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a b s t r a c t

In this paper we introduce a concept of interval incidence coloring of graphs and survey its
general properties including lower and upper bounds on the number of colors. Our main
focus is to determine the exact value of the interval incidence coloring number χii for selected
classes of graphs, i.e. paths, cycles, stars, wheels, fans, necklaces, complete graphs and
complete k-partite graphs. We also study the complexity of the interval incidence coloring
problem for subcubic graphs for which we show that the problem of determining whether
χii ≤ 4 can be solved in polynomial time whereas χii ≤ 5 is N P -complete.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Problem definition

In the following we consider solely simple, nonempty connected graphs with the use of the standard notation of graph
theory. For a given simple graph G = (V , E), we define an incidence as a pair (v, e), where vertex v ∈ V is one of the end-
points of edge e ∈ E. The set of all incidences of G will be denoted1 by I , where I := {(v, e): v ∈ V ∧ e ∈ E ∧ v ∈ e} and
v ∈ e means that v is one of the ends of e.2 We say that two incidences (v, e) and (w, f ) are adjacent if and only if one of
the following holds: (1) v = w and e ≠ f ; (2) e = f and v ≠ w; (3) e = {v, w}, f = {w, u} and v ≠ u.

By an incidence coloring of G we mean a function c: I → N such that c(v, e) ≠ c(w, f ) for any adjacent incidences (v, e)
and (w, f ). The incidence coloring number of G, denoted by χi, is the smallest number of colors in an incidence coloring of G.
The incidence coloring has been well-studied [7–9] and arises from the directed star arboricity problem [1,2,15], in which
one wants to partition a set of arcs into the smallest number of forests of directed stars.

A finite nonempty set A ⊆ N is an interval if and only if it contains all integers between min A and max A. For a given
incidence coloring c of graph G and v ∈ V let Ac(v) := {c(v, e): v ∈ e ∧ e ∈ E}. By an interval incidence coloring of graph G
we mean an incidence coloring c of G such that for each vertex v ∈ V the set Ac(v) is an interval. By an interval incidence
k-coloring we mean an interval incidence coloring using colors from the set {1, . . . , k}. Interval incidence coloring is a new
concept arising from a well-studied model of interval edge-coloring [4,11,14], which can be applied e.g. to the open-shop
scheduling problem [12,13]. In [16] the authors introduced the concept of interval incidence coloring thatmodels amessage
passing flow in networks, and in [17] the authors studied applications in one-multicast transmission per vertex model in
multifiber WDM networks.

✩ This project has been partially supported by Narodowe Centrum Nauki under contract DEC-2011/02/A/ST6/00201.
∗ Corresponding author. Tel.: +48 58 347 10 64.
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1 To simplify notation, we write I instead of I(G) whenever G is clear from the context. The same rule applies to other parameters of G appearing in the

paper.
2 In our definition of a graph, an edge is a set built of its ends.
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The interval incidence coloring number of G, denoted by χii, is the smallest number of colors in an interval incidence
coloring ofG. In this paperwe study the value ofχii for some classes of graphs, its bounds aswell as analyze the computational
complexity of the problem of determining this number.

1.2. Multicasting communication in a multifiber WDM all-optical star network

The motivation for the present paper comes from the multicasting communication in a multifiber WDM all-optical star
network,whichwas studied in [3,5,6].We assume that the set of n verticesV is connected to the central vertex (star network)
by atmost p optical parallel fibers (multifiber). The central all-optical transmitter transforms each arriving signal to the same
wavelength. Each vertex v ∈ V has to send at most q multicasts to some other vertices S1(v), . . . , Sq(v) (Si(v) ⊂ V ). The
transmission through the central vertex uses WDM (wavelength-division multiplexing), i.e. different signals may be simulta-
neously sent through the same fiber but on different wavelengths.

The first step of the multicast transmission from vertex v to Si(v) is to send a message through a fiber to the central
vertex on a set of wavelengths. In the next step, the central vertex redirects the message to each vertex of Si(v) using one
of these wavelengths. The goal is to minimize the total number of wavelengths used in the simultaneous transmission of
all multicasts in the network. This problem can be modeled by arc coloring of labeled (multi)digraph with certain special
requirements on the set of colors [3,6].

Following [3], we define a formal model and introduce a general (p, q)-WAM problem in optical star networks. Every
vertex from the set V of n vertices is connected to the central vertex with p optical fibers. A simultaneous transmission
of all multicasts in this network can be modeled by a (multi)digraph D with vertex set V and with labeled arc sets going
out from v which correspond to multicasts to vertex sets S1(v), . . . , Sqv (v) (qv ≤ q), i.e. all outgoing arcs from v in set
Ai(v) = {vw:w ∈ Si(v)} are labeled with i, for i = 1, . . . , qv .

We define a p-fiber k-coloring as a function assigning to each arc of digraph D a color from the set {1, . . . , k} such that
for each vertex v and every color a, we have inarc(v, a) + outlab(v, a) ≤ p, where inarc(v, a) denotes the number of arcs
entering v and colored with a, and outlab(v, a) = |{i: ∃e ∈ Ai(v) and where e is colored with a}|, i.e. the number of different
labels of arcs outgoing v and colored with a.

Since the central vertex redirects every arriving signal to the same wavelength and different signals may be sent at the
same time through the same fiber butwith differentwavelengths, the problemof simultaneous transmission of allmulticasts
in p-fiber network with the minimum number of wavelengths is equivalent to p-fiber coloring of arcs of digraph Dwith the
minimumnumber of colors. Hence, we define the decision version of the problem of wavelength assignment of q-multicasts
in p-fiber (optical) star networks as follows.

