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ABSTRACT:
The use of machine learning (ML) in acoustics has received much attention in the last decade. ML is unique in that

it can be applied to all areas of acoustics. ML has transformative potentials as it can extract statistically based new

information about events observed in acoustic data. Acoustic data provide scientific and engineering insight ranging

from biology and communications to ocean and Earth science. This special issue included 61 papers, illustrating the

very diverse applications of ML in acoustics. VC 2021 Acoustical Society of America.
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I. INTRODUCTION

When we started our Call for Papers for a Special Issue

on “Machine Learning in Acoustics” in the Journal of the
Acoustical Society of America, our ambition was to invite

papers in which machine learning was applied to all acous-

tics areas. They were listed, but not limited to, as follows:

• Music and synthesis analysis
• Music sentiment analysis
• Music perception
• Intelligent music recognition
• Musical source separation
• Singing analysis and voice quality evaluation
• Expressivity in music
• Bioacoustics
• Soundscapes
• Hearing and hearing aids
• Speech, language, and emotion recognition
• Speech recognition
• Emotion in speech
• Speech perception
• Expressivity in speech
• Intelligent speech processing
• Multimedia speech processing
• Classification from active acoustics
• Acoustic source localisation
• Acoustic field prediction in ocean acoustics
• Acoustical oceanography.

This is because—through the last decades—we had

seen that machine learning had found its rightful place in

acoustics, especially when a particular area needed a novel

approach to challenging “old” complex problems. Years

ago, Zadeh1,2 defined soft computing, a group of machine

learning techniques that permit the input data and the prob-

lem description to be imprecise. This involved several com-

puting methods, i.e., artificial neural networks, fuzzy logic,

and probabilistic reasoning, e.g., rough sets, etc., oriented

towards human-like reasoning. All these methods concurred

with a statistical approach to justify the results obtained.

One may wonder what could be the cause of the relatively

rapid recent surge of machine learning methods and their

progress, often referred to as deep learning. It includes

Bayes networks, neural networks, and adversarial networks,

to name a few. Of course, there is no one answer to this

question; there are several apparent causes that have a

noticeable effect on the advances of machine learning algo-

rithms and applications, i.e., the rapid growth of database

resources that facilitate gathering massive amounts of data

and often sharing them among scientific communities, faster

processors, using graphic cards to process data and signals,

networking the resources, faster networks, and open access

to research.

In this special issue, there is a variety of such machine

learning techniques and their application to many acoustics

areas; however, the interest of researchers is not distributed

evenly. There are many papers related to underwater acous-

tics, including marine mammal sound analyses, noise, echo-

location, auditory scene analysis, and another area of the

highest interest is speech processing. Figure 1 shows the fre-

quency of occurrences of subjects to visualise the distribu-

tion of papers in which machine learning methods were

used in acoustics.
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Acoustics Today has a companion paper to this issue,

“How machine learning contributes to solve acoustical prob-

lems?,” prepared by our group of guest editors.3 We encour-

age readers that are unfamiliar with machine learning to

examine this article; it may be a smooth introduction for

new adepts in acoustics searching to understand the ideas

behind machine learning. For an introduction to the mathe-

matical details of machine learning techniques, please see

Ref. 4. We hope that the papers in this special issue will be

of interest to the readers, particularly given that mature up-

to-date machine learning methods are applied to acoustics.

II. CONTRIBUTED PAPERS

A. Ocean acoustics

Ocean acoustics is an area that presents us with rich

opportunities for the development and application of

machine learning techniques to a variety of complex prob-

lems. Seabed parameter characterisation, often referred to as

geoacoustic inversion, is a topic that has attracted significant

interest in the past. Along these lines, in Ref. 5, Frederick

et al. implemented machine learning approaches including

convolutional neural networks (CNNs) for sediment classifi-

cation from acoustic fields and showed that, in the presence

of uncertainty, machine learning approaches outperform

conventional matched-field processing (MFP). Similarly,

Smaragdakis and Taroudakis6 implemented a Hidden

Markov model approach to extract features from acoustic

signals in the ocean coupled with genetic algorithms and

developed a reliable method for geoacoustic inversion. Shen

et al.7 employed machine learning for geoacoustic inversion

as well. Results therein indicate that their technique, involv-

ing radial basis function networks, leads to higher sensitivity

in the inversion, with respect to some of the unknown sedi-

ment parameters in comparison to that of conventional

methods.

