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Abstract. We study various weaker forms of inverse shadowing property for discrete dy-
namical systems on a smooth compact manifold. First, we introduce the so-called Ergodic
Inverse Shadowing property (Birhhoff averages of continuous functions along the exact
trajectory and the approximating one are close). We demonstrate that this property im-
plies continuity of the set of invariant measures in Hausdorff metrics. We show that the
class of systems with Ergodic Inverse Shadowing is quite broad, it includes all diffeomor-
phisms with hyperbolic nonwandering sets. Secondly, we study the so-called Individual
Inverse Shadowing (any exact trajectory can be traced by approximate ones but this shad-
owing is not uniform with respect to selection of the initial point of the trajectory). We
demonstrate that this property is closely related to Structural Stability and Ω-stability of
diffeomorphisms.
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1. Introduction

The theory of shadowing of approximate trajectories (pseudotrajectories)
of dynamical systems is now a well-developed field of the global theory of
dynamical systems. Let us refer to the monographs [1–3] concerning the
basics of the modern shadowing theory.

In parallel to the study of various (direct) shadowing properties, the so-
called inverse shadowing properties were introduced (see [4,5]) and studied
(see, for example, [6,7]).

Recently, several authors studied the sets of shadowable points of dynam-
ical systems in the context of their metric properties (see [8,9]).

Classical shadowing/inverse shadowing properties are closely related to
Structural Stability and there are many interesting examples of systems with-
out shadowing or inverse shadowing. Here we introduce weaker forms of
inverse shadowing:

• we study inverse shadowing ”almost always” – the so-called Ergodic
Inverse Shadowing property; this idea was inspired by the approach of
the paper [10] where the so-called Ergodic Shadowing was introduced;

• we introduce a ”non-uniform” version inverse shadowing, the so-called
Individual Inverse Shadowing.
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We study several properties of measures related to introduced forms of
shadowing.

The structure of the paper is as follows. We give necessary definitions
and formulate our main results in Sec. 2. Section 3 is devoted to Ergodic
Inverse Shadowing property (EIS). We describe the class of systems with
EIS. Particularly, we demonstrate that this class is quite broad, it contains all
systems with hyperbolic nonwandering sets. On the other hand, this property
implies continuous dependence of the set of invariant measures with respect
to small perturbations of the system (for this purpose, we spread the concept
of invariant measures to non-autonomous discrete systems i.e. methods). In
Sec. 4, we study metric properties of dynamical systems related to the so-
called individual inverse shadowing property. We demonstrate that the C1

interior of the introduced class of maps coincides with structurally stable
diffeomorphisms. Also, we study a broader class of maps where all invariant
measures are compatible with inverse shadowing (Definition 4.1). This a
weaker form of shadowing ”almost everywhere”. The C1 – interior of the
latter set of systems coincides with the set of Ω – stable diffeomorphisms.

2. Definitions and main results

Let (K, dist ) be a compact metric space.
In this paper, we work with semi-dynamical systems (SDS) generated by

surjective continuous mappings f : K → K and with dynamical systems
(DS) generated by homeomorphisms f : K → K.

Let C(K,K) be the space of continuous mappings g : K → K with the
metric

dist C0(g, h) = max
x∈K

dist (g(x), h(x)).

By definition, a method is a sequence

g = {gk ∈ C(K,K)},

where k ∈ Z+ in the case of SDS and k ∈ Z in the case of DS.
A sequence {yk} is called a trajectory of a method g = {gk} if

yk+1 = gk(yk),

where k ∈ Z+ in the case of SDS and k ∈ Z in the case of DS.
Fix a d > 0. We say that a sequence g = {gk} is a d-method for a mapping

f : K → K if
dist C0(gk, f) ≤ d,

where k ∈ Z+ in the case of SDS and k ∈ Z in the case of DS.
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There are several different definitions of the inverse shadowing property.
We will work with the definition used in [6] (there the methods which we use
in this paper were called methods of the class Θs).

Let us give this definition in the case of a DS f : K → K.
We say that a homeomorphism f has the inverse shadowing property if

for any ε > 0 there exists a d = d(ε) > 0 such that for any trajectory
{xk = fk(x) : k ∈ Z} of f and for any d-method g = {gk} for f there exists
a trajectory {yk} of g such that

dist (xk, yk) ≤ ε, k ∈ Z. (2.1)

We denote by IS the set of homeomorphisms f : K → K having the
inverse shadowing property.

Our main goal is to study several modifications of the inverse shadowing
property and relate them to properties of measures on the space K.