The (p, q)-WAMproblem: given a digraphDwith atmost q labels on arcs and an integer k; is there a p-fiber k-coloring
of digraph D?

In the paper we consider the (1, 1)-WAM problem, where a fiber is unique and each vertex sends only one multicast. In
this case, p-fiber coloring of multidigraph reduces to the coloring of arcs of digraph satisfying the following condition: any
arc entering a vertex and any other arc at the same vertex (entering or outgoing) have different colors. This boils down to the
problem of partitioning of a set of arcs into the smallest number of forests of directed stars, i.e. the previously-mentioned
problem of directed star arboricity.

Let us focus our attention on the case of symmetrical communication, where every transmission from v to w implies the
transmission fromw and v. In this case the digraphmodeling the communication between vertices is a simple graph and this
problem can be reduced to the incidence coloring of graphs [7–9]. Moreover, we assume that the set of colors of incoming
arcs at a vertex forms an interval. This corresponds to having consecutivewavelengths on the link between the central vertex
and the destination vertex and it seems to be important for traffic grooming in WDM networks, where wavelengths could
be groomed into wavebands [19].

1.3. Our results

In [18] the authors studied the problem of interval incidence coloring for subcubic bipartite graphs and trees, showing
polynomial time algorithms for these classes. Moreover, they have shown that for bipartite graphs with ∆ = 4 the interval
incidence 5-coloring is easy and 6-coloring is hard (N P -complete).

In this paper we study the problem of interval incidence coloring for different classes of graphs, i.e. paths, cycles, stars,
wheels, fans, necklaces, complete graphs and complete k-partite graphs.We focus our attention on bounding or determining
the exact value of χii. We also study the complexity of the interval incidence coloring problem for subcubic graphs for which
we show that the problem of determining whether χii ≤ 4 is easy, and χii ≤ 5 is N P -complete.

2. Bounds on χii

In this sectionwe construct certain lower and upper bounds on the interval incidence coloring number. Note thatχi ≤ χii,
hence any lower bound for χi is a lower bound for χii.
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Proposition 1. For any nonempty graph G we have

∆ + 1 ≤ χi ≤ χii ≤ χ∆.

Proof. Let v ∈ V be a vertex of degree ∆ and u ∈ V be its neighbor. The left-hand side inequality holds because for any
incidence coloring of G colors assigned to incidences from the set {(v, e): v ∈ e ∧ e ∈ E} ∪ {(u, {u, v})} must be different,
and this set has ∆ + 1 elements.

To prove the right-hand side inequality, we divide the vertex set into χ independent sets denoted by I1, I2, . . . , Iχ . We
create a coloring c from I to N in the following way: for any v ∈ Ii let us assign colors to incidences at vertex v (i.e. of form
(v, e)) in such a way that Ac(v) = {(i − 1) · ∆ + 1, . . . , (i − 1) · ∆ + deg v}. Let w be any neighbor of v, hence w ∈ Ij for
some j ≠ i. From |(i − j) · ∆| ≥ ∆ we have Ac(v) ∩ Ac(w) = ∅, hence c is an interval incidence coloring of G. Moreover,
c(I) =


v∈V Ac(v) ⊆ {1, 2, . . . , ∆χ}, which completes the proof. �

The proof of the above theorem implies also that every nonempty graph has at least one interval incidence coloring,
which is not true in case of classical interval edge coloring [14].

2.1. Lower bound for χii

In this section we construct a lower bound for χii (Theorem 1) which is to be used as a main tool for proving the exact
values of χii for different classes of graphs.

Proposition 2. Let c be any interval incidence coloring of G and let v and w be adjacent vertices in G connected by edge e. If
c(v, e) < c(w, e) thenmin Ac(v) ≤ c(v, e) < min Ac(w) and max Ac(v) < c(w, e) ≤ max Ac(w).

Proof. Since every incidence at vertex w (i.e. of form (w, f )) is adjacent to (v, e), we have c(v, e) ∉ Ac(w). Ac(w) is an
interval of integers, hence c(v, e) < min Ac(w). Analogously, max Ac(v) < c(w, e). �

Let c be an interval incidence coloring of a nonempty graph G. We say that vertex v ∈ V isminimal (maximal) if and only
if min Ac(v) = min c(I) (max Ac(v) = max c(I)). We say that vertex v ∈ V is locally minimal (locally maximal) if and only if
min Ac(v) < min Ac(w) (max Ac(v) > max Ac(w)) for every w ∈ N(v). Observe that any interval incidence coloring has at
least one locally minimal vertex. Moreover, we can recolor incidences at locally minimal (locally maximal) vertex v in such
a way that min c(I) = min Ac(v) (max c(I) = max Ac(v)).

By Proposition 2 we have the following.

Proposition 3. Let c be any interval incidence coloring of G. Vertex v is locally minimal (locally maximal) if and only if
(c(v, {v, w})) < c(w, {v, w}) (c(v, {v, w}) > c(w, {v, w})) for every w ∈ N(v). �

Let N(v) = {v1, . . . , vdeg(v)} and assume that deg(v1) ≥ deg(v2) ≥ · · · ≥ deg(vd). For this order of neighbors let us
define a function:

f (v) = max{j + deg(vj): j = 1, . . . , deg(v)}.

Lemma 4. Let c be any interval incidence coloring of graph G. For any locally minimal (locally maximal) vertex v ∈ V we have
|c(I)| ≥ f (v).

