Observe that for each vertex u
adjacent to v wehave c(u, {u, v}) = 5. Consider vertex u adjacent to v such that c(v, {v, u}) = 4, hence 5 ∈ Ac(u), 4 ∉ Ac(u)
and deg(u) ≥ 2, a contradiction. �

Lemma 6. If G satisfies properties (i)–(iii), then χii(G) = 5.

Proof. Suppose that G satisfies properties (i)–(iii). Because G is bipartite, there is a coloring p of G that uses two colors a and
b. We construct an interval incidence coloring q of graph G. Let us assign a set of colors to each vertex v as follows:
(c1) if p(v) = a, then 1 ∈ Aq(v) (i.e. Aq(v) ∈ {{1}, {1, 2}, {1, 2, 3}, {1, 2, 3, 4}});
(c2) if p(v) = b, then 5 ∈ Aq(v) (i.e. Aq(v) ∈ {{5}, {4, 5}, {3, 4, 5}, {2, 3, 4, 5}}).

Let v ∈ V (G) and assume that p(v) = a (p(v) = b analogously). Now, let u1, . . . , udeg(v) be a sequence of vertices adjacent
to v ordered with non-increasing degrees, then by properties (i)–(iii) we have deg(ui) ≤ 5 − i (for i = 1, . . . , deg(v)),
hence let c(v, {v, ui}) = i, for i = 1, . . . , deg(v). Because p(ui) = b, then 5 ∈ Aq(ui), and by deg(ui) ≤ 5 − i we have
c(v, {v, ui}) = i ≤ 5 − deg(ui) < min Aq(ui), hence q is an interval incidence coloring of G using at most 5 colors. �

By Lemmas 5 and 6 the problem of interval incidence 5-coloring for bipartite graphswith∆ = 4 is equivalent to verifying
properties (i)–(iii), which can be done in linear time.

4.2. 6-coloring of bipartite graphs with ∆ = 4 is N P -complete

Let us denote by 3SAT the restriction of the classical 3SAT problem, defined as follows: 3SAT is the problemof satisfiability
of a given CNF formula with 2 or 3 literals in each clause and satisfying the condition that for any variable x the total number
of clauses with literals x or ¬x is not more than 3. Moreover, we may assume that for each variable both x and ¬x appear in
the formula. This problem is known to be N P -complete [10].

Theorem 4. The problem of deciding whether χii ≤ 6 is N P -complete for bipartite graphs with maximum degree ∆ = 4.

Proof. We construct a polynomial time reduction from 3SAT to the problem of interval incidence 6-coloring. For a given
formula φ = C1 ∧ C2 ∧ · · · ∧ Cm of 3SAT , we construct a bipartite graph G(φ) with ∆ = 4 as follows:
• each clause {x ∨ y} is represented by a gadget T2 (Fig. 1);
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Fig. 1. Gadget T2 for clause {x ∨ y}.

Fig. 2. Gadget T3 for clause {x ∨ y ∨ z}.

• each clause {x ∨ y ∨ z} is represented by a gadget T3 (Fig. 2);
• each literal is represented by vertex x or y in T2, or x, y or z in T3;
• for each variable xwe join each literal xwith ¬x by a gadget D (Fig. 3);
• let x be any variable, then if in formula φ there is

– one literal x and two literals ¬x, then we attach a pendant vertex to each vertex representing ¬x;
– two literals x and one literal ¬x, then we attach a pendant vertex to each vertex representing x;
– one literal x and one literal ¬x, then we attach a pendant vertex to each vertex representing x and ¬x.

Note that in fact we take isomorphic copies of graphs T2, T3 and D for each clause or pair {x, ¬x} of literals. Because each
gadget is bipartite, and each two vertices representing literals x and ¬x belong to the same partition, it is easy to observe
that G(φ) is bipartite. Because for any variable x the total number of clauses with literals x or ¬x is not more than 3, the
graph G(φ) has maximum degree equal to 4. Moreover, each vertex representing a literal is of degree 4.

