
Abstract

Brain-computer interfaces (BCIs) aim to decode brain signals and transform

them into commands for device operation. The present study aimed to decode

the brain activity during imagined speech. The BCI must identify imagined

words within a given vocabulary and thus perform the requested action. A pos-

sible scenario when using this approach is the gradual addition of new words to

the vocabulary using incremental learning methods. An issue with incremental

learning methods is degradation of the decoding capacity of the original model

when new classes are added. In this study, a class-incremental neural network

method is proposed to increase the vocabulary of imagined speech. The results

indicate a stable model that did not degenerate when a new word was inte-

grated. The proposed method allows for the inclusion of newly imagined words

without a significant loss of total accuracy for the two datasets.
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1. Introduction

Brain-Computer Interfaces (BCIs) are systems that can transform brain sig-

nals into commands to control a device. Different devices can be used to acquire

brain signals, and this study focused on electroencephalography (EEG) because

of its simplicity, low cost, and non-invasive nature.5

Former EEG-based BCIs used external stimuli in which the brain activity

related to such stimuli is known [1]. A common approach to BCIs is motor

imagery, which involves imagining limb movement. The present study used

an internal stimulus related to language known as imagined speech, which is

the action of imagining the diction of a word without emitting any sound or10

articulating any movement [2]. The use of imagined speech may provide a new

communication channel and open up the possibility of increasing the vocabulary

of imagined words.

Currently, with a lack of consensus, slight changes in machine learning algo-

rithms receive different names. Incremental, class incremental, lifelong, online,15

never-ending, and evolutionary terms were used for specific cases of the same

problem, transfer learning. For example, according to the definitions in [3],

lifelong learning is a continuous model adaptation method based on constantly

arriving data streams. Online learning is applied when training examples are

provided only once in the model instead of iterating across training sessions.20

Incremental learning is a machine learning paradigm in which the learning pro-

cess occurs whenever new examples emerge and previous learning is adjusted

[4]. This study follows the definition of [5] for incremental learning, which is an

algorithm that fulfils the following tasks:

• Ability to learn additional information from new data.25

• Have no access to the original data used to train the classifier.

• Preserve previously acquired knowledge.

• Ability to incorporate new classes.

Other studies, such as [6, 4], add other criteria to the incremental learning
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definition, such as end-to-end architecture and limited processing and memory30

resources. However, a formal definition has not been established yet.

BCI incremental learning commonly focuses on inter-subject variability, that

is, extending a generated model to new subjects [7, 8, 9, 10]. Specifically, for

motor imagery BCIs, the idea of increasing the number of available commands

has not been widely explored, because few limbs can be used to control a device.35

Moreover, relating body movements to specific commands can be confusing as

more commands are included; this does not occur using imagined speech in

which the words are directly related to the command.

One contribution of this study is the possibility of adding new words to

a previously generated imagined speech discrimination model. When a BCI40

is trained for a specific task, its extension requires retraining by adding the

information from a new task [11]. A common issue in incremental learning

is the degradation of a model when new classes are added. When during the

process of learning a new set of patterns, it suddenly and completely erases the

knowledge already learned by a neural network [12], it is called Catastrophic45

Forgetting.

This study proposes a neural network architecture capable of extending an

existing imagined speech model to recognize a new imagined word while avoid-

ing catastrophic forgetting. This can be considered an intra-subject transfer

learning task.50

The main contributions of this study are:

1. A model based on neural networks for imagined speech discrimination.

2. An intra-subject incremental learning approach of imagined speech BCIs.

2. Related work

The following section is divided into two main areas: incremental learning55

methods and incremental learning applications for BCIs. Incremental learning

has many application areas, and proposals for different approaches are analyzed

within the scope of this study. Moreover, some of these approaches have been
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developed for BCI applications, and specialization in this area has also been

analyzed to develop an adequate transfer learning method.60

2.1. Incremental learning

Multiple approaches have been developed for incremental neural networks,

such as fine-tuning, feature extraction, joint training, architecture adaptation,

knowledge distillation, and ensembles. The relevant approaches for this study

are presented below.65

2.1.1. Feature extraction

This approach uses the outputs of a trained neural network as feature vectors

for other machine-learning methods to improve performance.