Proof. Let v be a locally minimal vertex. Let i ∈ {1, . . . , deg(v)} and let wi ∈ N(v) be a vertex such that c(v, {v, wi}) =

min Ac(v) − 1 + i. By Proposition 3 we have c(v, {v, wi}) < c(wi, {v, wi}). By Proposition 2 we have c(v, {v, wi}) < min
Ac(wi), hence |c(I)| ≥ c(v, {v, wi}) − min Ac(v) + 1 + |Ac(wi)| = i + deg(wi), thus we get |c(I)| ≥ max{i + deg(wi): i =

1, . . . , deg(v)}. One can easily prove that max{i + deg(wi): i = 1, . . . , deg(v)} ≥ f (v). The thesis holds analogously for
locally maximal vertices. �

Lemma 5. Let c be any interval incidence coloring of graph G. Let v ∈ V be a vertex that is neither locally minimal nor locally
maximal, then:
1. |c(I)| ≥ deg(v) + 2,
2. |c(I)| ≥ min{deg(u) + deg(w): u, w ∈ N(v) ∧ u ≠ w}.

Proof. (1) Since vertex v is neither locally minimal nor locally maximal, then min c(I) < min Ac(v) and max Ac(v) < max
c(I), hence |c(I)| ≥ deg(v) + 2.

Let us define U(v) = {u ∈ N(v): c(v, {v, u}) > c(u, {v, u})} and W (v) = {w ∈ N(v): c(v, {v, w}) < c(w, {v, w})}.
Observe that U(v) ∩ W (v) = ∅ and U(v) ∪ W (v) = N(v). By Proposition 3 we have U(v) ≠ ∅ and W (v) ≠ ∅. Let
Uc(v) = {c(v, {v, u}): u ∈ U(v)} and Wc(v) = {c(v, {v, w}):w ∈ W (v)}, then Uc(v) ∪ Wc(v) = Ac(v).

(2) It is easy to see thatminUc(v)−maxWc(v) ≤ 1, otherwiseminUc(v) ≥ 2+maxWc(v) > 1+maxWc(v), which con-
tradicts that Ac(v) is an interval. Let u ∈ U(v) andw ∈ W (v) be vertices such that c(v, {v, u}) = minUc(v) and c(v, {v, w})
= maxWc(v). By Proposition 2 we have max Ac(u) < c(v, {v, u}) and c(v, {v, w}) < min Ac(w), thus max Ac(u) ≤ c(v,
{v, u}) − 1 ≤ c(v, {v, w}) < min Ac(w), hence we get |c(I)| ≥ |Ac(u)| + |Ac(w)| ≥ min{deg(u) + deg(w): u, w ∈ N(v) ∧

u ≠ w}. �
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Fig. 1. The interval incidence 12-coloring of S(8, 4).

As a consequence of the above properties and lemmas, we get a theorem which is a very useful tool for proving lower
bounds on the interval incidence coloring number for different classes of graphs.

Theorem 1. For any connected graph G we have

χii(G) ≥ max{min
v∈V

f (v),max
v∈V

min{f (v), g(v)}},

where

g(v) = max{deg(v) + 2,min{deg(u) + deg(w): u, w ∈ N(v) ∧ u ≠ w}}.

Proof. Let c be any minimal interval incidence coloring of graph G. There is at least one minimally vertex, therefore by
Lemma 4 we have χii ≥ minv∈V f (v). Now, take any vertex v ∈ V (G). If v is locally minimal or locally maximal, then by
Lemma4wehaveχii ≥ f (v). Otherwise, if v is not locallyminimal nor locallymaximal, then by Lemma5wehaveχii ≥ g(v).
Thus we get χii ≥ maxv∈V min{f (v), g(v)}, which completes the proof. �

Corollary 6. For any connected graph G with vertex v of degree k ≥ 1 such that any of its neighbors has a degree at least d ≥ k
we have χii ≥ k + d.

Proof. Observe that f (v) ≥ k + d and g(v) ≥ min{deg(u) + deg(w): u, w ∈ N(v) ∧ u ≠ w} ≥ 2d, hence by Theorem 1 we
get χii ≥ k + d. �

Corollary 7. For any regular graph G we have χii(G) ≥ 2∆. �

Theorem 2. For any graph G we have χii ≥ 2(ω − 1), where ω is the clique number of G.

Proof. By definition of ω, Kω is a subgraph of G. For any minimal coloring c of G (i.e. using χii colors from the set {1, 2, . . . ,
χii}), there is a vertex v ∈ V (Kω) such that min Ac(v) < min Ac(u) for every u ∈ V (Kω) \ {v}, hence by Proposition 2
V (Kω) \ {v} ⊂ W (v), where W (v) = {w ∈ N(v): c(v, {v, w}) < c(w, {v, w})}. Let q = |W (v)| and take any i ∈ {1, . . . , q}
and let wi ∈ W (v) be a vertex such that c(v, {v, wi}) = minWc(v)−1+ li, where l1 < l2 < · · · < lq. Observe that li ≥ i. By
Proposition 2 we have c(v, {v, wi}) < min Ac(wi), hence |c(I)| ≥ c(v, {v, wi}) − minWc(v) + 1 + |Ac(wi)| = li + deg(wi),
hence c(I) ≥ max{li + deg(wi): i = 1, . . . , q} ≥ 2(ω − 1). �

3. Note on the hereditary property

For a given graph G let us define the problem IICSUB(G) as follows: is there a subgraph H of G such that χii(H) > χii(G)?
Surprisingly, for some trees the answer to this question is yes.