In the following we use the simplified notation G instead of G(φ). Let c be any interval incidence 6-coloring of G such
that incidences at pendant vertices are colored with 1 or 6 (by recoloring it is always possible to get such a coloring). We
define an auxiliary vertex labeling p of G with labels a, a′ and b. For each vertex v we define p(v) as follows: if 1 ∈ Ac(v),
then p(v) = a, if 6 ∈ Ac(v), then p(v) = a′, otherwise p(v) = b. If deg(v) = 4, then labels a, a′, b correspond to sets
{1, 2, 3, 4}, {3, 4, 5, 6}, {2, 3, 4, 5}, respectively. Thus we get an easy

Proposition 7. For every vertex v of degree 4 we have {3, 4} ⊂ Ac(v). �

Lemma 8. The labeling p is a vertex coloring of G(φ) and the following holds:

(i) each vertex of degree ≤ 2 is assigned label a or a′;
(ii) each vertex of degree 3 with two neighbors of degree 4 is assigned label a or a′;
(iii) each vertex of degree ≥ 2 has at most one neighbor of degree 4 that is assigned label b;
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Fig. 3. Gadget D joining any pair of literals: x and ¬x.

(iv) each vertex of degree 4 with neighbors, each of degree at least 3, must be labeled with b;
(v) for each vertex v of degree 4 with neighbor set: two vertices u1 and u2 of degree 4, and two vertices w1 and w2 of degree 3,

we have:
(a) u1 is labeled with a, and u2 is labeled with a′, or conversely;
(b) w1 is labeled with a, and w2 is labeled with a′, or conversely.

Proof. Because there are no two adjacent vertices, each of degree two or three, it is easy to observe that any two adjacent
vertices have different labels, thus p is a vertex coloring. Property (i) obviously holds for pendant vertices (by assumption).
Because each vertex v of degree 2 has two neighbors of degree 4, by Proposition 7 we have Ac(v) = {1, 2} or {5, 6}, thus
we get property (i). Suppose that vertex v of degree 3 has two neighbors of degree 4. Analogously, by Proposition 7 we have
{1, 2} ⊂ Ac(v) or {5, 6} ⊂ Ac(v), hence property (ii) follows. To prove property (iii) suppose conversely that two vertices
of degree 4 adjacent to vertex v (deg(v) ≥ 2) have label b, i.e. the color set of the incidences is {2, 3, 4, 5}. Then 1 ∈ Ac(v)
and 6 ∈ Ac(v), a contradiction, thus property (iii) holds. To prove property (iv) suppose conversely, that vertex v of degree
4 is assigned label a (a′ analogously), i.e. Ac(v) = {1, 2, 3, 4}. Let u be the vertex adjacent to v, such that c(v, {v, u}) = 4.
By assumption deg(u) ≥ 3, so Ac(u) = {1, 2, 3} ⊂ Ac(v), a contradiction, hence vertex v is labeled with b. Now, we prove
property (v). By property (iv) vertex v is labeled with b (Ac(v) = {2, 3, 4, 5}). By Proposition 7 there is c(v, {v, u1}) = 2 and
c(v, {v, u2}) = 5, or conversely. But this implies c(u1, {u1, v}) = 1 and c(u2, {u2, v}) = 6 (or conversely), hence we get
property (a). Observe that two remaining colors 3 and 4 from Ac(v) are used to color incidences (v, {v, w1}) and (v, {v, w2}),
hence property (b) follows. �

As a consequence of Lemma 8 we have the two following lemmas.

Lemma 9. For a gadget D joining two literals x and ¬x we have:

(i) exactly one vertex among u and w is labeled with b;
(ii) if vertex u (w) is labeled with b, then vertex o is labeled with a and vertex m (n) is labeled with a′, or conversely;
(iii) if vertex x (¬x) is labeled with b, then vertex ¬x (x) is labeled with a or a′.