Source localisation is another problem that has been the

focus of a significant body of research in ocean acoustics

and is now being extensively addressed with machine learn-

ing. Liu et al.8 applied CNNs and multi-task learning to the

problem of source localisation in an underwater environ-

ment. They found that CNNs are more robust to environ-

mental uncertainty in comparison to conventional MFP.

Chen and Schmidt9 also used CNNs for source localisation

in the ocean. Similarly, to other studies, they demonstrated

with both synthetic and real data that the implemented net-

works outperform conventional MFP in the presence of

environmental uncertainty. Ferguson10 used cepstrum-based

and correlation-based feature vectors to train CNNs for the

localisation of a transiting motorboat. He showed that the

combined cepstrum–cross correlation CNN provides supe-

rior source localisation performance in comparison to CNNs

where only cepstrum or only correlation is used as features.

Wang et al.,11 conducted source depth estimation in the

ocean using a combination of CNNs and conventional

beamforming, while also employing transfer learning.

Results demonstrated the superiority of the method over

conventional CNNs. Neilsen et al.12 performed source depth

estimation in an oceanic environment–simultaneously with

seabed classification–using CNNs as well. They investigated

the effect of mismatch between training and testing patterns

on the estimation/classification results. Along the same

lines, Van Komen et al.13 carried out source localisation and

sediment characterisation by applying CNNs to spectro-

grams calculated from surface ship sound signals.

Yoon et al.14 performed source depth estimation in the

ocean using residual neural networks and showed robustness

of the approach with respect to environmental uncertainty

and receiving sensor position. A deep transfer learning

method was proposed by Cao et al.15 for direction of arrival

estimation using a single-vector sensor. Performance analy-

sis showed that the approach outperforms conventional

FIG. 1. (Color online) Frequency of occurrences of a particular subject in this issue related to acoustic areas in which machine learning was applied.
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CNNs. Data recorded by vector sensors were also used in

Ref. 16. Whitaker et al.16 used recurrent neural networks,

both shallow and deep, for direction of arrival estimation in

an oceanic medium using a vector sensor. The network per-

formance was superior to that of conventional estimation.

Deep networks performed better than shallow ones.

Other applications in ocean acoustics include acoustic

mine detection and underwater communications. Brandes

et al.17 implemented an environmentally adaptive approach

coupled with a segmentation constrained neural network for

effective automated mine-like object recognition. McCarthy

et al.18 applied a model-agnostic geometric feature represen-

tation based on braid theory to track diverse channel phe-

nomena and improve channel estimation of shallow water

acoustic communications. Moreover, these techniques

proved valuable in feature extraction for machine learning

using feed forward neural networks in estimation and deter-

mining the number of reflector activity tracked by braids

may undergo. Zhang et al.19 applied a meta-learning

approach to orthogonal frequency division multiplexing for

underwater acoustic communications and showed that the

method is superior to conventional deep neural networks,

frequently used in such tasks.

B. Animal bioacoustics

Observations of animal life and detection and classifica-

tion of biological signals also present us with a fertile

ground for the development and application of diverse

machine learning approaches. Methods range from detecting

species or populations to extracting detailed characteristics

of calls. Many of these detection and classification techni-

ques are first steps of other processes, such as mitigation,

density estimation, or monitoring behaviour.

Lee and Staneva20 developed an unsupervised machine

learning approach based on matrix decomposition for extract-

ing information from data collected from ecosystems using

echosounders; this approach facilitated acoustics-based bio-

logical observation in the ocean. Ozanich et al.21 applied

deep embedded clustering and Gaussian mixture models to

distinguish fish sounds from whale vocalizations. They found

that these methods are superior to conventional clustering.

