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Inverse determination of sliding surface temperature based on 
measurements by thermocouples with account of their thermal inertia 
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A B S T R A C T   

This study developed an inverse heat conduction algorithm to determine temperature at a sliding surface taking 
account of thermocouple thermal inertia. The direct heat conduction problem was solved analytically based on 
the Laplace integral transform approach. The inverse algorithm was applied to the problem of friction of a brake 
material against a steel. The experiments were conducted on a pin-on-disc tribometer for three short-time sliding 
regimes: velocity step, acceleration and deceleration. Temperature in the pin sample was measured by two 
identical miniature thermocouples installed at different distances from the friction surface. It was found that the 
two inverse surface temperatures agree well between each other. The inverse algorithm allows predicting the 
contact temperature measured by infrared thermography with accuracy 5–7%.   

1. Introduction 

Design of a new device or testing of an existing one may require the 
knowledge of temperatures and heat fluxes at the interfaces between its 
components and at its boundary with the environment. This knowledge 
is of critical importance in aerospace engineering [1], chemical engi-
neering [2], mechanical engineering [3], metallurgical engineering [4], 
power engineering [5], safety engineering [6], etc. In many practical 
situations, thermal measurements cannot be performed directly in the 
interfacial region. Installation of a thermal sensor or a group of sensors 
may distort the processes under consideration. There may be extreme 
conditions capable of destroying the thermal sensor or deteriorating its 
performance. This leads to the necessity of applying inverse heat transfer 
methods that aim at finding functions and parameters incorporated into 
the thermal boundary conditions of a heat transfer system based on the 
temperature data obtained for some interior points (Beck et al. [7]). 

Thermal problem of friction belongs to the class of contact heat 
transfer problems in which reliable and accurate measurements of 
temperatures and heat fluxes present certain technical difficulties. 
Application of infrared thermography is substantially limited due to the 
fact that the friction components are generally not transparent. 
Employment of a thermocouple requires its installation in one of the 
friction components so that its measuring junction is located as close as 
possible or even exposed to the friction surface. Involvement of the 
measuring junction in friction distorts the temperature field in its 

vicinity and, moreover, may result in its destruction. Special contact 
sensor techniques, such as thin-film thermocouples (Kennedy et al. [8]) 
and grindable thermocouples (Nosko et al. [9]), are limited in applica-
tion to a certain class of friction materials. Thereby, the inverse heat 
transfer approach looks to be a natural candidate for estimation of 
temperatures and heat fluxes at a sliding interface. 

A number of studies have been devoted to the thermal characteri-
sation of sliding surfaces using various inverse heat transfer methods. 
Chen et al. [10] developed an inverse algorithm based on the conjugate 
gradient method and discrepancy principle to estimate the specific 
power of heat generation at the sliding interface of cylindrical bars. 
Wang et al. [11] applied a similar approach to the friction system con-
sisting of a semispace and a plane-parallel layer. Quéméner et al. [12] 
presented a branch eigenmodes reduction method capable of identifying 
the heat flux dissipated in a brake disc rotating at variable speed. Chen 
and Yang [13] applied an inverse algorithm to determine the specific 
power of heat generation at the sliding interface of a semispace and a 
semispace covered by a layer. Yang and Chen [14] made use of the 
Lagrange multipliers method and conjugate gradient method to recon-
struct the heat flux passing into a car brake disc. Ghadimi et al. [15] 
developed an inverse algorithm based on a back propagation neural 
network and a sequential function specification technique to estimate 
the heat flux absorbed by a locomotive brake disc. Bauzin et al. [16] 
performed an inverse estimation of the heat flux generated by friction in 
an aircraft brake. Bauzin et al. [17] also applied an inverse algorithm for 
identifying the specific power of generation of friction heat and the 
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parameters responsible for its partition between the friction 
components. 

When a thermocouple is used to measure temperature in a friction 
system, its measuring junction is placed inside one of the friction com-
ponents. For this purpose, a blind hole is made in the friction component 
by means of drilling or other technique. The measuring junction of the 
thermocouple is inserted into the hole and is normally attached to its 
bottom face. The macroscopic shape of the measuring junction does not 
match that of the hole bottom face, which implies an air gap between 
them. There are, in addition, microscopic air voids due to the roughness 
of the contacting surfaces. Sometimes, the hole is filled in with a thermal 
paste to eliminate the air. Thereby, the air medium or/and thermal paste 
form an intermediate layer between the measuring junction and friction 
component. The thermal resistance of this layer results in a substantial 
increase in the thermal inertia of the thermocouple, which affects its 
dynamic behaviour under a non-stationary regime. Analysis of [10–17] 
and other literature sources shows, however, that the inverse heat 
transfer methods and algorithms developed for solving thermal prob-
lems of friction take no account of the thermocouple dynamics. 