In [13], there was interest in implementing a function that reduced the intra-

class distance and increased the inter-class distance of the network outputs.70

Using these improved distances, an SVM-based classifier was applied to the old

and new classes. Following the previous idea, the outputs of any neural network

can be used as features for other machine learning methods. In [14], an ensemble

of SVM classifiers was proposed, based on a previous study.

The use of instances or information from old classes has also been considered75

in some studies, and prototype-based incremental learning was presented in [15],

which used exemplar images as well as class prototypes. Nevertheless, it sets the

basis for further studies, such as [16], in which the last layer of a neural network

is transformed into a Nearest Class Mean (NCM) classifier, which is a special

case of k-Nearest Neighbors. This layer can add a new class by averaging the80

instances belonging to that class. Finally, classification was performed using a

probability softmax function that assigned the input vector to the closest mean.

Owing to the variability in brain signals across different subjects or sessions

for the same subject [17], incremental learning provides an area of opportunity

for BCIs. Motor imagery takes advantage of the spatial behavior of signals; thus,85

these BCIs are based on common spatial patterns (CSPs), assuming that a set

of invariant spatial filters exists across sessions or subjects [18, 19, 20, 21, 22].
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Spatial information is also relevant for imagined speech analysis; [23, 24, 25]

showed that widespread brain regions are involved. However, [26, 27, 28, 29]

have suggested that focused brain areas are related to imagined speech. In90

contrast to previous studies, [2, 30, 31, 32, 33, 34] employed frequency analysis

for imagined speech to identify the features of signals related to the frequency

bands of neural activity.

2.1.2. Architecture adaptation

Neural networks are flexible models that allow for the development of a wide95

variety of architectures. Incremental learning takes advantage of this property

by modifying the neural network architectures to allow the inclusion of new

classes. An intuitive idea is to grow the network as a tree as new classes are

added.

In [35] a hierarchical model combined with neural networks was proposed.100

The main idea is to group classes into super-classes, which can be split when new

data are fed. A specific classifier was trained for each super-class, and the main

drawback was defining a similarity measure to merge or split the super-classes.

In [36], super-class networks were grown as trees when new classes were fed.

The super-class network evaluates the inputs and determines which sub-class105

of the network it corresponds to. Subsequently, the branch network creates a

sharp classification. In [37], a tree approach was proposed; in this case, the

branches correspond to old and new data, and share a base network. The new

branches were trained independently and added to the old branches to update

the network.110

2.1.3. Knowledge distillation

Finally, the use of pre-trained neural network models for new tasks results in

a term called knowledge distillation, in which the information of a cumbersome

network is transferred to a lighter network. In [38] the distillation for incremen-

tal learning was improved. However, this proposal requires auxiliary data in the115

training step, also known as exemplar data, from the old classes.
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In [39], the information obtained from old classes was retained by a teacher

network, and distilled into a student network that learns new incremental classes

using only information from these new classes. In addition, the use of a prototype-

based classifier was proposed to retain the information of old classes.120

In some cases, only a small number of instances of the new class are available,

[40] named this approach “Few shot Incremental Learning,” and established that

knowledge distillation presents some issues as class imbalance and performance

trade-off across new and old classes.

2.2. Incremental learning for BCIs125

An extensive review of BCI transfer/incremental learning was presented in

[41], the BCI approaches considered motor imagery, event-related potentials,

steady-state visual-evoked potentials, affective BCIs, regression problems, and

adversarial attacks; imagined speech was not considered. Additionally, possible

transfer scenarios were defined as cross-subject, cross-session, cross-device, and130

cross-task transfer learning. The approach considered in this study is cross-task

incremental learning, which refers to an increase in the number of classes for

the same subject.a The previous mentioned review indicated that [42] was the

only study that applied cross-task transfer learning, in such study it is defined

a scenario in which the source subjects and the target subject perform different135

motor imagery tasks, this is both a cross-subject and a cross-task transferring.

