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Abstract.  The aim of this study is two-fold. First, we perform a series of exper-

iments to examine the interference of different noises on speech processing. For 

that purpose, we concentrate on the Lombard effect, an involuntary tendency to 

raise speech level in the presence of background noise. Then, we apply this 

knowledge to detecting speech with the Lombard effect. This is for preparing a 

dataset for training a machine learning-based system for automatic speech con-

version, mimicking a human way to make speech more intelligible in the pres-

ence of noise, i.e., to create Lombard speech. Several spectral descriptors are an-

alyzed in the context of Lombard speech and various types of noise. In conclu-

sion, pub-like and babble noises are most similar when comparing Spectral En-

tropy, Spectral RollOff, and Spectral Brightness. The larger values of these spec-

tral descriptors, the more the speech-in-noise signal is degraded. To quantify the 

effect of noise on speech, containing the Lombard effect, an average formant 

track error is calculated as an objective image quality metric. For image quality 

assessment Structural SIMilarity (SSIM) index is employed.  

Keywords: Lombard effect, noise background, Structural SIMilarity (SSIM) 

index. 

1 Introduction 

A number of approaches to robust speech processing are seen in the literature and 

practical solutions. Despite this, when we refer to the recognition of real-life speech in 

noise, and especially when noise profiling is a necessary step to process the speech 

signal correctly, the progress in this area is below expectation. This study builds on the 

idea of incorporating the Lombard effect (LE) into speech in adverse environments. 

The Lombard phenomenon, named after the French otolaryngologist Étienne Lombard, 

occurs in speech production in the presence of noise [1]. He observed that when patients 

were exposed to loud noise during a conversation, they involuntary raised their voice 

level and speech became more intelligible. So, to build a human-centric system with 

ambient intelligence to generate speech with LE for better intelligibility, first, we need 

to learn about noise interference on speech characteristics. Second, to enable the system 
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to generate Lombard speech when noise is detected and correctly labeled, the interfer-

ence sound recognition model should be trained on speech with this phenomenon pre-

sent in it. Moreover, it is evident that by applying a deep model, a large amount of data 

with the Lombard effect is needed.  

Since the discovery of LE, this phenomenon has been extensively studied by a wide 

range of specialists to find solutions to improve the performance of automatic speech 

recognition systems in noisy environments [2] or increase speech intelligibility by con-

verting the speaking style from normal to Lombard speech [3, 4]. The idea is that LE 

may be applied to speech synthesizers, allowing them to adapt to noisy conditions [5, 

6, 7]. It should be noted that text-to-speech systems adapt to the noise condition during 

the training process. In contrast, noise profiling still needs to be examined, though some 

research has already been carried out in this direction with promising results [8, 9]. 

As already mentioned, our long-term goal is to build a human-centric interface for 

ambient intelligence to generate speech with the Lombard effect, which could perform 

automatic adaptation during noise inference. This research investigates the effect of 

noise interference on Lombard speech. We need such analysis to determine whether 

speech available on the Internet is with LE or not because we want to use them for the 

deep network training. So, we investigate to what extent and how the clean speech with 

LE differs from Lombard speech in noise. For this purpose, specifically, rapidly chang-

ing areas of speech such as voiced/unvoiced transitions are examined. To indicate such 

changes in spectral energy, frequency tracks should be estimated. Both the location and 

the number of peaks are important in this context. The study deals with various additive 

noises and different SNR (Signal-to-Noise) levels.  

2 Estimation of frequency tracks 

We conduct the speech analysis that is based on the signal intensity at each time-fre-

quency point. The process of determining frequency tracks in a speech signal is shifted 

to finding them in a spectrogram, a visual representation of the distribution of signal 

acoustic energy across frequencies and over time. The darkness of the energy bands is 

used to estimate the signal intensity. The spectrogram creation process consists of the 

calculation of the discrete Fourier transform of each short-time frame of speech signal: 

 𝑋𝑙(𝑘) = ∑ 𝑥𝑙(𝑛)𝑤(𝑛)𝑁−1
𝑛=0 𝑒

−2𝜋𝑗𝑘𝑛

𝑁     (1) 

where 𝑋𝑙(𝑘) are Fourier transform coefficients (𝑘 = 0, … , 𝑁𝐹𝑇 − 1, 𝑁𝐹𝑇  is the number 

of Fourier transform coefficients), 𝑥𝑙(𝑛) – the samples of 𝑙th short-time frame of signal 

(𝑙 = 0, … , 𝐿 − 1, and 𝐿 denotes the number of short-time frames),  𝑁 – the length of the 

signal, 𝑤(𝑛) = 0,54 − 0.46con(2𝜋𝑛 𝑁 − 1)⁄  is the Hamming window function, and 𝑗 

is the imaginary unit. 