The first of these modifications is related to the so-called ergodic approach
to shadowing. Let us mention the paper [10] in which the authors introduced
and studied the notionof ergodic (direct) shadowing.

We define a new property – ergodic inverse shadowing property. We define
it for SDS generated by surjective continuous mappings f : K → K.

Denote by Lip1 the set of Lipschitz continuous functions ϕ : K → R

whose Lipschitz constant does not exceed 1.

We say that a mapping f has the ergodic inverse shadowing property
(EIS) if for any ε > 0 there exists a d = d(ε) > 0 such that for any trajectory
{xk = fk(x) : k ∈ Z+} of f and for any d-method g for f there exists a
trajectory {yk : k ∈ Z+} of g such that

lim sup
n→∞

1

n

n∑

k=1

(ϕ(xk)− ϕ(yk)) ≤ ε (2.2)

for any function ϕ ∈ Lip1.

We denote by EIS the set of mappings f ∈ C(K,K) having the ergodic
inverse shadowing property.

In Sec. 3, we introduce the set of invariant measures for a method
g = {gk}. We introduce the notion of weak continuity of the set of Borel
probability invariant measures of a mapping f ∈ C(K,K) and show that if
f ∈ EIS, then its set of probability invariant measures is weakly continuous
(Theorem 3.1).
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In addition, we study some classical properties of topological dynamics
for mappings f ∈ EIS. For example, we show that if f ∈ EIS, then for any
ε > 0 there exists a d > 0 such that if g ∈ C(K,K) and dist C0(f, g) < d,
then the ε-neighbourhood of any minimal point of f contains a Poisson stable
point of g (Proposition 3.4).

We also note that if the nonwandering set of a diffeomorphism f of a
closed smooth manifold is hyperbolic, then f ∈ EIS (Proposition 3.5).

One of the principal differences between the (direct) shadowing property
and inverse shadowing property is as follows: It is senseless to study the
shadowing property selecting a single pseudotrajectory while, selecting an
exact trajectory of a system, it is natural to study the inverse shadowing
property for this selected trajectory.

Our second approach in this paper is based on the study of dynamical
systems whose trajectories have the individual inverse shadowing property.

The main definition is as follows. Let f be a homeomorphism of K and
let Y ⊂ K.

We say that f has the individual inverse shadowing property on the set Y
(and write f ∈ IIS(Y)) if for any x ∈ Y and ε > 0 there exists a d > 0 such
that for any d-method g for which there exists a a trajectory {yk : k ∈ Z} of
g such that inequalities (2.1) hold.

Note that in this case, d depends not only on ε but also on the point x.
If Y = K, we say that f has the individual inverse shadowing property

(IIS) (and write f ∈ IIS).
In Sec. 4, we show that that the C1-interior of the set of diffeomor-

phisms of a closed smooth manifold having the IIS coincides with the set of
structurally stable diffeomorphisms (Theorem 4.1). This result generalises
the main statement of the paper [11] concerning diffeomorphisms having the
inverse shadowing property.

In the same Sec. 4, we study relations between individual inverse shad-
owing and measures on the space K.

Let M(K) be the set of all nonatomic probability Borel measures on the
space K.

Introduce the following notation: for ε, d > 0 and a homeomorphism f of
K, let Φ(ε, d, f) be the set of all points x ∈ K such that for any d-method g
for f there exists a trajectory {yk} of g that satisfies inequalities (2.1).

We say that a measure µ ∈ M(X) is compatible with inverse shadowing
for f if for any ε > 0 there exists a d > 0 such that if µ(A) > 0, then

A ∩ Φ(ε, d, f) '= ∅.

We prove the following two statements:
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• If a strictly positive measure µ ∈ M(K) is compatible with inverse
shadowing for f , then f ∈ IS (Corollary 4.1);

• the C1-interior of the set of diffeomorphisms f of a closed smooth mani-
fold for which there exists a strictly positive measure compatible with inverse
shadowing for f coincides with the set of structurally stable diffeomorphisms
(Corollary 4.2).

Finally, for a homeomorphism f of the space K, we define the set

Ψ(f) = {x ∈ K : f ∈ IIS({x})}.

Thus, f has the individual inverse shadowing property on a set Y ⊂ K if
and only if Y ⊂ Ψ(f).

We say that a measure µ ∈ M(K) is compatible with individual inverse
shadowing for f if for any set A ⊂ K with µ(A) > 0,

A ∩Ψ(f) '= ∅.

We show that the C1-interior of the set of diffeomorphisms f of a closed
smooth manifold M for which every f -invariant measure µ ∈ M(M) is com-
patible with individual inverse shadowing coincides with the set of Ω-stable
diffeomorphisms (Theorem 4.2).