2.3. Summary

Motor imagery is the most common BCI approach, and transfer learning

is commonly focused on intersubject variability because it is not possible to

add many motor imagery commands. A generated imagined speech model can140

be extended to new imagined words, which can be considered an intra-subject

transfer learning task. Imagined speech provides a scenario in which the same

subject can include new words in their vocabulary, thereby expanding the BCI

command set.
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The previously reviewed concepts were considered in the development of a145

transfer learning model. In this study, a neural network architecture is proposed

to serve as a feature extractor for imagined speech classification. Nevertheless,

as seen in previous studies, data preprocessing was also considered.

Moreover, for incremental learning, architectural adaptation was developed

to allow the inclusion of a new class. The proposal in this study involves the150

addition of multiple parallel networks that share outputs to train new classes.

Previous studies have proposed architectural adaptations to improve incremen-

tal learning and mitigate catastrophic forgetting.

To achieve this, a principle similar to knowledge distillation is followed in

which the original architecture shares outputs with the architecture for the new155

class. Considering the knowledge represented in the original network to achieve a

better representation of the new classes improves the transfer learning approach.

The main difference between the proposed solutions is that the original network

is the same size as the new network.

3. Method160

3.1. Datasets

Each dataset used in subsequent experiments had different features and ac-

quisition protocols, as described in this section. Thus, the proposed method

was tested under different conditions. Each collection was labeled with a short

tag for reference.165

5C dataset: The first dataset is obtained from [2]. The EEG of twenty-

seven native Spanish speaking subjects was recorded from 14 channels at a 128

Hz sample rate using an Emotiv Epoc device, with a bandwidth of 0.2 to 45

Hz and a notch filter at 50 Hz and 60 Hz. The data consists of five imagined

speech Spanish words “Arriba”, “Abajo”, “Izquierda”, “Derecha”, “Seleccionar”170

(translated in English as “Up”, “Down”, “Left”, “Right”, “Select”), repeated

thirty three times each one, with a rest period between repetitions. The record-

ings were performed in a controlled environment without any sound or visual
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noise. However, in the acquisition protocol, words were presented sequentially.

3C dataset: The second dataset is presented in [34] two sets are presented,175

three short words (“In”, “Out, “Up”) and two long words (“Cooperate”, “In-

dependent”). For each task, six subjects were recorded with one-hundred trials

per word. These signals were recorded using a BrainProducts ActiCHamp with

64 channels at 1000 Hz. The data were preprocessed using a band-pass filter

between 8 and 70 Hz, a notch filter at 60 Hz, and an electro-oculogram artifact180

removal algorithm.

All of the mentioned processing was performed by the dataset owners, and

no further preprocessing was performed on the datasets, which reduced the

time and complexity of future real-time implementations. Testing the proposed

method using different databases processed in different ways may allow the185

robustness of the model to be analyzed.

3.2. Network architecture

In the following experiments, the datasets were down-sampled to 128 Hz to

reduce the data, and the Power Spectrum Density (PSD) was computed with

the pwelch MATLAB function [43] for each channel and further concatenated.190

Subsequently, a simple convolutional network was trained, as shown in Fig. 1.

Figure 1: Convolutional network design

This convolutional network was configured as shown in Table 1, and the

input size for the network corresponded to the number of channels, which were

14 and 62, respectively, depending on the dataset and frequency values of the

PSD, which were 129. The proposed incremental approach considers a neural195
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network as the feature extractor. The clustering step is then applied to the

outputs of the fully connected layer, each instance will have a different output

regarding the weights of the neurons. Essentially, the network maps instances

to a new space in which clustering is performed.

Table 1: Network parameters

Dataset 5C 3C

Input (14, 1, 129) (62, 1, 129)

Convolution Kernel size: (1,5), Stride: 1, Filters: 100

MaxPool Kernel size: (1,2)

Fully Connected Layer 1000

First, the network was trained for the original classes. The outputs are used200

as feature vectors to generate centroids using k-means clustering. Thus, the

number of clusters per class can be greater than one (see Fig. 2).