The obtained values are then collected together, and a spectrogram image is built 

up. A graphical representation of the spectrogram obtained is given in Fig. 1, where 

both the clean Lombard speech fragment and the same speech fragment corrupted by 

nonstationary street noise at 0 dB SNR are displayed. For the purpose of this analysis, 

the spectrogram representation is generated using Hamming windows of size 512. This 
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window size gives smoothed Fourier spectrum. At the same time, the frequency reso-

lution is sufficient for frequency tracking. An overlap of 256 is used to avoid losing 

part of the information due to the window operation. 

 

  

Fig. 1. The spectrogram of clean (the left side) and the noisy (the right side) speech signal. 

Various tracking methods and their modifications were proposed [10, 11]. In this 

research, we used a classical algorithm proposed by McAulay and Quartieri (McA-Q) 

[12]. The detection of frequency tracks is performed in spectrograms. First, all local 

maxima of the spectrogram are detected in each short-time frame 𝑙. These maxima are 

called peaks. The estimated peaks, i.e., the amplitudes and their frequencies, are then 

passed to the tracking algorithm, whose aim is to remove partial trajectories. According 

to the McA-Q algorithm, frame-to-frame peak matching is performed. The process of 

matching each spectrum peak in frame 𝑙 to the peaks in frame 𝑙 + 1, is presented by the 

following pseudo-code, shown in the algorithmic form. 

The result of applying the tracker to the Lombard speech signal is shown in Fig. 2. 

 

  

Fig. 2.  The estimated frequency tracks of clean (the left side of the figure) and the noisy (the 

right side) Lombard speech signal. 

As we see from the pseudo-code given above, matching each spectrum peak in frame 

𝑙 to the peaks in frame 𝑙 + 1 consists of 3 main steps. In the first step, for each frequency 

𝜔𝑛
𝑙  in frame 𝑙 a search is done for a frequency 𝜔𝑚

𝑙+1 in frame 𝑙 +  1, which is the nearest 

to this frequency and whose absolute distance is less than the threshold (i.e., Δ). In the 

second step, it is checked, if the frequency 𝜔𝑚
𝑙+1 has no better match to unmatched 

frequencies of frame 𝑙. If this condition is satisfied, then the frequencies are matched, D
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and their amplitudes are interpolated between the frames. Otherwise, the adjacent re-

maining lower frequency 𝜔𝑚−1
𝑙+1  (if such exists) is tested. In the last step, for the remain-

ing frequencies in frame 𝑙 + 1, for which no matches were made, frequencies are cre-

ated in frame 𝑙 with zero amplitude, and the match is made. 

 

Algorithm 

INPUT: 

𝜔𝑛
𝑙  – the frequency on frame 𝑙 

𝜔𝑚
𝑙+1 – the frequency on frame 𝑙 + 1 

𝑁 – the total number of peaks in frame 𝑙 
𝑀 – the total number of peaks in frame 𝑙 +  1 