The dynamic behaviour of a thermocouple is often described using a 
first-order model. Woodbury [18] developed an inverse algorithm 
incorporating a thermocouple first-order model to evaluate the influ-
ence of the thermocouple time constant on predictions of the surface 
heat flux in the form of a triangular impulse. Tagawa and Ohta [19] 
developed a theoretical basis for application of two thermocouples with 
fluctuating time constants to measuring gas temperature in combustion 
and demonstrated its validity by measurements in a combustion wind 
tunnel. Augustin et al. [20] performed finite-element analysis of the 
static and dynamic errors of a thermocouple sensor built into a turbo-
charger, which enabled more accurate prediction of the fluid tempera-
ture. Frankel and Chen [21] proposed a methodology for validation of a 
thermocouple model by experimental reconstruction of the thermal 
impulse response function and demonstrated its efficiency on example of 
a first-order model. Following the mentioned studies, the purpose of the 
present study was to develop and validate an inverse heat conduction 
algorithm based on a thermocouple first-order model for accurate pre-
diction of non-stationary temperature at a sliding surface. 

2. Model of the thermocouple measuring junction 

Consider a body that occupies the domain x > 0 and is characterised 
by thermal conductivity K and thermal diffusivity k, as illustrated in  
Fig. 1. The body is heated at its surface x = 0 by heat flux q changing in 
time t. Temperature T(x, t) in the body is then defined by the heat 
conduction equation 

∂T
∂t

= k
∂2T
∂x2 , x > 0, 0 < t < t* (1) 

initial condition 

T|t=0 = 0 (2) 

boundary condition 

− K
∂T
∂x

⃒
⃒
⃒
⃒

x=0
= q(t) = qmaxQ(t) (3) 

and condition of zero disturbance at infinity 

∂T
∂x

⃒
⃒
⃒
⃒

x→∞
= 0 (4)  

where t* is the heating duration; qmax is the maximum value of the heat 
flux q; Q = q/qmax is the dimensionless heat flux, 0 ≤ Q ≤ 1. The tem-
perature of the body at the surface x = 0 is denoted by Ts. Note that the 
zero initial condition of Eq. (2) is not restrictive and is accepted for 
shorter notation. 

Now let a thermocouple be installed in the body so that its measuring 
junction is located at distance h from the surface. The size of the 
measuring junction is small compared to h. Assume that the temperature 
Tm(t) of the measuring junction is uniformly distributed over its volume. 
The measuring junction can then be modelled as a point of heat capacity 
C. The thermal contact between the measuring junction and body is 
imperfect due to the presence of an intermediate layer with thermal 
resistance R. Accordingly, the thermocouple response to the tempera-
ture Th of the body at x = h obeys the following heat balance equation: 

CdTm =
Th − Tm

R
dt 

Nomenclature 

erfc(∙) complementary error function 
exp(∙) exponential function 
h distance between measuring junction and surface, m 
i imaginary unit, i =

̅̅̅̅̅̅̅
− 1

√

k thermal diffusivity, m2/s 
q surface heat flux, W/m2 

qmax maximum surface heat flux, W/m2 

qΣ specific power of heat generation at sliding contact, W/m2 

s Laplace transform parameter 
t time variable, s 
t* heating duration, s 
x spatial coordinate, m 
C heat capacity of measuring junction, J/◦C 
Fo dimensionless time variable, Fo = kt/h2 

Fo* dimensionless heating duration, Fo* = kt*/h2 

K thermal conductivity, W/(m ◦C) 
Q dimensionless surface heat flux, Q = q/qmax 

R thermal resistance of intermediate layer, ◦C/W 
T temperature, ◦C 
Th temperature at x = h, ◦C 
Tm measured temperature, ◦C 

T(j)
m temperature measured by jth thermocouple, ◦C 

Ts temperature at surface x = 0, ◦C 
T(j)

s inverse surface temperature corresponding to jth 
thermocouple, ◦C 

ε deviation of maximum ϑm from maximum ϑs, % 
ϑ dimensionless temperature, ϑ = KT/(hqmax)

ϑh dimensionless temperature at ξ = 1 
ϑm dimensionless measured temperature, ϑm = KTm/(hqmax)