Proof. Consider gadget D shown in Fig. 3. Suppose that vertices u and w are labeled with a or a′. By Lemma 8(ii) vertices
m, n and o are labeled with a or a′. By Lemma 8(iv) vertex s is labeled with b, and by Lemma 8(v) vertex r is labeled with
a and vertex t is labeled with a′, or conversely. Hence there is a path of even length (i.e. even number of edges) consisting
of vertices labeled with a and a′ only, with end vertices (r and t) labeled with a and a′, a contradiction. By Lemma 8(iii) at
least one from vertices u and w must be labeled with a or a′, thus the property (i) follows. Suppose that vertex u is labeled
with b. By Lemma 8(iv) vertex s is labeled with b. By Lemma 8(ii) vertices m, n and o are labeled with a or a′. Let us assume
that r is labeled with a and t is labeled with a′, then m is labeled with a′ and n is labeled with a. Observe that o is labeled
with a, otherwise vertex w has two neighbors labeled with a and a′ (which would imply that w is labeled b, contradicting
Lemma 8(iii) at vertex o), thus property (ii) follows. If x is labeled with b, then by Lemma 8(iii) u is labeled with a or a′, hence
by property (i) vertex w is labeled with b and by Lemma 8(iii) vertex ¬x is labeled with a or a′, thus we get (iii). �

Lemma 10. In each gadget representing a clause there is at least one vertex representing a literal that is assigned label b, more
precisely:

(i) in each gadget T2 exactly one vertex from {x, y} is labeled with b;
(ii) in each gadget T3 at least one vertex from {x, y, z} is labeled with b.
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Proof. Consider graph T2 shown in Fig. 1. Suppose conversely that x and y are not labeled with b. By Lemma 8(iv) the only
one vertex (say s) of degree 4, with two neighbors of degree 3 and two neighbors of degree 4 must be labeled with b. By
assumption and Lemma 8(ii) each vertex of degree 3 from the cycle of even length containing vertex s is labeled with a or
a′. By Lemma 8(v) both neighbors of s from this cycle are labeled with different labels (a or a′), hence there is a path of even
length consisting of vertices labeled with a and a′, with end vertices labeled with a and a′, a contradiction. Thus vertex x or
y is labeled with b. Moreover, by Lemma 8(iii) exactly one from them is labeled with b.

Consider gadget T3 shown in Fig. 2. Analogously like in the proof for gadget T2, at least one of vertices from set {x, y, z}
must be labeled with b. �

Now, we show that having a proper labeling (with a, a′, b) of vertices of G(φ) one can construct an interval incidence
6-coloring of G(φ).

Lemma 11. Consider any labeling p of the graph G(φ) satisfying all properties from Lemma 8 and the following condition:
(1) any gadget T2 or T3 has exactly one vertex corresponding to a literal (i.e. x or y in T2, and x or y or z in T3) that is labeled

with b.
Then there is an interval incidence 6-coloring c of G(φ).

Proof. We construct an interval incidence 6-coloring c satisfying the property: for any vertex v we have 1 ∈ Ac(v) iff
p(v) = a and 6 ∈ Ac(v) iff p(v) = a′.

Case 1: by Lemma 8(i) we can color the incidence at a vertex of degree 1 with color 1 (if it is labeled with a) or 6 (if it is
labeled with a′);

Case 2: take any vertex v of degree 2, by Lemma 8(i) we can assume that it is labeled with a (a′ analogously). By
Lemma 8(iii) the neighbors of v must be labeled both with a′ or one with a′ and the second one with b, hence it is easy
to color both incidences at v with colors from {1, 2};

Case 3: let v be a vertex of degree 3, then, by construction of G(φ), one of the following holds:
(x1) v has two neighbors of degree 4 and one neighbor of degree 1;
(x2) v has one neighbor of degree 4 and two neighbors of degree 1.

In the first case (x1) by Lemma 8(ii) vertex v is labeled with a′ (a analogously). By Lemma 8(i) and (iii) the sequence of labels
assigned to all neighbors of v is a, a, b or a, a, a. Hence it is easy to color all incidences at vertex v with colors 4, 5, 6, starting
from c(v, {v, u}) = 6 (if p(u) = b). In the second case (x2) if vertex v is labeled with a or a′, we color analogously. If vertex v
is labeled with b, then, if the vertex u of degree 4 adjacent to v is labeled with a (a′ analogously), we color c(v, {v, u}) = 5,
and the rest of the incidences of v with 3 and 4;

Case 4: let v be a vertex of degree 4, hence, by construction of G(φ), one of the following holds:
(y1) v has two neighbors of degree 4 and two neighbors of degree 3;
(y2) v has one neighbor of degree 4, two neighbors of degree 3 and one neighbor of degree 1;
(y3) v has three neighbors of degree 3 and one neighbor of degree 2;
(y4) v has two neighbors of degree 3, one neighbor of degree 2 and one neighbor of degree 1 or 2.