We construct the following family of trees S(d, k), for d ≥ k. The central vertex of S(d, k) is a vertex of degree k, all its
neighbors have a degree d and all other vertices are leaves. It is easy to observe that ∆(S(d, k)) = d and for k > 1 there are
exactly k(d − 1) leaves. Fig. 1 presents the case of S(d, k) where d = 8 and k = 4.

Lemma 8. χii(S(d, k)) = d + k for any integer 0 < k ≤ d.

Proof. By Corollary 6wehaveχii(S(d, k)) ≥ d+k. Let v be the central vertex of S(d, k) and let v1, v2, . . . , vk be its neighbors.
Let c: I → N be any function that satisfies the following conditions:
• c(v, {v, vi}) = i and c(vi, {vi, v}) = k + 1 for i = 1, . . . , k;
• c(u, {u, vi}) = 1 for each leaf u that is adjacent to vi;
• Ac(vi) = {k + 1, . . . , d + k} for i = 1, . . . , k.
It is easy to notice that c is an interval incidence coloring of S(d, k), hence we get χii(S(d, k)) = d + k. �
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Let us denote by S i(d, k) a graph S(d, k) with a path of length i attached to the central vertex. For instance, S1(1, 1) is a
path P3 and S2(2, 2) = S(2, 3).

Lemma 9. χii(S i(d, d)) ≤ 2d − 1 for any integers d ≥ 4 and i ≥ 1.

Proof. Let p =
 d

2


and q =

 d
2


, obviously p + q = d. Let v be the central vertex of S i(d, d) and v1, v2, . . . , vd be its

neighbors of degree d. Let u be a vertex adjacent to v that lies on the attached path (of length i). Let c: I → N be any function
that satisfies the following conditions:
• c(v, {v, vi}) = d + i and c(vi, {vi, v}) = 1 for i = 1, . . . , p;
• c(v, {v, vp+i}) = d − i and c(vi, {vp+i, v}) = 2d − 1 for i = 1, . . . , q;
• c(v, {v, u}) = d and c(u, {u, v}) = 1;
• c(w, {w, vi}) = 2d − 1 for each leaf w that is adjacent to vi for i = 1, . . . , p;
• c(w, {w, vp+i}) = 1 for each leaf w that is adjacent to vp+i for i = 1, . . . , q;
• Ac(vi) = {1, . . . , d} for i = 1, . . . , p;
• Ac(vp+i) = {d, . . . , 2d − 1} for i = 1, . . . , q.

Now, extend c to incidences of the attached path using colors 1, 2, 3, 4. It is easy to notice that this is a proper interval
incidence coloring of S i(d, k) using 2d − 1 colors. �

Observe that ∆(S i(d, d)) = d + 1 and |V (S i(d, d))| = d2 + 1 + i. Since for any d > 0 and i > 0 graph S(d, d) is a proper
induced subgraph of S i(d, d), by Lemmas 8 and 9 we have the following.

Theorem 3. The problem IICSUB(T ) has the positive answer for some trees. Moreover,
• for every k ≥ 5 there is a tree T with ∆(T ) = k such that IICSUB(T ) = yes.
• for every n ≥ 18 there is n-vertex tree T such that IICSUB(T ) = yes.

An interesting question that arises at that point is whether there exist small graphs for which IICSUB = yes. Another
interesting problem is verifying IICSUB in polynomial time on trees.

4. Exact values of χii for selected classes of graphs

In the present section we give exact values of χii or construct exact (polynomial time) algorithms for selected classes of
graphs.

4.1. Paths, cycles and stars

Observe that χii(P2) = 2 and χii(P3) = χii(P4) = 3. If G is a path with at least 5 vertices or a cycle, then by Corollary 6
we have χii(G) ≥ 4. Obviously, there is an interval incidence 4-coloring of G.

Proposition 10. For any path or cycle we have χii ≤ ∆ + 2. Moreover,
• if G is a path of the length at most 4, then χii(G) = ∆ + 1,
• if G is a path with at least 5 vertices or a cycle, then χii(G) = ∆ + 2. �

Proposition 11. χii = ∆ + 1 for any star with at least two vertices. �

4.2. Wheels, fans and necklaces

Let n ≥ 3. By wheelWn we denote a graph constructed by adding a new vertex to a cycle Cn and linking it to each vertex
from Cn. Let v be the central vertex ofWn and v1, . . . , vn be its neighbors, such that vi and vi+1 are adjacent.

Proposition 12. χii(W2k) = ∆ + 2 = 2k + 2, for k ≥ 2.

Proof. We have g(v) ≥ ∆+2 and f (v) = ∆+3, hence by Theorem 1we get χii ≥ min{g(v), f (v)} = ∆+2. Now, we con-
struct interval incidence (∆+2)-coloring as follows: Ac(v) = {2, 3, . . . , ∆+1}, Ac(v2i) = {1, 2, 3}, Ac(v2i−1) = {∆, ∆+1,
∆+2} for i = 1, . . . , k. While coloring the incidences, wemust respect the following conditions: c(v, {v, v2i}) ≥ 4, c(v, {v,
v2i−1}) ≤ ∆− 1, c(v2i, {v, v2i}) = 1 and c(v2i−1, {v, v2i−1}) = ∆+ 2. A sample 10-coloring ofW8 is presented in Fig. 2. �

Proposition 13. χii(W2k+1) = ∆ + 3, for k ≥ 1.