ϑs dimensionless surface temperature 
ξ dimensionless spatial coordinate, ξ = x/h 
π Pi number, π ≈ 3.14 
σm dimensionless standard deviation of thermocouple noise 
σs dimensionless standard deviation of ϑs from noise-free 

solution 
τ time constant of thermocouple, s 
∆Fo dimensionless time step 
Θ dimensionless time constant, Θ = kτ/h2 

Ω noise sensitivity of inverse algorithm 
L [∙] Laplace transform operator 
∎̃ Laplace transform image 
MRAD mean relative absolute difference  
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or 

τ dTm

dt
+ Tm = Th (5)  

where τ = CR is the time constant of the thermocouple. 
Specification of the following initial condition completes the 

description of the problem: 

Tm|t=0 = 0 (6) 

Thereby, Eqs. (1)–(6) define the relationship between the heat flux q 
and measured temperature Tm in dependence on the parameters K, k, h 
and τ. 

3. Analytical solution of the direct problem 

Introduction of the dimensionless variables 

ξ =
x
h
, Fo =

kt
h2, ϑ =

KT
hqmax

, ϑm =
KTm

hqmax 

and parameters 

Fo* =
kt*

h2 , Θ =
kτ
h2 

allows representing Eqs. (1)–(6) in the dimensionless form 

∂ϑ
∂Fo

=
∂2ϑ
∂ξ2 , ξ > 0, 0 < Fo < Fo*;

−
∂ϑ
∂ξ

⃒
⃒
⃒
⃒

ξ=0
= Q(Fo);

∂ϑ
∂ξ

⃒
⃒
⃒
⃒

ξ→∞
= ϑ|Fo=0 = 0;

Θ
dϑm

dFo
+ ϑm = ϑ|ξ=1;

ϑm|Fo=0 = 0 (7) 

Further, application of the Laplace integral transform L with respect 
to the time variable Fo (Doetsch [22]) 

ϑ̃(ξ, s) = L [ϑ(ξ,Fo) ];
ϑ̃m(s) = L [ϑm(Fo) ];
Q̃(s) = L [Q(Fo) ]
describes Eq. (7) in the space of images as 

∂2ϑ̃
∂ξ2 − sϑ̃ = 0, ξ > 0;

−
∂ϑ̃
∂ξ

⃒
⃒
⃒
⃒

ξ=0
= Q̃(s);

∂ϑ̃
∂ξ

⃒
⃒
⃒
⃒

ξ→∞
= 0;

ϑ̃m =
ϑ̃|ξ=1

Θs + 1
(8)  

where s is the Laplace transform parameter. 
The solution of Eq. (8) can be easily found as 

ϑ̃(ξ, s) = Q̃(s)
exp{ − ξ

̅̅
s

√
}

̅̅
s

√ ;

ϑ̃s(s) = ϑ̃|ξ=0 =
Q̃(s)
̅̅
s

√ ;

ϑ̃h(s) = ϑ̃|ξ=1 = Q̃(s)
exp{ −

̅̅
s

√
}

̅̅
s

√ ;

ϑ̃m(s) = Q̃(s)
exp{ −

̅̅
s

√
}

̅̅
s

√
(Θs + 1)

(9)  

whence one obtains the following relationship 

ϑ̃m(s) = Q̃(s)φ̃(s) = ϑ̃s(s)ψ̃(s) (10) 

with the functions φ̃ and ψ̃ given by 

φ̃(s) =
exp{ −

̅̅
s

√
}

̅̅
s

√
(Θs + 1)

(11) 

and 

ψ̃(s) = exp{ −
̅̅
s

√
}

Θs + 1
(12) 

Based on the known transforms (Carslaw and Jaeger [23], p. 495, 
496) 

Fig. 1. Model of the thermocouple measuring junction.  
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L
− 1
[

exp{− ξ
̅̅
s

√
}

̅̅
s

√
(s − b)

]

=
exp{bFo}

2
̅̅̅
b

√

(

exp
{
− ξ

̅̅̅
b

√ }
erfc
{

ξ
2
̅̅̅̅̅̅
Fo

√ −
̅̅̅̅̅̅̅̅
bFo

√
}

− exp
{

ξ
̅̅̅
b

√ }
erfc
{

ξ
2
̅̅̅̅̅̅
Fo

√ +
̅̅̅̅̅̅̅̅
bFo

√
})

and 

L
− 1
[

exp{− ξ
̅̅
s

√
}

s − b

]