3. Ergodic inverse shadowing and invariant measures

Let M be the set of all Borel probability measures on K with the ∗-
weak convergence topology. Introduce the so-called Kantorovich–Wasserstein
metric ρ on M as follows:

W1(µ1, µ2) = sup
ϕ∈Lip1

∣∣∣∣

∫

K

ϕ dµ1 −

∫

K

ϕ dµ2

∣∣∣∣

(recall that Lip1 is the set of Lipschitz continuous functions ϕ : K → R whose
Lipschitz constant does not exceed 1).The convergence in the Kantorovich–
Wasserstein metric is equivalent to the ∗-weak convergence [12].

Let C(K,R) be the space of continuous functions on K with the metric

dist C0(f, g) = max
x∈K

|f(x)− g(x)|.

Given a continuous mapping f : K → K, we define the so-called push-
forward map f# : M → M as follows: f#(µ) = ν if

∫

K

ϕ ◦ f dµ =

∫

K

ϕ dν
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for any ϕ ∈ C(K,R). The operator f# is linear continuous, and f#δ(x) =
δ(f(x)) for any x ∈ K, where δ(x) is the Dirac measure taken at the point
x. Recall that a measure µ is invariant with respect to f if and only if
f#(µ) = µ.

For ε > 0 and A ⊂ M, we denote by Uε(A) the ε-neighbourhood of A in
the metric ρ.

First of all, we introduce the set of invariant measures for a method.
Let g = {gk : k ∈ Z+} be a method; denote gk0 = gk−1 ◦ . . . ◦ g0.
For a point x ∈ K, we define the set

M0(g, x) =
∞⋂

n=1

{
1

N

N−1∑

k=0

δ(gk0(x)) : N ≥ n

}

.

In other words, this is the set of limit points for the sequence
{

1

N

N−1∑

k=0

δ(gk0(x)) : N ∈ N

}

.

Note that that all the sets M0(g, x) are nonempty as intersections of nested
nonempty compact sets.

Let
M0(g) :=

⋃

x∈K

M0(g, x) and M(g) := convM0(g).

We call any measure of the set M(g) invariant with respect to the method
g. We start with a folklore statement which is a corollary of the Birkhoff
ergodic theorem.

Proposition 3.1. Let f be a continuous mapping of a compact metric
space K into itself and let µ be an ergodic f -invariant probability measure.
Then for µ-almost all points x of K, the sequence

1

n

n−1∑

k=0

δ(fk(x))

converges to µ ∗-weakly.

Proof. Consider a countable set {ϕj : j ∈ N} of continuous functions
that is dense in C(K,R). By Birkhoff’s ergodic theorem, there exists a set
X ⊂ K of full measure such that for any x ∈ X and any j ∈ N,

1

n

n−1∑

k=0

ϕj(f
k(x)) →

∫

K

ϕj dµ.
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We demonstrate that a similar statement is true for any function

ϕ ∈ C(K,R).

Fix a point x ∈ X , a continuous function ϕ, an arbitrary ε > 0, and take an
index j ∈ N such that dist C0(ϕj,ϕ) < ε. Then

∣∣∣∣

∫

M

ϕ dµ−

∫

M

ϕj dµ

∣∣∣∣ < ε.

Also, there exists a number N ∈ N such that
∣∣∣∣∣
1

n

n−1∑

k=0

ϕ(fk(x))−
1

n

n−1∑

k=0

ϕj(f
k(x))

∣∣∣∣∣ ≤ ε

for any n ≥ N .
These relations imply that

∫

K

ϕ dµ− 2ε ≤ lim inf
1

n

n−1∑
k=0

ϕ(fk(x)) ≤

lim sup
1

n

n−1∑
k=0

ϕ(fk(x)) ≤
∫

K

ϕ dµ+ 2ε,

from which our statement follows. !

Proposition 3.2. If all the mappings gk of the method g are the same,
i.e. they coincide with a given map g0, then the set M(g) is the set of g0-
invariant measures in the classical sense.

Proof. First of all, we show that any measure in the set M(g) is in-
variant. Indeed, following the lines of the Krylov–Bogolyubov theorem ([13,
Theorem 4.1.1]) we check that any measure in any set M0(g, x), x ∈ K, is
g0-invariant. In addition, the set of invariant measures is always closed in
the ∗-weak topology and convex. Therefore, the set M(g) is a subset of the
set of all g0-invariant measures.