In the case (y1) by Lemma 8(iv) vertex v (corresponding to vertex s in all figures) is labeled with b. Let u1, u2, w1, w2
be a sequence of vertices adjacent to v ordered with non-increasing degrees. By Lemma 8(v) we have p(u1) = a and
p(u2) = a′ (or conversely), and p(w1) = a and p(w2) = a′ (or conversely), hence we can color the incidences as follows:
c(v, {v, u1}) = 5, c(v, {v, u2}) = 2, c(v, {v, w1}) = 4 and c(v, {v, w2}) = 3.

In the case (y2) the considered vertex v (corresponding to s or t in all figures) is adjacent to a vertex u of degree 4 described
in the case (y1), hence it is labeled with a or a′, and u is labeled with b. Let us assume that v is labeled with a (a′ analogously).
One vertex (say w1) of degree 3 adjacent to v fulfills (x1) hence by Lemma 8(ii) it is labeled with a′, the second one (w2) is
labeled with a′ or b, and by Lemma 8(i) the pendant vertex (x) is labeled with a′. Hence we color the incidences as follows:
c(v, {v, u}) = 1, c(v, {v, w1}) = 3, c(v, {v, w2}) = 2 and c(v, {v, x}) = 4. The resulting coloring is feasible with the
coloring of w2 in both cases (w2 colored a′ or b).

In the case (y3) the considered vertex v is equal to one of the vertices u or w from gadget D shown in Fig. 3, let us assume
that v = u. If v is labeled with a (a′ analogously) then it is easy to color all incidences starting from c(v, {v, z}) = 4, where
z is the only vertex of degree 2 adjacent to v. If v is labeled with b, then by Lemma 9(ii) m is labeled with a and o is labeled
with a′, or conversely. We color then c(v, {v, o}) = 2 and c(v, {v,m}) = 5. If the third neighbor of degree 3 of v, say g , is
labeled with a′, then c(v, {v, g}) = 3, otherwise c(v, {v, g}) = 4. Incidence (v, {v, h}), where vertex h has degree 2, can be
colored with 3 or 4 by Lemma 8(i).

In the case (y4) the considered vertex v corresponds to one of the literals (in T2 or T3). By Lemma 8(i) and (ii) all neighbors
of v are labeled with a or a′. If v is labeled with a (a′ analogously), then it is easy to color all incidences starting from
c(v, {v, z}) = 4, where z is any neighbor (of v) of degree at most 2. Let v be labeled with b. Consider the only cycle in our
gadget. By Lemma 8(ii) all vertices of degree 3 in the cycle are labeled with a or a′. Moreover, vertices r and t have labels
a, a′ or a′, a (by Lemma 8(v)). Hence, by assumption (1) and by Lemma 8(iv), there are exactly 2 vertices labeled with b in
the cycle (s is one of them). Since the cycle is even, both neighbors of v of degree 3 are labeled with different labels a and a′.
So, we color the corresponding incidences with color 5 and 2, respectively. We color the rest of the incidences easily with 3
and 4. �
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Now, we will show that the formula φ is satisfiable if and only if the graph G(φ) admits an interval incidence 6-coloring.
(⇒) Assume that the formula φ is satisfiable and let w be an assignment of values TRUE and FALSE to each variable such

thatφ(w) is TRUE, i.e. each clause contains at least one literal x for whichw(x) = TRUE.We construct a labeling p as follows:
for each clause take exactly one literal with value TRUE and label a corresponding vertex in the graph T2 (x or y) or T3 (x, y or
z) with b. This labeling satisfies condition (1) from Lemma 11. Now, take a gadget T3 representing a clause with three literals
(T2 analogously), and label the only vertex of degree 4with all neighbors of degree at least 3 (according to Lemma 8(iv)) with
b and label its neighbors with a and a′, according to Lemma 8(v). Because there are only two vertices from the cycle labeled
with b, then one can easily color the rest of the vertices from the even cycle with colors a and a′. The remaining (uncolored)
part of a gadget forms a forest and it can be easily colored with 2 labels: a and a′. It is easy to observe that this labeling
satisfies all the conditions from Lemma 8. Now, we label vertices of each gadget D. Observe that one of the following holds:

(1) both x and ¬x are labeled with a or both are labeled with a′;
(2) x is labeled with a and ¬x is labeled with a′, or conversely;
(3) x is labeled with b and ¬x is labeled with a or a′, or conversely.