=
exp{bFo}

2
(

exp
{
− ξ

̅̅̅
b

√ }
erfc
{

ξ
2
̅̅̅̅̅̅
Fo

√ −
̅̅̅̅̅̅̅̅
bFo

√
}

+exp
{

ξ
̅̅̅
b

√ }
erfc
{

ξ
2
̅̅̅̅̅̅
Fo

√ +
̅̅̅̅̅̅̅̅
bFo

√
})

at ξ = 1 and b = − Θ− 1, the images of Eq. (11) and Eq. (12) are 
represented as 

φ(Fo) =
exp{− Fo/Θ}

2i
̅̅̅̅
Θ

√

(

exp

{

−
i
̅̅̅̅
Θ

√

}

erfc

{
1

2
̅̅̅̅̅̅
Fo

√ − i
̅̅̅̅̅̅
Fo

√

̅̅̅̅
Θ

√

}

− exp

{
i
̅̅̅̅
Θ

√

}

erfc

{
1

2
̅̅̅̅̅̅
Fo

√ + i
̅̅̅̅̅̅
Fo

√

̅̅̅̅
Θ

√

})

(13)  

and 

ψ(Fo) =
exp{− Fo/Θ}

2Θ
(

exp

{

−
i
̅̅̅̅
Θ

√

}

erfc

{
1

2
̅̅̅̅̅̅
Fo

√ − i
̅̅̅̅̅̅
Fo

√

̅̅̅̅
Θ

√

}

+exp

{
i
̅̅̅̅
Θ

√

}

erfc

{
1

2
̅̅̅̅̅̅
Fo

√ + i
̅̅̅̅̅̅
Fo

√

̅̅̅̅
Θ

√

})

(14)  

Here i =
̅̅̅̅̅̅̅
− 1

√
is the imaginary unit. 

Taking account of Eqs. (10), (13), (14) allows expressing the 
measured temperature ϑm in the form of convolutions 

ϑm(Fo) =
∫ Fo

0
Q(Fo − ς)φ(ς)dς =

∫ Fo

0
ϑs(Fo − ς)ψ(ς)dς (15) 

If the heat flux Q is defined as a polynomial of order n with co-
efficients aj, i.e. 

Q(Fo) =
∑n

j=0
ajFoj (16) 

then Eq. (15) transforms into 

ϑm(Fo) =
∑n

j=0
j!ajφj(Fo) (17)  

where the function φj is determined by repeated integration 

φj(Fo) =
∫ Fo

0
...

∫ Fo

0⏟̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅ ⏟
j+1

φ(ς)dς...dς
⏟̅̅̅⏞⏞̅̅̅⏟

j+1 

The original of the surface temperature is easily expressed from Eq. 
(9) as 

ϑs(Fo) =
∫ Fo

0

Q(Fo − ς)
̅̅̅̅̅πς√ dς (18) 

or, if, in addition, Eq. (16) holds, (Carslaw and Jaeger [23], p.494) 

ϑs(Fo) =
1̅
̅̅
π

√
∑n

j=0

j!2j+1aj

(2j + 1)!!Foj+1/2 (19) 

Thereby, the temperatures ϑm and ϑs can be determined using 
respective Eq. (15) and Eq. (18) for an arbitrary heat flux Q or using 
respective Eq. (17) and Eq. (19) for Q given by Eq. (16). 

4. Influence of the heating duration and time constant 

The behaviour of the dimensionless temperatures ϑs, ϑh and ϑm de-
pends on the regime specified by the heat flux function Q and heating 
duration Fo*. Besides, the behaviour of ϑm is affected by the time con-
stant Θ. Fig. 2 presents the curves of ϑs, ϑh and ϑm for a linearly 
decreasing heat flux. The temperature ϑh at ξ = 1 changes with some 
delay compared to ϑs, which is caused by the propagation of heat from 
the surface ξ = 0 to the distance ξ = 1. The measured temperature ϑm 

reacts with even more delay due to the thermal inertia of the 
thermocouple. 

Introduce and analyse the deviation ε of the maximum value of the 
measured temperature ϑm from the maximum value of the surface 
temperature ϑs reached during the heating process: 

ε =

(

1 −
maxϑm

maxϑs

)

100% 

Fig. 3 shows the contour line of ε = 1% in the plane (Fo*,Θ) for the 
following heating regimes: constant heat flux Q = 1, increasing heat flux 
Q = Fo/Fo* and decreasing heat flux Q = 1 − Fo/Fo*. It is seen that the 
presented contour lines are qualitatively similar for all regimes under 
consideration. In the region of ε < 1%, ϑm, ϑh and ϑs practically coincide, 
i.e. the measured temperature ϑm follows the surface temperature ϑs 

with a negligibly small deviation. On the contrary, ϑm may substantially 
differ from ϑs in the region of ε > 1%, which is the subject of the present 
study. 