Proof. We have g(v) ≥ ∆ + 2 and f (v) = ∆ + 3, hence by Theorem 1 we have χii ≥ min{g(v), f (v)} = ∆ + 2. Now,
assume that coloring c is an interval incidence (∆ + 2)-coloring ofW2k+1, ∆ = 2k + 1. If v is minimal or maximal, then by
Lemma 4 we have a contradiction |c(I)| ≥ f (v) = ∆ + 3. Hence, Ac(v) = {2, 3, . . . , ∆ + 1}. Observe that c(vi, {v, vi}) ∈

{1, ∆ + 2} for any i = 1, . . . , 2k + 1, which implies that every vi is minimal or maximal. Since the outer cycle is odd
and no two minimal (no two maximal) vertices are adjacent, we have a contradiction. We construct (∆ + 3)-coloring as
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Fig. 2. The minimal interval incidence coloring ofW8 .

follows: c(v, {v, vi}) = i, c(vi, {v, vi}) = ∆ + 1 for every i = 1, . . . , ∆, c(v∆, {v1, v∆}) = ∆ + 2, c(v∆, {v∆−1, v∆}) =

∆ + 3, c(v∆−1, {v∆−1, v∆}) = ∆. At last, c(v2i−1, {v2i−1, v2i}) = ∆ − 1, c(v2i, {v2i−1, v2i}) = ∆ + 2, for i = 1, . . . , k and
c(v2i−1, {v2i−2, v2i−1}) = ∆, c(v2i−2, {v2i−2, v2i−1}) = ∆ + 3, for i = 2, . . . , k. �

By fan Fn we denote a graph obtained from a wheel Wn by removing one edge from the outer cycle. Let v be the central
vertex of Fn and v1, . . . , vn be its neighbors, such that vi and vi+1 are adjacent. One can observe that, by removing one edge
from a wheel W2k, it is easy to obtain an interval incidence (∆ + 2)-coloring of F2k. For F2k+1 one can easily construct a
coloring as follows: c(v, {v, v2i−1}) = i+ 1, c(v2i−1, {v, v2i−1}) = ∆ + 2, c(v, {v, v2i}) = ∆ + 2− i, c(v2i, {v, v2i}) = 1, for
i = 1, . . . , k, Ac(v1) = Ac(v2k+1) = {∆ + 1, ∆ + 2}, Ac(v2i) = {1, 2, 3}, Ac(v2i+1) = {∆, ∆ + 1, ∆ + 2}. Thus we get

Proposition 14. χii(Fk) = ∆ + 2, for k ≥ 1. �

By θm (m ≥ 3) we denote the class of graphs such that each graph consists of m paths (Pi, i ≥ 3) of any length joined to
common endpoints. We say that G is a necklace if G ∈ θm for somem ≥ 3.

Proposition 15. If G is a necklace then χii(G) = ∆ + 2.
Proof. By Theorem 1we have χii ≥ ∆+2.We construct a (∆+2)-coloring of any necklace. Let a and b be the two common
endpoints ofm = ∆ paths. Let Ac(a) = Ac(b) = {1, . . . , ∆} and take any coloring that assigns different colors at incidences
at a and b connected with a path. Sincem ≥ 3, we can color each path with colors from {1, 2, ∆, ∆+1, ∆+2}. If the length
of a path is odd (including endpoints a and b) or is at least 4, one can easily color incidences on this path. If there are exactly
two vertices on a path joining a and b, it suffices to color this path with colors ∆, ∆ + 1, ∆ + 2, because one of the colors of
incidences at a or b (and joined with a path) differs from ∆. �

4.3. Complete k-partite graphs

Graph G = (V , E) is complete k-partite if its vertex set can be partitioned into k disjoint independent sets V1, . . . , Vk and
for every v ∈ Vi, u ∈ Vj and for every i, j = 1, . . . , k(i ≠ j) there exists an edge between v and u. We denote this graph by
Kp1,p2,...,pk , where |Vi| = pi and p1 + · · · + pk = n. If k = n, this is a complete graph Kn.

Proposition 16. χii(Kn) = 2∆.
Proof. Let v1, . . . , vk be the vertices of graph Kn. Let c(vi, {vi, v(i+j) mod n}) be i+ j for i = 1, . . . , n− 1 and j = 1, . . . , n− 1.
It is easy to check that c is an interval incidence coloring. �

Proposition 17. χii(Kp1,p2,...,pk) = 2n − max{pi + pj: i, j = 1, . . . , k ∧ i ≠ j}.
Proof. Let c be an interval incidence χii-coloring and let v be a minimal vertex in c. Let u be a neighbor of v such that
c(v, {u, v}) = max Ac(v). Thus Ac(u) ∩ Ac(v) = ∅ and χii ≥ |Ac(u)| + |Ac(v)| = deg u + deg v ≥ 2n − max{pi + pj: i, j =

1, . . . , k ∧ i ≠ j}.
Now, let us construct an interval incidence coloring of Kp1,p2,...,pk that uses exactly 2n−max{pi+pj: i, j = 1, . . . , k∧i ≠ j}

colors. Without loss of generality we can assume that p1 ≤ p2 ≤ · · · ≤ pk and Vi = {vi
1, v

i
2, . . . , v

i
pi}. Let

c(vi
j, {v

i
j, v

r
s }) =


p1 + p2 + · · · + pr−1 + s r > i,
n + p1 + p2 + · · · + pr−1 + s r < i.