Conversely, if µ is an ergodic invariant measure of g0, then, by the Birkhoff
ergodic theorem, for µ-almost all points x, the set M0(g, x) is the singleton
{µ}. Thus, any ergodic g0-invariant measure is an element of M(g). On the
other hand, any invariant measure is an element of the convex hull of the set
of all ergodic measures, and, therefore, it is an element of M(g). !

We show that the set M(g) is upper semicontinuous in the Hausdorff
metric in the following sense.

For ε > 0 and A ⊂ M, we denote by Uε(A) the ε-neighbourhood of A in
the Kantorovich-Wasserstein metric ρ.
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Lemma 3.1. Consider a sequence of methods g(k) = {g(k)m : k,m ∈ Z+}
for which there exists a mapping f such that g(k)m ⇒ f as k → ∞ uniformly
with respect to m ∈ Z+. Then for any α > 0 there exists an N ∈ Z+ such
that

M(g(k)) ⊂ Uα(M(f))

for any k ≥ N .

Proof. Take a sequence of methods g(k) satisfying the conditions of the
lemma and consider a sequence µk of g(k)-invariant measures ∗-weakly con-
verging to a measure µ∗. Then the sequence of push-forward measures f#µk

converges to the measure f#µ∗.
Let us demonstrate that the measures µ∗ and f#µ∗ coincide, and, there-

fore, µ∗ ∈ M(f). Fix an ε > 0. Let a number k be so large that

W1(µk, µ
∗) < ε/8, W1(f

#µk, f
#µ∗) < ε/8,

and dist C0(f, g(k)) < ε/8 for all m ∈ Z+.
Since µk is an element of the closure of the convex hull of M0(g(k)), we

can select a finite convex combination

µ̃k :=
n∑

j=1

αjµk,j,

where µk,j ∈ M0(g(k)), all αj > 0,

n∑

j=1

αj = 1, W1(µk, µ̃k) < ε/8, and W1(f
#µk, f

#µ̃k) < ε/8.

In general, the number n depends on the measure µk and on ε.
Thus, it suffices to prove that

W1(µk,j, f
#µk,j) < ε/2 for any j = 1, . . . , n. (3.1)

Indeed, if inequality (3.1) is true, thenW1(µ∗, f#µ∗) ≤ ε, which completes
the proof since ε is arbitrarily small.

Let us check inequality (3.1). Take an index j ∈ {1, . . . , n} and the
corresponding measure µk,j. By definition, there exists a point x ∈ K and a
sequence ml → ∞ such that

µk,j = lim
l→∞

µk,j,l, where µk,j,l =
1

ml

ml−1∑

i=0

δ(gi0(x)).
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Take a number L ∈ N so large that

W1(µk,j, µk,j,L) < ε/8, W1(f
#µk,j, f

#µk,j,L) < ε/8,

and, also, diamK/mL < ε/8. Then

W1(µk,j,L, f
#µk,j,L) =

1

mL

W1

(
mL−1∑

i=0

δ([gk]i0(x)),
mL−1∑

i=0

δ(f ◦ [gk]i0(x))

)

≤

≤
1

mL

W1(δ(x), δ(g
(k)
mL

◦ [g(k)]mL−1
0 (x)))+

+
1

mL

mL−1∑

i=1

W1(δ([g
(k)]i0(x)), δ(f ◦ [g(k)]i−1

0 (x))) <
ε

4
.

This proves (3.1).
Now, let the statement of the lemma be wrong. Then we may assume

that there exists an α > 0 such that µk /∈ Uα(M(f)) for any k ∈ N (here
we pass to a subsequence if necessary). We may assume, without loss of
generality, that the sequence µk ∗-weakly converges to a measure µ∗ (which
is evidently outside Uα(M(f))). This contradicts to what have been proved
above. !

The ergodic inverse shadowing yields the converse inclusion – the set of
invariant measures of a mapping having the EIS property belongs to a small
neighbourhood of the set of invariant measures for close methods. Namely,
the following result is true.

Let us define the corresponding property.
We say that the set of Borel probability invariant measures of a continuous

surjective mapping f is weakly continuous if for any ε > 0 there exists ad > 0
such that if g = {gk} is a d-method for f , then M(f) ⊂ Uε(M(g)).

Let CM be the class of all mappings with weakly continuous sets of Borel
probability invariant measures.

Theorem 3.1. If f ∈ EIS, then f ∈ CM.