Fig. 4 shows the contour lines of ε for a constant heat flux. At Θ of 
order 10− 1 and below, ϑm is almost identical to ϑh, and ε is governed 
solely by Fo*. On the other hand, at Θ of order 10 and above, the dif-
ference between ϑm and ϑh increases with increasing Θ, and ε depends on 
both Fo* and Θ. 

Fig. 2. Dimensionless temperatures ϑs, ϑh and ϑm for Q = 1 − Fo/Fo* at Fo* =

20 and Θ = 1. 
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5. Numerical solution of the inverse problem 

The inverse problem implies finding the surface temperature ϑs 

based on the measured temperature ϑm according to Eq. (15) that rep-
resents a Volterra linear equation of the first kind with a difference 
kernel. The kernel function ψ(Fo) given by Eq. (14) is not defined at Fo =
0, has a point of maximum and tends to zero at Fo→∞, as shown in  
Fig. 5. At the initial time Fo = 0, it holds that ϑs = ϑm = 0 due to Eq. (2) 
and Eq. (6). 

A numerical solution of Eq. (15) can be obtained by applying the 
method of quadratures. For example, discretisation of time with step ∆ 
Fo and approximation of ϑs in the nodes Fo = ∆Foj due to the right 
rectangle rule transform Eq. (15) in the system of linear algebraic 

equations 

ϑm(∆Foj) =
∑j

l=1
ϑs(∆Fol)∆ψ j− l 

which can be solved using the recurrent formula (Stolz [24], Beck 
[25]) 

ϑs(∆Foj) =
1

∆ψ0

(

ϑm(∆Foj) −
∑j− 1

l=1
ϑs(∆Fol)∆ψ j− l

)

(20)  

Here j is the time step number; ∆ψ∎ is the coefficient calculated by 
integration of Eq. (14) as follows: 

∆ψp =

∫ ∆Fo(p+1)

∆Fop
ψ(ς)dς 

Specification of the time step ∆Fo should be rational. If ∆Fo is too 
small, the inverse solution is unstable, which manifests itself in the 
occurrence of undesirable oscillations. On the other hand, the approxi-
mation of ϑs is rough for too large ∆Fo, resulting in filtering of physically 
explainable frequencies. Following the natural step regularisation 
principle (Alifanov [26], p.103–117), ∆Fo is set equal to the point of 
maximum of ψ(Fo). 

The validity of the inverse algorithm of Eqs. (14), (20) is substanti-
ated by its comparisons with the direct solution of Eq. (19), as shown in  
Fig. 6. The values of Fo* and Θ are characteristic for the experimental 
study considered in Section 7. It is seen that the inverse algorithm is 
sufficiently accurate, except for the start interval of time where it un-
derestimates the direct solution. 

Application of the inverse algorithm requires specification of the 
parameters k, h and τ. The thermal diffusivity k is usually determined 
using one of the well-established experimental techniques. The distance 
h can be measured directly. As regards the time constant τ, this 
parameter depends on the shape, size and material of the measuring 
junction, configuration of the hole where the measuring junction is 
installed, properties of the intermediate layer, etc. Therefore, its deter-
mination usually involves a separate experimental study. 

6. Noise robustness of the inverse algorithm 

The signal of a thermocouple is affected by the measurement system 

Fig. 3. Contour line of ε = 1% in the plane (Fo*,Θ) for different heat-
ing regimes. 

Fig. 4. Contour lines of ε in the plane (Fo*,Θ) at Q = 1.  

Fig. 5. Kernel function ψ(Fo).  
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and environmental electromagnetic field, which results in the occur-
rence of noise – an undesired component of the signal. The presence of 
noise may substantially reduce the ability of an inverse heat conduction 
method to reconstruct the surface temperature or heat flux (Beck et al. 
[7]). 

The noise robustness of the inverse algorithm of Eqs. (14), (20) is 
investigated by adding noise to the measured temperature ϑm and ana-
lysing its impact on the inverse surface temperature ϑs. The noise obeys 
a Gaussian distribution with zero mean and standard deviation σm. The 
impact is characterised by the standard deviation σs of ϑs from the direct 
solution of Eq. (19). Fig. 7 provides a relevant illustration. 