Cotter et al.22 implemented a k-nearest-neighbours approach

using scattering models appropriate for echosounder mea-

surements and employed it to group organism target spectra

measured in the mesopelagic near the New England conti-

nental shelf break. Gruden and White23 showed how marine

mammal vocalizations can be extracted efficiently and effec-

tively from recorded data using machine learning techniques

based on probability hypothesis density filters. Gruden

et al.24 also proposed a multi-target tracking method to auto-

mate time difference of arrival tracking, based on the

Gaussian mixture probability hypothesis density filter and

including multiple sources, source appearance and disappear-

ance, missed detections, and false alarms. It was shown that

by using an extended measurement model and combining

measurements from broadband echolocation clicks and

narrowband whistles, more information can be extracted

from acoustic encounters. The method was tested on false

killer whale recordings.

On the problem of identifying marine mammal vocal-

izations, Rasmussen and Sirovic25 developed CNN-based

detectors with high precision and recall for highly variable

whale calls. Padovese et al.26 investigated the benefit of

augmenting training datasets with synthetically generated

samples when training a deep neural network for the classifi-

cation of North Atlantic right whale upcalls. Two augmenta-

tion techniques, SpecAugment and Mixup, were

implemented and were shown to improve call classification.

Denoising CNNs and autoencoders were applied to spectro-

grams of noise-corrupted audio signals by Vickers et al.27

The denoised signals were then included in training, leading

to high accuracy in detection/classification of whale vocal-

izations. Schall et al.28 showed that accurate discriminant

models, based on combinations of acoustic metrics and

supervised neural networks, provide an automated solution

for fast and highly reproducible identification and compari-

son of vocalisation types in humpback whale populations.

Roch et al.29 used feed forward neural networks to develop

a time-domain whale echolocation click detector. The

approach was capable of finding echolocation bouts that

were missed by human analysts. Zhong et al.30 used acoustic

signatures to detect, classify, and count the calls of four

acoustic populations of blue whales. The goal was that the

conservation status of each population is better assessed.

Siamese neural networks were used for the task, which were

found to outperform CNNs.

Along similar lines to marine life–related studies, Morfi

et al.31 created deep perceptual embeddings for bird sounds

using triplet networks. They used multidimensional scaling

pretraining, attention pooling, and a triplet mining scheme.

They then demonstrated the feasibility of the method to

develop perceptual models for a wide range of data based on

behavioural judgements, assisting in the understanding of

how animals perceive sounds.

Classification of foliage was also approached with

machine learning methods. Kuc32 employed spectrograms

echoes from foliage targets as input to artificial neural net-

works for foliage target classification. Kuc showed that clas-

sification performance using spectrograms is significantly

superior to performance when echo envelopes are

employed.

C. Metamaterial design

The study and design of metamaterials is yet another

field that offers rich opportunities for the use of machine

learning. Ciaburro and Iannace33 collected metamaterial

sound absorption coefficient measurements. These measure-

ments were employed to train artificial neural networks.

When tested, the networks provided acoustic absorption

coefficient estimates of the metamaterial, which are very

similar to the measured values. Gurbuz et al.34 used adver-

sarial neural networks to obtain insights into the design of
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acoustic metamaterials. Shah et al.35 also used machine

learning towards metamaterial design. Specifically, rein-

forcement learning was employed towards acoustic material

design with cloaking as the ultimate goal.

Material properties were studied by Stender et al.36 as

well. A data-driven reverse engineering approach was used

to identify factors from absorption coefficient spectra of

sound absorbing materials. The analysis of a neural network

identified important features in absorption coefficient spec-

tra. The results indicated the amount to which different fac-

tors affect the absorption coefficient measurements and may

help to better understand how different manufacturing tech-

nologies or mounting approaches affect the absorption coef-

ficient at which frequencies.

D. Speech processing

The processing of speech–for enhancement, recognition,

synthesis, or emotion perception to name a few directions–

has been tremendously advanced with the development of

new and powerful machine learning approaches. These tech-

niques are disrupting standard methods of human-machine

interaction and have a wide range of applications, including

the quickly growing Internet of things.