We have Ac(v
i
j) = {p1 + · · · + pi + 1, . . . , p1 + · · · + pk = n, n + 1, . . . , n + p1 + · · · + pi−1} and |Ac(v

i
j)| =

p1+· · ·+pi−1+pi+1+· · ·+pk = n−pi = deg(vi
j). Assuming that r < i, we have c(vi

j, {v
i
j, v

r
s }) = n+p1+p2+· · ·+pr−1+s >

n + p1 + p2 + · · · + pr−1 = max Ac(v
r
s ). If r > i, then c(vi

j, {v
i
j, v

r
s }) = p1 + p2 + · · · + pr−1 + s < min Ac(v

i
j), hence c is an

interval incidence coloring. �
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5. Interval incidence k-coloring for subcubic graphs: 4 is easy, 5 is hard

In this section we focus on the interval incidence k-coloring problem for subcubic graphs, i.e. we prove that 4-coloring
of subcubic graphs is easy (i.e. the existence of such coloring is verifiable in polynomial time) and 5-coloring of subcubic
graphs is hard (N P -complete).

5.1. 4-coloring of subcubic graphs

Let G be a subcubic graph, and Vi ⊂ V (G) be the set of vertices of degree i.

Lemma 18. If χii(G) = 4 then

(i) each vertex v of degree 3 has at most one neighbor of degree 3,
(ii) each vertex v of degree 3 has at least one neighbor of degree 1,
(iii) no two vertices of degree 3 have a common neighbor of degree 2.

Proof. Suppose χii(G) = 4 and let c be any 4-coloring of G. The property (i) follows from the fact that in the set {1, 2, 3, 4}
one can find only two intervals of length 3, i.e. {1, 2, 3} and {2, 3, 4}, and in each of them there is only one element not
belonging to the second one. In order to prove the property (ii) observe that if Ac(v) = {1, 2, 3} (Ac(v) = {2, 3, 4}), then
vertex u for which the incidence (v, {v, u}) is colored with 3 (with 2, respectively) must be a leaf. Let us move to prove the
property (iii). For v ≠ u let deg(v) = deg(u) = 3. Suppose conversely that there exists a vertex x of degree 2 that is a
common neighbor of v and u. Obviously, c(x, {x, v}) ∉ {2, 3} and c(x, {x, u}) ∉ {2, 3}. As deg(x) = 2, Ac(x) is {1, 2} or {2, 3}
or {3, 4}, hence 2 ∈ Ac(x) or 3 ∈ Ac(x), a contradiction. �

Let G∗ be a (multi)graph with V (G∗) = V3 ∪ X , where X is a set of vertices representing some paths in G, and the edge
set defined as follows: two vertices u and v from V3 are adjacent if and only if {u, v} ∈ E(G) or there is a path of the length
3 or 5 consisting only of vertices from V2 that connects u and v in G. Observe that if there is such a path from v to v, then we
have a loop (cycle of the length 1) at vertex v. If there is a path of length 4 between u and v (u, v ∈ V3) consisting only of
vertices from V2, then we add vertex x ∈ X replacing this path and connect xwith both u and v.

By Lemma18(ii), ifχii(G) = 4, then the induced subgraphG[V \V1] is composed of paths and cycles, henceG∗ is composed
of paths and cycles.

Lemma 19. If χii(G) = 4 then

(iv) graph G∗ has no cycle of odd length.

Proof. Suppose χii = 4 and let c be any 4-coloring of G. Observe that any vertex v ∈ V3 has Ac(v) = {1, 2, 3} or {2, 3, 4}.
Suppose conversely that G∗ has an odd cycle. This implies one of the following:

(1) there are vertices u, v ∈ V3 adjacent in G∗ (possible u = v) such that Ac(u) = Ac(v),
(2) there are vertices u, v ∈ V3 adjacent in G∗ to a common neighbor x ∈ X such that Ac(u) ≠ Ac(v).

(1): Assume thatAc(u) = Ac(v) = {1, 2, 3}. In this case, u and v are joinedwith a path of the length 3 or 5 inG, hence there
are two vertices xu and xv of degree 2 (in G) such that xu is adjacent to u, xv is adjacent to v, and Ac(xu) = Ac(xv) = {3, 4}.
In the first case (path of the length 3) xu and xv are adjacent, a contradiction. In the second case (path of the length 5),
there are two other adjacent vertices of degree 2 (in G) yu and yv such that yu is adjacent to xu, yv is adjacent to xv , and
Ac(xu) = Ac(xv) = {1, 2}, a contradiction.

(2): Assume that Ac(u) = {1, 2, 3} and Ac(v) = {2, 3, 4}. In this case, u and v are joined with a path of the length 4 in G,
hence there are three vertices xu, xv and y of degree 2 (in G) such that xu is adjacent to u, xv is adjacent to v, y is adjacent to
both xu and xv , and Ac(xu) = {3, 4}, Ac(xv) = {1, 2}, Ac(y) = {2, 3}, a contradiction. �

Lemma 20. If G satisfies the properties (i)–(iii) of Lemma 18 and property (iv) of Lemma 19, then χii(G) = 4.

Proof. Suppose that subcubic graph G satisfies the properties (i)–(iv). Since G satisfies the property (iv), we can construct a
2-coloring of G∗ (with colors a < b). As G satisfies the properties (i)–(iii), this coloring can be extended in a greedy manner
to a 3-coloring p of the whole graph G (possibly, using the third color c > b) in such a way that:

• each vertex of degree 1 is assigned color a (if its neighbor is coloredwith b or c) or color b (if its neighbor is coloredwith a),
• if color c is used at vertex v of degree 2, then the distance from v to any vertex of degree 3 is at least 3,
• there is at most one vertex colored with c on every path between vertices of degree 3 consisting of vertices from V2 only.