Proof. For any ε > 0 there is a d > 0 such that for any point x ∈ K, any
d-method g for f and any function ϕ ∈ Lip1 there exists a point y ∈ K such
that

lim sup
1

n

n−1∑

k=0

(ϕ(gk0(y))− ϕ(fk(x)) < ε. (3.2)

Fix an ε > 0 and a corresponding d > 0 and consider a d-method g.
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Take any ergodic f -invariant measure µ. Then, for µ-almost all points x,
we have the equality

µ = lim
1

n

n−1∑

j=0

δ(f j(x)).

Fix such a point x and select a point y that corresponds to x in the sense of
(3.2). Take a subsequence {nk} such that the sequence

1

nk

nk−1∑

j=0

δ(gj0(y))

converges ∗-weakly to a measure ν. Then, by (3.2), the Kantorovich–Wasser-
stein distance between µ and ν does not exceed ε. Since the set of all finite
convex combinations of ergodic invariant measures is dense in M(f), this
completes the proof. !

Let us recall two classical definitions of topological dynamics.

We say that a point x ∈ K is Poisson stable for a mapping f if there is
a sequence nk → ∞ such that fnk(x) → x.

We say that a point x ∈ K is minimal for a mapping f if the set

O+
f (x) := {fk(x) : k ∈ Z+}

is minimal, i.e., O+
f (y) = O+

f (x) for any y ∈ O+
f (x).

Proposition 3.3. Let x be a minimal point of a continuous mapping
f of a compact metric space. Then there exists an f -invariant probability
measure µ such that x ∈ supp µ.

Proof. Take an invariant probability measure µ for the mapping f |
O+

f (x)
.

The support of µ is a closed invariant subset of O+
f (x); thus, it must coincide

with O+
f (x). !

Since any minimal point of any continuous mapping always belongs to
the support of an invariant measure (actually defined by that point) and, on
the other hand, any point of the support of any invariant measure is Poisson
stable, we can formulate the following statement.

Proposition 3.4. Assume that f ∈ EIS. Then for any ε > 0 there
exists a d > 0 such that if dist C0(f, g) < d, then the ε-neighbourhood of any
minimal point of f contains a Poisson stable point of g.

Finally, we indicate a class of diffeomorphisms of a closed smooth manifold
having the EIS.
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Proposition 3.5. If the nonwandering set of a diffeomorphism f is
hyperbolic, then f ∈ EIS.

Proof. Let the nonwandering set Ω(f) of a diffeomorphism f be hyper-
bolic. It is well known (see [14], for example) that there exists a neighbour-
hood U of Ω(f) such that any segment of a trajectory of f belonging to U is
hyperbolic with the same hyperbolicity constants C ≥ 1 and λ ∈ (0, 1).

Fix an arbitrary point x ∈ M . Since the trajectory of x tends to Ω(f) as
time grows, there exists a number N such that fk(x) ∈ U for k ≥ N . The
set

F := {fk(x) : k ≥ N}

belongs to U ; its hyperbolicity implies that on F there exists a (C,λ)-
structure and for any ε > 0 there exists a d = d(ε, C,λ) with the follow-
ing property: If g = {gk} is a d-method for f , then there exists a sequence
{yk : k ≥ N} such that

yk+1 = gk(yk) and dist (yk, xk) ≤ ε/2, k ≥ N

(see [7]).
To complete the proof of our proposition, take y0 ∈ (gN−1

0 )−1(yN) and
note that inequality (2.2) is obviously valid for any function ϕ : M → R

whose Lipschitz constant does not exceed 1. !

Remark. It follows from the last result that if M is a closed smooth
manifold, then the set EIS(M) contains the set of Ω-stable diffeomorphisms
(and hence, the C1-interior of the set EIS(M) has this property). Thus, the
set EIS(M) is strictly larger than the set IS(M) (whose C1-interior coincides
with the set of structurally stable diffeomorphisms, see [11]).

4. Individual inverse shadowing

In this section, we study sets of diffeomorphisms of a closed smooth man-
ifold M having the individual inverse shadowing property on various subsets
of the phase space.

Let us first formulate two basic results from the theory of structural
stability.

For a set A of diffeomorphisms, denote by Int1(A) its interior with respect
to the C1-topology.

Denote by H(M) the set of diffeomorphisms of M for which any periodic
point is hyperbolic; let F(M) = Int1(H(M)).

Denote by KS(M) the subset of H(M) consisting of diffeomorphisms for
which stable and unstable manifolds of periodic points are transverse (dif-
feomorphisms f ∈ KS(M) are called Kupka–Smale diffeomorphisms).
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Proposition 4.1.

(1) The set F(M) coincides with the set ΩS(M) of Ω-stable diffeomor-
phisms of M .