In the case (1) assume that x and¬x are labeled with a. We label vertices of D as follows: vertices s andw with b; vertices
t,m and owith a′; and vertices r, n and uwith a. It is easy to observe that one can label the rest of a gadget Dwith a and a′,
according to Lemma 8(i)–(iii) and (v).

In the case (2) assume that x is labeled with a and ¬x is labeled with a′. We label vertices of D in the same manner as in
the case (1).

In the case (3) assume that x is labeled with b and ¬x is labeled with a. We label vertices of D in the same manner as in
the case (1).

Now, observe that the constructed labeling fulfills all properties from Lemma 8 and condition (1) from Lemma 11. By
Lemma 11 there is an interval incidence 6-coloring of G(φ).

(⇐) Assume that there is an interval incidence 6-coloring c of graph G(φ). For each vertex v we define p(v) as follows:
p(v) = a if 1 ∈ Ac(v), p(v) = a′ if 6 ∈ Ac(v) and p(v) = b otherwise. From each clause corresponding with gadget T2 or
T3 by Lemma 10 we can choose a vertex labeled with b, and we put TRUE value for a literal corresponding to this vertex. By
Lemma 9 this assignment is legal, hence the value of the formula is TRUE. �

5. Polynomial time algorithm for trees

In this section, we construct an O(n∆3.5 log∆) time algorithm for the optimal interval incidence coloring of trees, using
a bottom-up technique and an algorithm for finding min-weight perfect matchings in complete bipartite graphs.

5.1. Sketch of the algorithm

We color the incidences of a given tree T using the bottom-up technique in accordance to the defined orientation of T .
We orient all edges of T in an in-tree manner with a leaf as root, i.e. we choose any leaf r as root and we orient the edges
of the tree towards the root r . As a result, for each vertex v ∈ V (T ) \ {r}, there is exactly one oriented edge outcoming
from v (towards r), let us denote this edge by ev = {v, u}. By Tv we denote the subtree of T rooted at v and consisting of all
(oriented) edges that lead to vertex v. By T ∗

v wemean the tree obtained from Tv by adding the edge ev , i.e. T ∗
v = Tv ∪ ev . Let

p = deg(v) − 1 and N−
v = {v1, . . . , vp} be the set of vertices adjacent to v and different from u.

Now, for each vertex v we define two matrices, namely Av and Bv .

(Av) : for each a, b, let Av[a, b] be the maximum color used in a minimal interval incidence coloring of T ∗
v assuming that

the incidence (v, ev) is colored with a and incidence (u, ev) is colored with b. If Av[a, b] cannot be legally defined we
initially set the value as ∞;

(Bv) : for each c and l, let Bv[c, l] be the maximum color used in a minimal interval incidence coloring of T ∗
v assuming that

the incidence (v, ev) is colored with l + c and the minimal color of an incidence at vertex v is l, i.e. the set of colors of
the incidences at vertex v is Iv(l) = {l, . . . , l + deg(v) − 1}.

By Theorem 1 for each tree we have χii ≤ 2∆, hence we may assume that a, b ∈ {1, . . . , 2∆}, c ∈ {0, . . . , deg(v) − 1} and
l ∈ {1, . . . , 2∆ − deg(v) + 1}. Therefore the size of both matrices can be bounded by 2∆.

The main idea of our algorithm uses a bottom-up technique, as follows:

1. starting from leaves go towards the root r;
2. traversing tree T for each vertex v:

(i) construct matrix Bv using Av1 , . . . , Avp ;
(ii) construct matrix Av from Bv .

3. return χii(T ) = mini,j=1,...,2∆ As[i, j], where s is the only neighbor of r .

We show that the time complexity of the above algorithm can be bounded by O(


v∈V (T )(deg(v)∆3.5 log∆)) =

O(n∆3.5 log∆). Constructing an interval incidence coloring of T with χii(T ) colors is possible by using additional data
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structures for remembering the chosen pairs of colors for adjacent incidences while building matrices and does not change
the time complexity of the algorithm.