Figure 2: Non-incremental training and test step

The loss function is based on a function for clustering methods that aims

to increase the distance between centroids of different classes and to reduce the
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distance between centroids of the same class. An adaptation was implemented to205

consider that multiple centroids could be calculated for each class. The training

instances were fed through the network to generate the centroids. Subsequently,

for each instance, distance function d computes the closest centroid C to assign

a class, as shown in Eq. 1,

L = −
n∑

i=1

log
−eargmin(d(vi,cp))

1
K

∑K
m=1−ed(vi,cm)

(1)

where d is the distance function, n are instances, K is the number of classes,210

C are the class centroids, Cp is the centroid of the class corresponding to actual

instance i, and V are the feature vectors of the instances.

To test the performance of the network, the test data followed the same

approach; they were fed through the network and labeled according to the closest

centroid.215

Once the network is trained with the original classes, a new class can be

added. To achieve this, a new network was created and trained without dis-

turbing or retraining the old network, as shown in Fig. 3.
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Figure 3: Incremental training step

The centroids of the old network were considered in the distance function

to compute the loss function of the new network. This is similar to knowledge220

distillation. However, in the proposed approach, the original network is similar

in size to the new network and there are no exemplar instances that retrain the

original network.

Finally, to test the performance of the model with the new class, the test data

(instances of both the original and new classes) were fed through both networks225

and the distances to the centroids were saved into two distance matrices. Thus,

for the classification step, both matrices are compared, and the lower values are

preserved in a final distance matrix that labels the test instances ( Fig. 4).
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Figure 4: Incremental test step

The non-incremental step of the method is presented in Algorithm 1, where

O TrainData andO TestData refer to the non-incremental dataset. I TrainData230

and I TestData are the incremental datasets. O Labels and I Labels denote

corresponding labels. CO and CI are non-incremental and incremental classes,

respectively.
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Algorithm 1 Non-incremental network

Input: O TrainData, O TestData, I TrainData, I TestData, O Labels,

I Labels, CO, CI

Output: y

1: Net1 ← Initialize ▷ Netwwork Training

2: for Epoch = 1 To 100 do

3: X ← Feed Net1 with O TrainData

4: for all Class In CO do

5: K ← kMeans(X[Class])

6: end for

7: for Batch = 1 To 40 do

8: X ← Feed Net1 with O TrainData[Batch]

9: D ← distance(K,X) ▷ See Algorithm 3

10: Loss← ℓ(D) ▷ See Eq. 1

11: Net1 ← Backpropagation(Net1, Loss)

12: end for

13: end for

14: X ← feed with O TrainData ▷ Network testing

15: D ← distance(K,X) ▷ See Algorithm 3

16: y ← evaluate(D,O Labels) ▷ See Algorithm 4

Algorithm 2 presents the incremental step of the method, i.e., when a new

class is added.235
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Algorithm 2 Incremental network

1: Net2 ← Initialize ▷ Incremental Network Training

2: for Epoch = 1 To 100 do

3: X ← feed Net2 with I TrainData

4: for all Class In CI do

5: K ← kMeans(X[Class]) ▷ K contains previous centroids and the

new

6: end for

7: for Batch = 1 To 40 do

8: X ← feed Net2 with I TrainData[Batch]

9: D ← distance(K,X) ▷ See Algorithm 3

10: Loss← ℓ(D) ▷ See Eq. 1

11: Net2 ← Backpropagation(Net2, Loss)

12: end for

13: end for

14: X1 ← feed Net1 with O TestData ▷ Incremental Network Testing

15: X2 ← feed Net1 with I TestData

16: D1 ← distance(K, [X1, X2]) ▷ See Algorithm 3

17: X1 ← feed Net2 with O TestData

18: X2 ← feed Net2 with I TestData

19: D2 ← distance(K, [X1, X2]) ▷ See Algorithm 3

20: for all Column In (D1 Or D2) do

21: for Row = 1 To lenght(K) do

22: Df ← min(D1[Column,Row], D2[Column,Row])

23: end for

24: end for

25: y ← evaluate(Df , [O Labels, I Labels]) ▷ See Algorithm 4

Algorithm 3 presents the distance function used to generate distance matri-

ces, where X is the network output, and K is the set of k-means centroids of

all classes. The cosine distance was chosen because of the dimensionality of the
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data.