Shankar et al.37 implemented a two-microphone speech

enhancement framework relying on recurrent neural net-

works. The approach improved speech quality and intelligi-

bility in noisy environments. In parallel, Chinen et al.38

investigated a multidimensional mapping function using

deep lattice networks for speech quality estimation in the

presence of a variety of distortions. The approach outper-

formed speech quality estimation with conventional map-

ping functions and facilitated uncertainty quantification.

Morgan et al.39 analysed the performance of several neural

network architectures, including CNNs for predicting

speech emotion, aiming at the prediction of emergent lead-

ership among other group metrics.

Liu et al.40 used spectrograms of speech signal seg-

ments, along with the actual waveforms, and successfully

applied FaceNet to them for emotion recognition, whereas

Mahmud et al.41 implemented support vector machine

models for the assessment of how well listeners’ speech cat-

egorisation can be decoded via whole-brain and

hemisphere-specific responses. Zhang et al.42 developed a

high resolution direction-of-arrival approach based on deep

neural networks for multiple speech source localisation

using a small scale array. The new approach outperformed

conventional beamforming techniques.

Riad et al.43 proposed the use of a parametrised neural

network layer, computing specific spectro-temporal modula-

tions based on Gabor filters. The approach exhibited excel-

lent performance in speech activity detection, whereas it

was also successful and comparable to state-of-the art

approaches in speaker verification, urban sound classifica-

tion, and zebra finch call type classification. Piotrowska

et al.44 employed k-nearest neighbours, the naive Bayes

method, long–short term memory, and CNNs towards

automated evaluation of pronunciation focussed on a partic-

ular phonological feature. Korvel et al.45 identified a way of

highlighting the acoustic differences between consonant

phonemes of the Polish and Lithuanian languages.

Similarity matrices were employed based on speech acoustic

parameters combined with a CNN. The performance of the

similarity matrix approach demonstrated its superiority over

other techniques. The work in Ref. 46 showed that machine

learning techniques are very successful at classifying the

Russian fricatives [f], [s], and [
Ð

] using a small set of acous-

tic cues. Classifiers based on decision trees, random forests,

support vector machines, and neural networks were imple-

mented to distinguish between the three fricatives. The

results demonstrated successful classification.

Tsipas et al.47 introduced and evaluated an audio-driven,

multimodal approach for speaker diarization in multimedia

content using semi-supervised clustering of audio-visual

embeddings, generated using deep learning techniques.

Smalt et al.48 explored using visual information from a

photograph of a hearing protection device (HPD) inserted

into the ear to estimate hearing protector attenuation. Using

a deep neural network, high classification accuracy was

achieved in predicting if the HPD fit was greater or smaller

than the median measured attenuation.

E. Fault detection

In this special issue, studies are also presented on fault

detection and also alleviation of noise. Alavijeh et al.49

investigated the applicability of machine learning to the auto-

mation of the ultrasonic inspection of polyethelene pipe butt-

fusion joints. CNNs were found to be effective tools for the

detection of defects. Along the same lines of fault identifica-

tion, in Ref. 50, a support vector machine was used to evalu-

ate feature importance for squeak and rattle identification.

Similarly, Teja et al.51 worked on the identification of slosh-

ing noises in fuel tanks using CNNs with the creation of qui-

eter tanks being the goal of the study. The identification

accuracy of the proposed CNN is about 94%. Mei et al.52

studied a robot-assisted ultrasonic testing system using the

track-scan imaging method for improving the detecting cov-

erage and contrast of ultrasonic images. They proposed a

visual geometry deep learning network to optimise the recon-

structed ultrasonic images. The results indicate that the pro-

posed method improves the resolution of reconstructed

ultrasonic images without sacrificing efficiency.

F. Room acoustics

Liu et al.53 approached sound source localisation in

noisy and reverberant rooms using microphone arrays as a

classification task. Simulation and real-world experimental

results demonstrated that the proposed deep learning

assisted approach can achieve higher spatial resolution and

is superior to other state-of-the-art techniques.

Foy et al.54 introduced a new supervised learning

approach to estimate the mean absorption coefficients from

a room impulse response (RIR) regarding building acoustics
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and the acoustic diagnosis of an existing room. The RIR-to-

absorption mapping was learned by regression on a simu-

lated dataset using artificial neural networks.