The statistical relationship between σm and σs is obtained by multiple 
simulations, as shown in Fig. 8. There is a fairly good proportional 
correlation between the quantities. Of practical interest is the ratio σs/

σm that allows estimating σs based on an experimentally obtained value 
of σm. With this in mind, the inverse algorithm is characterised by the 
noise sensitivity Ω defined as the slope coefficient of the least squares fit: 

Ω =
∑

j

(
σ(j)

m σ(j)
s

)/∑

j

(
σ(j)

m

)2  

where σ(j)
m and σ(j)

s are the standard deviations corresponding to the jth 
simulation. 

The simulations show that Ω weakly depends on the heating regime.  

Fig. 6. Comparison of the direct and inverse solutions at Fo* = 20 and Θ = 1.  

Fig. 7. Impact of the thermocouple noise on the inverse surface temperature ϑs 

for Q = 1 − Fo/Fo* at Fo* = 20 and Θ = 1. 

Fig. 8. Typical relationship between σm and σs for Q = 1 − Fo/Fo* at Fo* = 20 
and Θ = 1. 

Fig. 9. Typical influence of the heating duration Fo* and time constant Θ on the 
noise sensitivity Ω. 

O. Nosko and Y. Tsybrii                                                                                                                                                                                                                       

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Tribology International 164 (2021) 107200

7

Fig. 9 illustrates the influence of the heating duration Fo* and time 
constant Θ. Generally, an increase in Fo* on interval 2–50 leads to an 
increase in Ω, which is especially noticeable at smaller Θ. On the other 
hand, as Θ increases on interval 0.1–1, Ω decreases. On the mentioned 
intervals of variation of Fo* and Θ, the value of Ω varies between about 
12 and 50, i.e. the inverse surface temperature ϑs is rather sensitive to 
the thermocouple noise. 

7. Experimental validation 

An efficient experimental approach to the reconstruction of tem-
perature or heat flux at the surface of a body is the parallel application of 
two (or more) identical thermocouples installed in the body at different 
distances from the surface. The identical thermocouples installed ac-
cording to the same procedure are expected to have the same time 
constant τ, as mentioned by Woodbury [18]. The present section applies 
the mentioned approach along with the inverse algorithm of Eqs. (14), 
(20) to the problem of friction of a brake material against a steel. 

7.1. Experimental set-up 

The experiments were performed on a Bruker UMT-2 tribometer 
equipped with an S23LE rotational motion drive and a DFH-20 force 
sensor. The pin sample had diameter 8 mm and height 8 mm. The disc 
sample had diameter 70 mm and thickness 6.5 mm. The average friction 
radius, i.e. the distance between the axes of the pin and disc samples, 
was 30 mm. 

The pin sample was milled out from a friction pad of a car brake. The 
material of the friction pad belonged to the class of low-metallic mate-
rials. Its thermal diffusivity k was equal to 0.27 mm2/s. The disc sample 
was manufactured of 42CrMo4 steel. 

Two 0.7 mm diameter blind holes were drilled in the pin sample 
parallel to its axis on a 6040T4D numerically controlled milling ma-
chine. The distance between the axes of the holes was 2.5 mm. Two 
identical K-type thermocouples 1 and 2 with 0.08 mm diameter bare 
wires were then installed in the holes, as shown in Fig. 10. Their 
measuring junctions were attached to the bottom faces of the holes. The 
distance between the measuring junction and the friction surface was 
0.3 mm for the thermocouple 1 and 0.7 mm for the thermocouple 2. The 
thermocouples were fixed by gluing their wires to the reverse surface of 
the pin sample. 

The temperature signals T(1)
m and T(2)

m from the respective thermo-

couples 1 and 2 were sampled by a Graphtech GL7000/GL7-HSV data 
logger at frequency 10 Hz. The signal noise was reduced by a low-pass 
filter with cutoff frequency 5 Hz. Analysis of the temperature signals 
obtained under stationary conditions in the absence of friction showed 
that the noise standard deviation was about 0.03 ◦C. 

The temperature of the pin sample was also measured by a Cedip 
Titanium 560M infrared thermographic camera with detector spectral 
range 3.6–5.1 µm, thermal sensitivity 20 mK and resolution 640 × 512 
pixels. The emissivity parameter of the camera was set equal to 0.97. The 
camera was focussed on the visible part of the pin sample, as illustrated 
in Fig. 11. The spatial resolution of the thermal image was 0.17 mm. The 
temperature rise TIR of the pin sample averaged over the central visible 
contact region of 3.4 mm × 0.17 mm was recorded at frequency 10 Hz. 
The mentioned region is indicated in the enlarged view of the pin-on- 
disc contact by yellow rectangle. 