Algorithm 3 function distance(K,X)

Input: K, X

Output: D

1: for all Element In X do

2: for all Centroid In K do

3: D[Element, Centroid]← cosine distance(Element, Centroid)

4: end for

5: end for

Algorithm 4 was developed to evaluate the calculated distances, where D is240

a distance matrix in which the columns contain the instances of the test data,

the rows contain the centroids, and Labels denote the true class of the instances.

Algorithm 4 function evaluate(D,Labels)

Input: D, Labels

Output: y

1: y ← 0

2: for all Column In D do

3: X ← min(D[Column, :])

4: if X = Label[Column] then

5: y ← y + 1

6: end if

7: end for

8: y ← y/length(Labels)

4. Results

Processing was carried out on a dedicated server with two Intel Xeon-Gold

6248 (2.5 Ghz, 84 cores) and eight NVIDIA Tesla V100 32 GB graphic cards245

(40,960 CUDA cores) using Matlab 2021 and Anaconda 4.8.2, with Python

3.7.11.
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For all experiments, the following considerations were taken: the number

of subjects was adjusted to six for all databases; the results were given as the

average of the six subjects; the data were split into 80% for training and 20%250

for testing purposes; each experiment was repeated five times per subject due

to the stochastic behavior of the employed methods; the new class was added

to the model using a different number of training instances that started with

one and increased by two until the complete training instances were used; the

complete training set was used for original classes; the incremental class was255

taken from the dataset and this class was removed for the original classes and

added for the incremental training; the incremental class was obtained from

each dataset separately, this class was then removed from the original training

classes and added to the incremental training; for all datasets, class 1 was used

as the incremental class.260

The number of centroids was defined empirically by experimentation on a

few samples, and because of the performance decrease using a high number of

centroids, it was decided to use as few centroids as possible, that is, 3 and 1.

Moreover, the number of centroids was the same for all classes, including the

new class.265

In Fig. 5 the results for the three datasets are presented. As mentioned pre-

viously, the results for each dataset are the average performance of the subjects.

The figures show the behavior of all classes; the incremental class is highlighted

in continuous yellow and the total accuracy in continuous blue. Instances of

the new class were progressively added to the model to observe the trade-off270

between the number of instances and the final accuracy.
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(a) Results for 5C dataset

(b) Results for 3C dataset

Figure 5: Results using 3 centroids. The blue line represents the total accuracy, and the yellow

line represents the incremental class accuracy

As shown in Table 2, the 5C dataset obtained an accuracy of 59.02 ± 2.7

using one centroid and 58.89±2.4 using three centroids; there was no statistical

difference in this case. The accuracies obtained in the 3C dataset were 41.43±

0.9 and 36.91± 0.59 for three and one centroids, respectively, indicating better275

performance with three centroids. The incremental learning accuracies of the

three datasets did not show statistical differences; however, some cases showed

a faster increase when using fewer instances. The incremental network showed

a high total accuracy and a faster increase in incremental class accuracy. The
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increase in the incremental class accuracy using a few instances is advantageous280

for BCIs because it can reduce the time required for training.

Table 2: Incremental network results. A t-test for total accuracy obtained: p = 0.5221 for

5C dataset and p = 0.12103e−18 for 3C dataset. And, respectively, the t-test for incremental

class accuracy obtained: p = 12.09 and p = 0.6041

Dataset
1 centroid 3 centroids

Total Incremental Total Incremental

5C 59.02± 2.78 55.38± 20.49 58.89± 2.4 49.29± 17.21

3C 36.91± 0.59 26.91± 12.52 41.43± 0.9 30.57± 13.63

4.1. Additional validation of the method

The proposed method was compared to a method similar to that applied

to a different task. This provides experimental evidence of the competitive

performance of incremental learning when applied to small dataset scenarios.285

The results obtained were compared with those of [16], who presented an

incremental approach to odor classification. In this study, the outputs of the

neural network were replaced by means of the classes, that is, a mean centroid,

and there was one centroid per class. Subsequently, when a new class was added,

new instances were fed through the same network, generating a new centroid.290

Despite the use of a different task, the method was oriented to a scenario

similar to that proposed in this study, in which a few classes were added to the

neural network approach.