Shalev et al.55 introduced an extension of the image

method for generating room impulse responses in a structure

with more than a single confined space. The proposed

approach can generate, in an efficient manner, a large num-

ber of environmental examples for a structure impulse

response, required by current deep-learning methods for

many tasks.

De Salvio et al.58 looked into the problem of noisy

environments in offices and developed Machine Learning

approaches to identify human and mechanical noise sources

during working hours. Clustering techniques were imple-

mented to obtain information on the number of sources,

which were then labeled with the help of statistical and met-

rical features.

Tsokaktsidis et al.59 studied noise in passenger cars.

They used Artificial Neural Networks to predict interior

noise in vehicles for different operational conditions. Their

approach was accurate and cost-effective compared to stan-

dard practices of measuring transfer functions and numeri-

cally modeling the noise.

G. Musical acoustics

Colonel and Reiss56 developed a method to retrieve the

parameters used to create a multitrack mix using only raw

tracks; the stereo mixdown is presented. This method is able

to model linear time-invariant effects, such as gain, pan,

equalisation, delay, and reverb. Pujol et al.57 used a multire-

solution deep learning approach that allows the encoding of

information contained in unprocessed time-domain acoustic

signals captured by microphone arrays. Results show that

the BeamLearning approach outperforms the wideband

MUSIC and steered response power-phase transform meth-

ods with respect to localisation accuracy and computational

efficiency in the presence of noise and reverberation.

Hawley and Morrison60 presents a CNN-based model

for detecting and counting the vibration patterns from the

electronic speckle pattern interferometry (ESPI) frames of

steelpan vibration images. For gathering data, about 1200

human-annotated frames were crowdsourced from the

Zooniverse Steelpan Vibration Project (ZSVP).60 As an

alternative approach, a much larger number of synthetic

frames were generated, and the network was trained on both

sets of data.

H. Environmental acoustic monitoring

Hart et al.61 quantify the accuracy of three machine-

learning models for long-range sound propagation, consider-

ing at the same time atmospheric turbulence. A synthetic

dataset is generated by a parabolic equation model and is

used for training and testing three machine-learning algo-

rithms. The errors of these models with respect to an experi-

mental long-range sound propagation dataset were studied.

Gontier et al.62 proposed a two-stage approach for

environmental acoustic monitoring. In the self-supervised

stage, they formulated a pretext task on unlabelled spectro-

grams from an acoustic sensor network. On the other hand,

in the supervised stage, they formulated a downstream task

of multilabel urban sound classification on synthetic scenes.

They concluded that training set synthesis benefits monitor-

ing performance more than self-supervised learning.

Chen et al.63 proposed a long-term wavelet feature for

acoustic scene classification (ASC) that captures discrimina-

tive long-term scene information. A data augmentation

scheme was implemented that improved the generalisation

of the ASC systems. In Ref. 64, two methods were presented

that enabled the automated identification of aeroacoustic

sources in sparse beamforming maps and the extraction of

their corresponding spectra to overcome the manual defini-

tion of regions of interest. Both methods were found to be

robust to statistical noise and predicted the source existence,

location, and spatial probability estimation.

In Ref. 65, non-negative matrix factorisation was imple-

mented to estimate the noise effects of wind turbines contin-

uously, without interrupting their function. That facilitated

the effective characterisation of the noise impact of wind

farms.

I. Event detection and enhancement

Ekpezu et al.66 showed that, using CNNs and long

short-term memory, acoustic signals are effective for classi-

fying and potentially detecting natural disasters.

Paul et al.67 proposed a machine learning algorithm,

based on a multilayer perceptron coupled with singular

value decomposition, which was applied to several acousti-

cal classification problems. The experiments quantified the

extent to which closely related spectra can be distinguished.

Shao et al.68 investigated the performance of CNNs and

transfer learning on thyroid tumour grade identification

based on ultrasound images. They found that some imple-

mentations of transfer learning outperform CNNs in tumour

grading.
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