The sliding duration in each experiment was t*= 5 s. This value 
corresponded to a short-time heat conduction process in the pin sample 
(with thermal diffusivity k=0.27 mm2/s) at which the temperature / 
heat flux at the reverse surface x = 8 mm was more than 105 times 
smaller than the temperature / heat flux at the friction surface x = 0 
(Carslaw and Jaeger [23], p.75). Thereby, the pin sample could be 
assumed to be infinitely long, and the boundary condition of Eq. (4) was 
valid. 

The nominal pressure at the sliding contact was 1 MPa. The sliding 
velocity at the average friction radius varied between 0 and 4 m/s. The 
chosen values of the nominal contact pressure and maximum sliding 
velocity provided a narrow range of temperature in the pin sample (of 
about 20–70 ◦C), which allowed neglecting the influence of temperature 
on k. 

Fig. 12 presents the time dependency of the specific power qΣ of heat 
generation at the sliding contact determined as the product of the 
measured friction force and sliding velocity divided by the nominal 
contact area of the pin sample. The regime ‘velocity step’ implied an 
increase in qΣ for about 0.5 s and maintaining its magnitude at a desired 
level. Note that there were insignificant wave-like variations of qΣ due to 
the dynamics of the tribometer. The regime ‘acceleration’ represented a 
close to linear increase in qΣ. The regime ‘deceleration’ implied an in-
crease in qΣ for about 1 s and subsequent close to linear decrease in its 
magnitude. 

The pin and disc samples were initially rubbed to provide a uniform 
distribution of the contact pressure. Then the experiments were done 3 
times in each sliding regime. Before each experiment, the pin and disc 

Fig. 10. Schematic of the pin sample in sliding contact with the disc sample.  Fig. 11. Thermal image obtained by infrared thermography.  
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samples cooled down to the room temperature (about 20 ◦C) and, 
accordingly, T(1)

m , T(2)
m and TIR were equal to zero. 

7.2. Estimation of the time constant 

The time constant τ was estimated by bringing the friction surface of 
the pin sample in contact with water at relative temperature Ts = 39 ◦C 
and analysing the response T(1)

m of the thermocouple 1. The corre-
sponding analytical expression of the measured temperature Tm was 
obtained by Eq. (15). The value τ* = 0.22 s of the time constant was 
found which provided the minimum least squares deviation of Tm from 
T(1)

m . Fig. 13 shows the relevant temperatures. For the sake of 

comparison, the curve of Tm is also shown for a thermocouple with 
instantaneous response (τ = 0). 

7.3. Estimation of the noise sensitivity 

The measuring junctions of the thermocouples 1 and 2 were located 
in the pin sample at different distances from the friction surface. 
Therefore, the respective values of the dimensionless sliding duration 
Fo* and time constant Θ were different. Based on them, the noise 
sensitivity Ω of the inverse algorithm was estimated for each thermo-
couple, as presented in Table 1. As mentioned in Section 7.1, the stan-
dard deviation of the thermocouple noise was about 0.03 ◦C. Thereby, 
the standard deviation of the inverse surface temperature from the 
noise-free solution was expected to be of order for the thermocouple 1 
and for the thermocouple 2. 

7.4. Results 

The experiment repetitions allow evaluating the repeatability of the 
thermocouple measurements. Fig. 14 illustrates the temperatures T(1)

m 

and T(2)
m measured in 3 consecutive experiments. It is seen that the 

temperature curves agree well between each other for all sliding 
regimes. 

Fig. 15 shows temperature results from the experiments conducted 
under the three sliding regimes. Thin solid lines indicate the thermo-
couple temperatures T(1)

m and T(2)
m . Thick solid line indicates the tem-

perature rise TIR measured by the infrared camera. The temperatures 
T(1)

s and T(2)
s of the sliding surface reconstructed by the inverse algorithm 

of Eqs. (14), (20) are indicated by the respective symbols • and▪. 
In the further analysis, the degree of mismatch between two tem-

perature samples X and Y of size n is characterised by the mean relative 
absolute difference (MRAD) defined as 

MRAD(X,Y) =
1
n
∑n

j=1

⃒
⃒Xj − Yj

⃒
⃒

Xj 

Fig. 15a presents the results obtained for the regime of velocity step. 
The curves of T(1)

m , T(2)
m and TIR exhibit a qualitatively similar behaviour. 