Now, we construct incidence coloring q of graph G. Let us assign a set of colors to each vertex v as follows:

• if deg(v) = 1, then Aq(v) = {1} (if p(v) = a) or Aq(v) = {4} (if p(v) = b),
• if deg(v) = 2, then Aq(v) = {1, 2} (if p(v) = a), Aq(v) = {3, 4} (if p(v) = b) or Aq(v) = {2, 3} (if p(v) = c),
• if deg(v) = 3, then Aq(v) = {1, 2, 3} (if p(v) = a) or Aq(v) = {2, 3, 4} (if p(v) = b).
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Let {u, v} ∈ E(G). From properties of graph G and coloring pwe can distribute among incidences some colors from the above
sets in the following manner:

• let deg(u) = 3 and deg(v) = 3, if p(u) = a and p(v) = b, then q(u, {u, v}) = 1 and q(v, {v, u}) = 4,
• let deg(u) = 2 and deg(v) = 3, if p(u) = a (p(u) = b) and p(v) = b (p(v) = a), then q(u, {u, v}) = 1 (q(u, {u, v}) = 4)

and q(v, {v, u}) ≥ 3 (q(v, {v, u}) ≤ 2),
• let deg(u) = 2 and deg(v) = 2, if p(u) = a and p(v) = b, then q(u, {u, v}) ≤ 2 and q(v, {v, u}) ≥ 3,
• let deg(u) = 2 and deg(v) = 2, if p(u) = a (p(u) = b) and p(v) = c , then q(u, {u, v}) = 1 (q(u, {u, v}) = 4) and

q(v, {v, u}) = 3 (q(v, {v, u}) = 2),
• let deg(u) = 1 and deg(v) ≤ 3, if p(u) = a (p(u) = b) and p(v) = b (p(v) = a), then q(u, {u, v}) = 1 (q(u, {u, v}) = 4)

and q(v, {v, u}) = 2 or q(v, {v, u}) = 3.

It is easy to see that q is a proper interval incidence 4-coloring of graph G. �

By Lemmas 18–20 the problem of interval incidence coloring using 4 colors for subcubic graphs is equivalent to verifying
the properties (i)–(iv), hence we get the following.

Theorem 4. For subcubic graphs the problem of interval incidence coloring with 4 colors can be solved in linear time. �

5.2. 5-coloring of subcubic graphs is N P -complete

Let us denote by 3SAT the restriction of the classical 3SAT problem, defined as follows: 3SAT is the problemof satisfiability
of a given CNF formula with 2 or 3 literals in each clause and satisfying the condition that for any variable x the total number
of clauses with literals x or ¬x is no more than 3. Moreover, we may assume that for each variable both x and ¬x appear in
the formula. This problem is known to be N P -complete [10].

Theorem 5. The problem of verifying whether χii ≤ 5 is N P -complete for subcubic graphs.

Proof. We construct a polynomial time reduction from 3SAT to the problem of interval incidence 5-coloring. For a given
formula φ = C1 ∧ C2 ∧ · · · ∧ Cm of 3SAT , we construct a subcubic graph G(φ) as follows:

• each clause {x ∨ y} is represented by gadget T2 (Fig. 3),
• each clause {x ∨ y ∨ z} is represented by gadget T3 (Fig. 4),
• each literal is represented by vertex x or y in T2, or x, y or z in T3,
• for each variable xwe join all literals x and ¬x by a gadget:

– F2 (Fig. 5), if there is one instance of x and one instance of ¬x,
– F3 (Fig. 6), if there are two instances of x and one instance of ¬x, or conversely (one x and two ¬x).

Note that, in fact,we take isomorphic copies of graphs T2, T3 and F2, F3. Observe that∆(G(φ)) = 3 and there is no vertex of
degree 3with three neighbors of degree 3. Let c be any interval incidence 5-coloring of G(φ) such that incidences at pendant
vertices are colored with 1 or 5 (it is always possible to recolor any 5-coloring). We define auxiliary vertex labeling p of G
with labels a, a′ and b. For each vertex v we define p(v) as follows: if 1 ∈ Ac(v), then p(v) = a, if 5 ∈ Ac(v), then p(v) = a′,
otherwise p(v) = b. If deg(v) = 3, then labels a, a′, b correspond to sets {1, 2, 3}, {3, 4, 5}, {2, 3, 4}, respectively. Since
there are no two adjacent vertices of degree two, it is easy to observe that any two adjacent vertices have different labels.

Claim 21. Labeling p is a vertex coloring of G(φ) and the following holds:

(i) each vertex of degree ≤ 2 is assigned label a or a′,
(ii) at most one neighbor of a vertex of degree ≥ 2 is assigned label b,
(iii) every cycle x1, . . . , x6 has exactly two vertices labeled with b: x1 and x4, or x3 and x6.