(2) The set Int1(KS(M)) coincides with the set StS(M) of structurally
stable diffeomorphisms of M .

The first statement of Proposition 4.1 is proved in [15], the second one is
proved in [16] (see also the book [3]).

In what follows, we do not mention the manifold M and write F , KS,
ΩS, and StS instead of F(M), KS(M), ΩS(M), and StS(M), respectively.

Our first goal is to prove the following statement.

Theorem 4.1. The set Int1(IIS) coincides with the set of structurally
stable diffeomorphisms.

We divide the proof into several steps.

Lemma 4.1. Assume that a diffeomorphism f belongs to Int1(IIS). Then
any periodic point of f is hyperbolic.

Proof. To get a contradiction, assume that a diffeomorphism f ∈ Int1(IIS)
has a nonhyperbolic periodic point p. Obviously, f ∈ Int1(IIS) if and only if
fn ∈ Int1(IIS) for some (every) natural n; hence, without loss of generality,
we may assume that p is a fixed point of f .

We apply a standard construction finding a diffeomorphism h that is C1-
close enough to f (so that h ∈ IIS) and linear in a neighbourhood of p;
such constructions are described in detail in the book [3], and we apply them
several times in this paper.

To simplify presentation, we only consider the case where the derivative
Df(p) has an eigenvalue 1; the remaining possible cases are left to the reader
(details can also be found in the book [3]).

Then we can find a diffeomorphism h ∈ IIS and a neighbourhood U of p
with local coordinates (u, v) such that

– p is the origin in U ;
– the coordinate u is one-dimensional and the coordinate v is (m − 1)-

dimensional, where m is the dimension of M ;

R := {|u|, |v| ≤ a} ⊂ U, (4.1)

where a > 0;
– in U , h has the form

h(u, v) = (u,Av) (4.2)
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with some matrix A.
Take an arbitrary ε ∈ (0, a) and an arbitrary d > 0. Clearly, there exists

a δ > 0 and a mapping g ∈ C(M,M) such that

g(u, v) = (u+ δ, Av) in U (4.3)

and
dist (g(x), h(x)) ≤ d, x ∈ M. (4.4)

Let gk = f for k < 0 and gk = g for k ≥ 0; then ξ = {gk : k ∈ Z} is a
d-method for h.

Thus, if (u, v) ∈ U and k ≥ 0, then gk(u, v) = (u+ δ, Av).
Clearly, for any point x0 ∈ M there exists an n ≥ 0 such that

gn ◦ · · · ◦ g0(x0) /∈ R,

i.e., for any trajectory {xk} of ξ there exists an n ≥ 0 such that

dist (xn+1, p) > ε,

which means, due to the arbitrariness of d, that h /∈ IIS.
The obtained contradiction completes the proof. !

Thus, we have shown that Int1(IIS) ⊂ H.
Since the set Int1(IIS) is obviously C1-open, it follows from item (1) of

Proposition 4.1 that any diffeomorphism in Int1(IIS) is Ω-stable.

Remark. In fact, we have used the assumption f ∈ Int1(IIS(Per(f));
thus, the C1-interior of the set of diffeomorphisms having the individual
inverse shadowing property on the set of their periodic points consists of
Ω-stable diffeomorphisms.

Lemma 4.2. Let p and q be periodic points of a diffeomorphism f be-
longing to Int1(IIS). Then the unstable manifold W u(p) of p and the stable
manifold W s(q) of q are transverse.

Proof. To get a contradiction, assume that there is a point r at which
W u(p) and W s(q) are nontransverse. By the previous lemma, f is Ω-stable;
it follows that p and q belong to different basic sets of f .

As in the previous lemma, we assume for simplicity that p and q are fixed
points.

It is shown in [17] that we can find a diffeomorphism h ∈ IIS and select a
point r of nontransverse intersection of W u(p, h) andW s(q, h) (here W u(p, h)
and W s(q, h) are the unstable manifold of p and the stable manifold of q for
the diffeomorphism h) such that the following statements hold:
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– there exists a neighbourhood V of q in which q is the origin and such
that h is linear in V ;

– the points hk(r), k ≥ 0, belong to V ;
– if dimW u(p, h) = u, then there exists an u-dimensional linear subspace

L (with respect to local coordinates in V ) and an u-dimensional disk C with
the following properties:

(c1) C is open in the inner topology of the affine space r + L, and its
closure belongs to the intersection of r + L with V ;

(c2) r ∈ C;
(c3) for any ε > 0 small enough, C contains an open u-dimensional disk