MRAD between T(1)
s and T(2)

s makes up 6.2%. The values of T(1)
s are close 

to the curve of TIR. MRAD between TIR and T(1)
s is 4.7%. It is remarkable 

that T(1)
s reproduces the wave-like variations of the specific power qΣ 

shown in Fig. 12. 
Further, Fig. 15b corresponds to the regime of acceleration. The 

curves of T(1)
m , T(2)

m and TIR represent almost linear dependencies. T(1)
s and 

T(2)
s practically coincide, with MRAD of 5.2%. The values of T(1)

s and T(2)
s 

lie close to the curve of TIR. MRAD between TIR and T(1)
s is 6.1%. 

Finally, Fig. 15c shows the results obtained for the regime of decel-
eration. The values of T(1)

s and T(2)
s are close between each other, with 

MRAD of 6.3%. They describe well the behaviour of TIR including the 
location and magnitude of its peak. MRAD between TIR and T(1)

s is 7.1%. 
On the end interval, T(1)

s and T(2)
s are slightly lower than T(1)

m and T(2)
m . 

This may be caused by that the specific power qΣ becomes small (see 
Fig. 12) and the contact heat transfer from the pin sample to the disc 
sample starts to predominate over the frictional heat generation. The 
temperature rise TIR is even more lower, which is most probably 
attributed to the heat convection at the lateral surface of the pin sample. 

Fig. 12. Specific power qΣ of heat generation at the sliding contact.  

Fig. 13. Response T(1)
m of the thermocouple 1 to a rapid rise of the surface 

temperature Ts. 

Table 1 
Dimensionless sliding duration Fo*, time constant Θ and noise sensitivity Ω.  

Thermocouple Sliding duration 
Fo* = kt*/h2  

Time constant 
Θ = kτ/h2  

Noise sensitivity Ω 
due to Fig. 9   

1  15  0.66 ~13  
2  2.8  0.12 ~25  
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The quantitative findings summarised in Table 2 allow concluding 
that T(1)

s and T(2)
s exhibit a good agreement between each other. MRAD 

between them is 5–6% for all sliding regimes. Such a small difference 
suggests that the experimental estimate of the time constant is suffi-
ciently accurate. The inverse surface temperature T(1)

s enables predicting 
the contact temperature measured by infrared thermography with 
MRAD of 5–7%. 

Fig. 14. Repeatability of the thermocouple temperatures T(1)
m and T(2)

m : (a) ve-
locity step; (b) acceleration; (c) deceleration. 

Fig. 15. Comparison of the thermocouple temperatures T(1)
m and T(2)

m , infrared 
camera temperature rise TIR, inverse surface temperatures T(1)

s and T(2)
s : (a) 

velocity step; (b) acceleration; (c) deceleration. 

Table 2 
Degree of mismatch between the temperatures T(1)

s , T(2)
s , TIR.  

Sliding regime MRAD between T(1)
s and T(2)

s , %  MRAD between TIR and T(1)
s , %  

Velocity step 6.2 4.7 
Acceleration 5.2 6.1 
Deceleration 6.3 7.1  
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8. Conclusions 

An inverse heat conduction problem was formulated to determine 
temperature at a sliding surface based on measurements by thermo-
couples taking account of their thermal inertia. The thermal behaviour 
of the thermocouples was simulated by a first-order model that in-
corporates a time constant parameter. The direct heat conduction 
problem was solved analytically using the Laplace integral transform 
approach, resulting in finding the kernel function given by Eq. (14). 
Parametric analysis of the obtained direct solution revealed the region of 
the heating duration and time constant in which the influence of the 
thermocouple thermal inertia is significant, as shown in Fig. 4. The in-
verse algorithm of Eqs. (14), (20) was developed based on the method of 
quadratures and natural step regularisation principle. The simulations 
showed that the noise sensitivity of the inverse algorithm is above 12. 
The inverse algorithm was applied to the problem of friction of a brake 
material against a steel. The experimental data were obtained on a pin- 
on-disc tribometer for three short-time regimes of sliding: velocity step, 
acceleration and deceleration. Temperature in the pin sample was 
measured by two identical miniature thermocouples installed at 
different small distances from the friction surface. The simulation and 
experimental results presented in Fig. 15 led to the following findings. 
The two inverse surface temperatures agree well for all sliding regimes. 
The difference between them makes up 5–6%. The sliding surface tem-
perature predicted by the inverse algorithm deviates from that measured 
by infrared thermography by 5–7%. 
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