Proof. Obviously, the property (i) holds for pendant vertices. Since every vertex v of degree 2 has two neighbors of degree 3
and each color set of incidences at vertex of degree 3 contains color 3, then 3 ∉ Ac(v), thus we get the property (i). Suppose
conversely that two neighbors of vertex v (deg(v) ≥ 2) have label b, i.e. color set of incidences is {2, 3, 4}. Then 1 ∈ Ac(v)
and 5 ∈ Ac(v), a contradiction. Thus the property (ii) holds. To prove the property (iii) observe that all vertices of the even
cycle x1, . . . , x6 are labeled with a and a′, or exactly two of its vertices are labeled with b. By the property (i) the labels
assigned to vertices x2 and x5 cannot be a and a′ (respectively) and cannot be a′ and a. By the property (ii) the labels cannot
be both equal to b. Assume that x2 is labeled with b, then by the property (ii) there is no other vertex in the cycle labeled
with b, a contradiction. Hence the property (iii) follows. �

Claim 22. The following property holds for any variable x for which gadgets representing clauses containing x or ¬x are joined
with an appropriate gadget F2 or F3:

(iv) if any vertex x (¬x) is labeled with b, then any vertex ¬x (x) is labeled with a or a′.

Proof. Assume that x has assigned label b, then by Claim 21(ii) vertex x1 is labeled with a or a′, hence by Claim 21(iii) both
x3 and x6 are labeled with b, thus ¬x cannot be labeled with b. Other cases can be considered analogously. �
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Fig. 3. Gadget T2 for clause {x ∨ y}.

Fig. 4. Gadget T3 for clause {x ∨ y ∨ z}.

Fig. 5. Gadget F2 connecting two literals: x and ¬x.

Fig. 6. Gadget F3 connecting three literals: one x and two ¬x, or two x and one ¬x.
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Since graphs T2 and T3 are triangles, by Claim 21(i) we have the following.

Claim 23. In any gadget T2 or T3 labels assigned to vertices are different, and one of the vertices of degree 3 is labeled with b. �

Now, let us demonstrate that having aproper labeling of vertices ofG(φ)wecan construct an interval incidence 5-coloring
of G(φ).

Claim 24. Consider any labeling p of graph G(φ) satisfying all properties from Claims 21 and 22, then there is an interval inci-
dence 5-coloring of G(φ).

Proof. We construct an interval incidence 5-coloring c satisfying the following property: for any vertex v we have 1 ∈ Ac(v)
if and only if p(v) = a and 5 ∈ Ac(v) if and only if p(v) = a′. By Claim 21(i) we can color the incidence at vertex of degree 1
with color 1 (if its label is equal to a) or with 5 (label is a′). Take any vertex v of degree 2 and assume that it is labeled with
a (a′ analogously). By Claim 21(ii) either both neighbors of v must be labeled with a′ or one with a′ and the other with b,
hence it is easy to color both incidences at v with colors from {1, 2}. Now, observe that for each vertex v of degree 3 one of
the following holds:

(1) v is equal to vertex of degree 3 in some gadget T2 or T3,
(2) v is equal to x2 or x5 in some gadget F2 or F3,
(3) v is equal to x1, x3, x4 or x6 in some gadget F2 or F3.

Let us assume that p(v) = a′ (analogously p(v) = a). By Claim 21(ii) the sequence of labels assigned to all neighbors of v is
a, a, b or a, a, a, and by Claim21(i) vertex u of degree 2 (adjacent to v) is coloredwith a. Hence, it is easy to color all incidences
at vertex v with colors {3, 4, 5}, starting from c(v, {u, v}) = 3. Now, let us assume that p(v) = b, then v fulfills property
(1) or (3), and assume that vertex u of degree 2 (outside a gadget T2 and adjacent to v) is labeled with p(u) = a (p(u) = a′

analogously). In the first case (1) sequence of labels assigned to all neighbors of v is obviously a, a, a′. In the second case (3)
by Claim 21(iii) this sequence is equal to a, a, a′, same as in the first case. Analogously, starting from c(v, {u, v}) = 3, it is
easy to color all incidences at vertex v. �

Now, we will show that formula φ is satisfiable if and only if graph G(φ) admits an interval incidence 5-coloring.
(⇒) Assume that formula φ is satisfiable and letw be an assignment of values TRUE and FALSE to each variable such that

w(φ) is TRUE, i.e. each clause contains at least one literal x for which w(x) = TRUE. We construct labeling p as follows: for
each clause take exactly one literal with value TRUE and label the corresponding vertex in the graph T2 or T3 with b. Now,
let us assume the case that variable x is contained in three clauses and literal x appears once, literal ¬x appears twice (other
cases analogously). Apply the following rules of labeling:

Case 1. If none of ¬x is labeled with b, then label x3 and x6 with b.
Case 2. If one or two ¬x are labeled with b, then label x1 and x4 with b.

Since the graph induced by unlabeled vertices is bipartite, we can label the remaining vertices with a or a′. It is easy to verify,
that such a labeling p satisfies all properties from Claims 21 and 22. By Claim 24 there is an interval incidence 5-coloring of
G(φ).

(⇐) Assume that there is an interval incidence 5-coloring c of graph G(φ). For each vertex v we define p(v) as follows:
p(v) = a if 1 ∈ Ac(v), and p(v) = a′, if 5 ∈ Ac(v), and p(v) = b, otherwise. From each clause corresponding to gadget T2
or T3 by Claim 23 we can choose a vertex labeled with b, and we put the TRUE value for literal corresponding to this vertex.
By Claim 22 this assignment is legal, hence the value of the formula is TRUE. �

6. Final remarks and open problems

In this paper and in [18] the authors studied the properties of interval incidence chromatic number for many classes of
graphs.We observed that the inequalityχii ≤ 2∆ holds for all these classes. Thereforewe ask if it is true for arbitrary graphs.

In Section 3 we observed that subgraphs may have greater interval incidence coloring number than supergraphs. The
smallest counterexample graph has ∆ = 5. It would be interesting to know if there is a graph with that property and
smaller ∆.
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