Cε such that if
dist (hk(x), hk(r)) ≤ ε, k ≤ 0,

for a point x ∈ C, then x ∈ Cε.
Clearly, in this case, we can identify L with TrW u(p, h), the tangent space

of W u(p, h) at the point r.
Denote by S and U the linear subspaces (in local coordinates of V ) such

that S ∩ V = W s(q, h) ∩ V and U ∩ V = W u(q, h) ∩ V .
The nontransversality of W u(p, h) and W s(q, h) at r means that L+S '=

TrM . If π is the projection in TrM to U parallel to S, then the above
condition means that

πL '= U. (4.5)

It follows from (4.5) that there exists a one-dimensional subspace Z of U
such that πL ∩ Z = {0}. Let z be a unit vector in Z.

Let us show that h /∈ IIS({r}). Assume the converse and take ε > 0
so small that the closure of the ε-neighbourhood of the set {hk(r) : k ≥ 0}
belongs to V (this is possible due to (c2)) and property (c3) is satisfied. Find
the corresponding d > 0.

Clearly, there exists a g ∈ C(M,M) such that

g(x) = h(x) + δz, x ∈ C,

where δ > 0, and
dist (g(x), h(x)) < d, x ∈ M.

Then the family ξ = {gk} with gk = h for k '= 0 and g0 = g is a d-method
for h.

It follows from (c2) that if {xk} is a trajectory of ξ for which inequali-
ties (2.1) (with f replaced by h) hold, then x0 ∈ Cε, but then π(g(x0)) /∈
πL, which obviously implies that the points xn leave V (and the closed ε-
neighbourhood of the positive h-trajectory of r) as n grows.

The obtained contradiction completes the proof. !
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It follows from Lemmas 4.1 and 4.2 that

Int1(IIS) ⊂ KS.

Hence,
Int1(IIS) ⊂ Int1(KS),

and item (2) of Proposition 4.1 implies that

Int1(IIS) ⊂ StS.

The converse inclusion has been proved in [6]. Thus, Theorem 4.1 is
proved.

Let M(K) be the set of all nonatomic probability Borel measures on a
compact metric space (K, dist ). Denote by supp(µ) the support of a measure
µ ∈ M(X).

Recall the notation and definition introduced in Sec. 2.
For ε, d > 0 and a homeomorphism f of K, let Φ(ε, d, f) be the set of all

points p ∈ K such that for any d-method ξ for f there exists a trajectory
{xk} of ξ that satisfies inequalities (2.1).

Clearly, for a set Y ⊂ K, f ∈ IS(Y ) if and only if for any ε > 0 there
exists a d > 0 such that Y ⊂ Φ(ε, d, f).

Definition 4.1. We say that a measure µ ∈ M(K) is compatible with
inverse shadowing for f if for any ε > 0 there exists a d > 0 such that if
µ(A) > 0, then

A ∩ Φ(ε, d, f) '= ∅. (4.6)

Lemma 4.3. If µ is compatible with inverse shadowing for f , then f ∈
IS(supp(µ)).

Proof. Take a point p ∈ supp(µ) and a natural number n. Fix an arbitrary
ε > 0.

Since f and f−1 are uniformly continuous, there exists a neighbourhood
Vn of p such that

dist (fk(p), fk(q)) ≤ ε/2, q ∈ Vn, −n ≤ k ≤ n. (4.7)

Since p ∈ supp(µ), µ(Vn) > 0.
Take d corresponding to ε/2 in the above definition of compatibility with

inverse shadowing and apply (4.6) to find a point

qn ∈ Vn ∩ Φ(ε/2, d, f).
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Let ξ = {gk} be a d-method for f and let {xn
k : k ∈ Z} be a trajectory of

ξ such that
dist (xn

k , f
k(qn)) ≤ ε/2, k ∈ Z. (4.8)

It follows from (4.7) and (4.8) that

dist (xn
k , f

k(p)) ≤ ε, −n ≤ k ≤ n.

Apply the diagonal process to find a sequence {xk} such that xn
k → xk as

n → ∞ for any fixed k ∈ Z.
Clearly, gk(xk) = xk+1 and

dist (xk, f
k(p)) ≤ ε, k ∈ Z,

which completes the proof. !

Corollary 4.1. If µ is compatible with inverse shadowing for f and
supp(µ) = K (i.e., the measure µ is strictly positive), then f ∈ IS.

Corollary 4.1 and Theorem 4.1 imply the following statement.
Corollary 4.2. Let I1 be the set of diffeomorphisms f of a closed smooth

manifold for which there exists a strictly positive measure compatible with
inverse shadowing for f .