Comparative results are shown in Fig. 6.
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(a) Results for 5C dataset

(b) Results for 3C dataset

Figure 6: The results of the proposed method are in color blue for the total accuracy and the

incremental class accuracy in color red. For the [16] method, the total accuracy is presented

in color gray and the incremental class accuracy in color yellow.

The comparative results with the [16] approach show that both methods295

have a similar stable total accuracy performance for all datasets. Nevertheless,

the incremental accuracy results showed a notable difference, see Table 3. In

all cases, the incremental accuracy was higher when the proposed method was

used and began to increase using fewer instances.
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Table 3: Comparative accuracy results. A t-test for total accuracy obtained: p = 0.9530 for

5C dataset and p = 0.0043 for 3C dataset. Respectively, t-test for incremental class accuracy

showed: p = 0.0047 and p = 1.2958e−07.

Dataset
Proposed method Baseline method

Total Incremental Total Incremental

5C 61.7± 3.16 58.84± 20.91 61.45± 3.51 36.8± 17.5

3C 43.96± 1.18 33.48± 15.97 43.06± 0.53 8.23± 5.23

Both approaches maintain a total accuracy that does not decay for any num-300

ber of instances of the new class, i.e., there is no catastrophic forgetting. Never-

theless, the comparison showed two improvements in the proposed incremental

approach: the incremented class achieved stable accuracy in a few instances. In

addition, a higher incremental accuracy was achieved. These improvements pro-

vide the method with a faster adaptation of the new class using fewer instances305

while maintaining total accuracy.

5. Conclusions

The results of the incremental network showed stable total accuracy and

no drop that resembled catastrophic forgetting. For the dataset 5C, there was

a good relationship between stability and plasticity for each subject. For the310

3C dataset, some subjects exhibited a decrease in accuracy for the old classes,

which tended to recover when more instances of the new class were added.

A possible explanation for the variations in the behavior of the datasets is

that they differ in the number of channels. A small number of channels may

allow a better fit of the network with a few parameters, which can be explored315

in future experiments by reducing the number of channels of some datasets or

increasing the parameters of the network. Another consideration is the number

of classes: the 5C dataset includes five classes, whereas the 3C dataset includes

only three classes. A higher number of old classes may allow robustness of

the model that is not perturbed by the inclusion of a new class. Furthermore,320
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the acquisition protocol was different for each dataset: 5C allowed subjects to

manually determine when they had finished imagining the words, and 3C fixed

a period in which the subjects could repeat the imagination of the word several

times.

Finally, the proposed method achieved good performance in contrast to other325

incremental class learning tasks, particularly incremental learning for images. In

[40, 44], a review of various incremental learning methods was presented, most of

which were focused on mitigating catastrophic forgetting. These studies showed

that the total accuracy decays as more instances of a new class are added,

which does not occur in the proposed method. It is important to emphasize330

that these are different tasks with significant differences. These studies used

large image datasets, such as CIFAR100, which contains a large number of

classes and instances.

The incremental network performed better for incremental learning than

the method proposed in [16]. The results indicated a faster increase in accuracy335

when fewer instances were used. This behavior is desirable for BCI because of

the reduction in data acquisition time.
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Aguilar, Implementing a fuzzy inference system in a multi-objective (EEG)

channel selection model for imagined speech classification , Expert Systems350

with Applications 59 (2016) 1 – 12. doi:http://dx.doi.org/10.1016/j.

eswa.2016.04.011.

[3] A. Gepperth, B. Hammer, Incremental learning algorithms and applica-

tions, in: European symposium on artificial neural networks (ESANN),

2016, pp. 2–3.355

[4] R. R. Ade, P. R. Deshmukh, Methods for Incremental Learning: A Survey,

International Journal of Data Mining & Knowledge Management Process

(IJDKP) 3 (4) (2013) 119–125. doi:10.5121/ijdkp.2013.3408.

[5] R. Polikar, L. Upda, S. S. Upda, V. Honavar, Learn++: An incremental

learning algorithm for supervised neural networks, IEEE transactions on360

systems, man, and cybernetics, part C (applications and reviews) 31 (4)

(2001) 497–508.
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