5.2. Constructing matrix Bv

Consider v ∈ V (T ), and let l ∈ {1, . . . , 2∆ − p + 1} and c ∈ {0, . . . , p − 1}, where p = deg(v) − 1. Let u be the
neighbor of v that is closer to vertex r than v, and let {v1, . . . , vp} be the set of neighbors of v for which we calculated
matrices Av1 , . . . , Avp . If deg(v) = 1 then c = 0 and we put Bv[0, l] = max{l, 2}. If deg(v) > 1 then we build a weighted
complete bipartite graph Hv(c, l) with partitions N−

v and Iv(l) \ {l + c}, and weight function wl: E(Hv(c, l)) → N defined as
follows: wl({vi, y}) = minx∈{1,...,2∆}\Iv(l) Avi [x, y], which corresponds to the minimal interval incidence coloring of T ∗

vi
, with

precoloring of incidences (vi, {vi, v}) and (v, {v, vi})with colors x and y, respectively. Observe that |N−
v | = |Iv(l)\{l+c}| = p.

Now, we show how to efficiently calculate values of wl for fixed y and for all l satisfying y ∈ Iv(l). For vertex vi let us
define the auxiliary matricesW−

vi
[l, y] and W+

vi
[l, y] as follows:

• W−
vi

[l, y] = minx∈{1,...,l−1} Avi [x, y];
• W+

vi
[l, y] = minx∈{l+deg(v),...,2∆} Avi [x, y].

Obviously we have wl({vi, y}) = min{W−
vi

[l, y],W+
vi

[l, y]}. To speed up the calculations let us observe the following easy
recursive properties:

• W−
vi

[l + 1, y] = min{W−
vi

[l, y], Avi [l, y]}, for l > 1; andW−
vi

[1, y] = ∞;
• W+

vi
[l − 1, y] = min{W+

vi
[l, y], Avi [l, y]}, for l < 2∆; and W+

vi
[2∆, y] = ∞.

Hence, we can construct matricesW−
vi

andW+
vi

in advance, so the time complexity of constructing the graph Hv(c, l) can be
bounded by O(1 deg(v)).

LetM be amin-weight perfect matching of weightm in the graphHv(c, l), i.e. themaximumweight in a perfect matching
is minimized. Let us color the incidence (v, {v, u}) with l + c , and the rest of incidences at vertex v according to the perfect
matching, i.e. if {vi, y} belongs to the perfect matching, then color incidence (v, {v, vi}) with y. Let us color the incidence
(u, {u, v})with theminimumpossible color. Because the perfectmatchingM ismin-weight, it guarantees aminimal coloring
of T ∗

v = T ∗
v1

∪ · · · ∪ T ∗
vp

∪ {v, u}, under the assumption that the minimum color at v is l and that the incidence (v, {v, u}) is
colored with l + c. Thus we can put Bv[c, l] = min{m, l + c}.

Using Hopcroft–Karp algorithm [15] for finding a perfect matching in bipartite graphs (it runs in O(|E|
√

|V |) time) we get
an algorithm for finding amin-weight perfectmatching in the graphHv(c, l) inO(deg2.5(v) log∆) time, just using bisection:

1. let Hd
v (c, l) be the subgraph of Hv(c, l) that contains all edges e of Hv(c, l) with weight wl(e) ≤ d;

2. use bisection on the interval {1, . . . , 2∆} to find the minimal d such that Hd
v (c, l) has a perfect matching.

Hence, the time complexity of constructing the matrix Bv can be bounded by O(deg(v)∆3.5 log∆).

5.3. Constructing matrix Av

By definition of Av and Bv observe that the following holds

• Av[a, b] = min{∞} ∪ {max{Bv[c, l], b}: a = l + c ∧ b ∉ Iv(l)}.

Because Iv(l) is an interval of integers this computation can be done in O(deg(v)) time, hence constructing matrix
Av can be done in O(deg(v)∆2) time. Thus the complexity of the algorithm is O(


v∈V (T )(deg(v)∆3.5 log∆)) which gives

O(n∆3.5 log∆).
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