Then the set Int1(I1) coincides with the set of structurally stable difeo-
morphisms.

Corollary 4.3. Let I2 be the set of diffeomorphisms f of a closed smooth
manifold for which there exists a measure µ compatible with inverse shadow-
ing for f and such that Per(f) ⊂ supp(µ).

Then the set Int1(I2) coincides with the set of Ω-stable difeomorphisms.

Indeed, by Lemma 4.3, if f ∈ Int1(I2), then f ∈ Int1(IS(Per(f)), and
then f is Ω-stable (see the remark after Lemma 4.1).

On the other hand, if f is Ω-stable, then its set of periodic points is a
dense subset of the hyperbolic set Ω(f); hence, f ∈ IS(Per(f)), and one may
take as µ any measure whose support is Ω(f).

Recall one more definition from Sec. 2.
For a homeomorphism f of a metric space K, consider the set

Ψ(f) = {p ∈ K : f ∈ IIS({p})}.

Thus, f has the individual inverse shadowing property on a set Y ⊂ K if
and only if Y ⊂ Ψ(f).
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We say that a measure µ ∈ M(K) is compatible with individual inverse
shadowing for f if for any set A ⊂ K with µ(A) > 0,

A ∩Ψ(f) '= ∅.

Denote by I3 the set of diffeomorphisms f of a smooth closed manifold M
for which every f -invariant measure µ ∈ M(M) is compatible with individual
inverse shadowing.

Theorem 4.2. The set Int1(I3) coincides with the set of Ω-stable diffeo-
morphisms.

Proof. First we prove that any diffeomorphism f ∈ Int1(I3) is Ω-stable.
As above, it is enough to show that any periodic point of f is hyperbolic.

To get a contradiction, assume (as in the proof of Lemma 4.1) that we can
find a fixed point p of f , a diffeomorphism h ∈ I3, and a neighbourhood U
of p with coordinates (u, v) such that in U , h has the form (4.2) in which the
matrix A is hyperbolic.

Take a > 0 such that inclusion (4.1) is valid and fix b, ε0 > 0 such that

b+ ε0 < a.

Since the matrix A is hyperbolic, there exists a neighbourhood R0 of p
with the following properties: R0 ⊂ R and if hk(q) = (sk, tk), then

|sk| = |s0| ≤ b and |tk| ≤ b, q ∈ R0, (4.9)

either for k ≥ 0 or for k ≤ 0.
Let us show that

R0 ∩Ψ(h) = ∅. (4.10)

Fix a point q ∈ R0, assume that q ∈ Ψ(h), fix an ε ∈ (0, ε0), and find the
corresponding d. Find a δ > 0 and a mapping g ∈ C(M,M) such that (4.3)
and (4.4) are satisfied. Then ξ = {gk}, where gk = g, k ∈ Z, is a d-method
for h. Let {xk = (uk, vk)} be an arbitrary trajectory of the method ξ.

Clearly, there exist indices k1 < 0 and k2 > 0 such that for both k = k1
and k = k2:

– either the point xk is outside U ,
– or xk ∈ U and |uk| ≥ a.
If relations (4.9) hold for k ≥ 0, then

dist (hk1(q), xk1) > ε;

otherwise,
dist (hk2(q), xk2) > ε.

17

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


The contradiction obtained proves (4.10).
Now let us construct the required invariant measure. Consider the one-

dimensional segment

C := {(u, v) : u ∈ [−a, a], v = 0}.

Let mes be the standard one-dimensional Lebesgue measure on C (so that
mes(C) = 2a). For an arbitrary measurable set A ⊂ M , set

µ(A) =
1

2a
mes(A ∩ C).

Clearly, µ ∈ M(M). Since every point of C is a fixed point of h, h−1(A∩C) =
A ∩ C for any set A; hence, the measure µ is h-invariant.

Since R0 is an open set,

µ(R0) =
1

2a
mes(R0 ∩ C) > 0,

and we get a contradiction between relation (4.10) and our assumption h ∈
I3.

Thus, we have shown that any diffeomorphism f ∈ Int1(I3) is Ω-stable.
Now let f be an Ω-stable diffeomorphism; denote by Ω(f) its nonwan-

dering set. It is well known that µ(Ω(f)) = 1 for any f -invariant measure
µ ∈ M(M).

Hence, for any set A with µ(A) > 0,

A ∩ Ω(f) '= ∅;

it remains to note that any point p ∈ A ∩ Ω(f) is a point of a hyperbolic
nonwandering trajectory of f , hence, p ∈ Ψ(f).

This completes the proof of the theorem. !
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