𝑛 =  0, … . , 𝑁 − 1 

𝑚 =  0, … . , 𝑀 − 1 

𝑝 = 0, … . , 𝑀 − 1 

𝑝 ≠  𝑚 

for each frequency in frame 𝑙 do  

       STEP 1. if |𝜔𝑛
𝑙  −  𝜔𝑚

𝑙+1|  ≥  Δ then 

  𝜔𝑛
𝑙  is matched to itself in a frame 𝑙 + 1 

  the amplitude of 𝜔𝑛
𝑙  is set to zero 

else 

if (|𝜔𝑛
𝑙  −  𝜔𝑚

𝑙+1|  <  |𝜔𝑛
𝑙  −  𝜔𝑝

𝑙+1|  <  Δ) then 

           𝜔𝑚
𝑙+1 is declared to be a candidate to 𝜔𝑛

𝑙  

end if 

end if 

        STEP 2. if (|𝜔𝑚
𝑙+1  −  𝜔𝑛

𝑙  | <  |𝜔𝑚
𝑙+1 −  𝜔𝑝+1

𝑙 |, where 𝑝 > 𝑖) then 

     𝜔𝑛
𝑙  is matched to 𝜔𝑚

𝑙+1 

else  

             if 𝜔𝑚−1
𝑙+1  exists then  

          if |𝜔𝑛
𝑙 − 𝜔𝑚−1

𝑙+1 |  <  Δ then 

                  𝜔𝑛
𝑙  is matched to 𝜔𝑚−1

𝑙+1  

                else 

                    𝜔𝑛
𝑙  is matched to itself in a frame 𝑙 + 1 

               the amplitude of 𝜔𝑛
𝑙  is set to zero 

                       end if 

end if 

STEP 3. for the remaining frequencies in frame 𝑙 + 1 

   frequencies are created in frame 𝑙 with zero amplitude  

   the match is made 
 

 

The comments on the algorithm:  

✓ If the frequencies are matched, they are eliminated from further consideration. 
✓ Δ  denotes a matching interval [12] 

Fig. 2 shows the frequency tracks of the clean speech segment and the same speech 

segment corrupted by nonstationary street noise at 0 dB SNR. A ratio of 0 dB indicates 

the signal level is the same as the noise level; therefore, degradation of formant tracks 

of noisy speech is visible.  
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3 Image comparison technique 

To quantify the effect of noise on speech, containing the Lombard effect, an average 

formant track error is calculated as an objective image quality metric. For image quality 

assessment Structural SIMilarity (SSIM) index is calculated. The SSIM index was de-

veloped by Wang et al. [13] to evaluate the quality of two images based on the perspec-

tive of image formation, i.e., the image luminance, contrast, and structural similarity. 

The above-mentioned advantages of this method make it sensitive to changes in the 

image, which is very important in our study. It should also be noted that SSIM is widely 

used as the quality indicator of the images being compared [14, 15].  

Let 𝒙 and 𝒚 be two nonnegative image signals. The structural SSIM index is calcu-

lated by the following formula [13]: 

 𝑆(𝒙, 𝒚) = [𝑙(𝒙, 𝒚)]𝛼 ∙ [𝑐(𝒙, 𝒚)]𝛽 ∙ [𝑠(𝒙, 𝒚)]𝛾 (2) 

Where 𝛼 > 0, 𝛽 > 0 and 𝛾 > 0 are weights (in this research parametrized as 𝛼 = 𝛽 = 

𝛾 = 1),  𝑙(𝒙, 𝒚) is the luminance comparison function, 𝑐(𝒙, 𝒚) is the contrast comparison 

function, 𝑠(𝒙, 𝒚) is the structure comparison function. The functions are given by: 

 𝑙(𝒙, 𝒚) =  
2𝜇𝑥𝜇𝑦+𝐶1

𝜇𝑥
2+𝜇𝑦

2 +𝐶1
 (3) 

 𝑐(𝒙, 𝒚) =
2𝜎𝑥𝜎𝑦+𝐶2

𝜎𝑥
2+𝜎𝑦

2+𝐶2
 (4) 

 𝑠(𝒙, 𝒚) =
𝜎𝑥𝑦+𝐶3

𝜎𝑥𝜎𝑦+𝐶3
  (5) 

where 𝜇𝑥 and 𝜇𝑦, 𝜎𝑥 and 𝜎𝑦, and 𝜎𝑥𝑦 are the local means, standard deviations, and 

cross-covariance of the images being compared, respectively. The constants 𝐶1, 𝐶2, and 

𝐶3 are used to avoid instability [13]. The overall similarity measure SSIM is in the range 

-1 to 1. A value of 1 indicates an ideal agreement between two images, while a value 

of -1 indicates the given images are very different. In this research, using the SSIM 

index, we calculated the difference between the image of estimated frequency tracks of 

the clean speech signal and that of the noisy speech signal. 

4 Experimental setup 

Eight speakers (four males and four females) were separately asked to utter fifteen sen-

tences. The speakers were untrained healthy native students of the Gdansk University 

of Technology. Each speaker was asked to repeat each sentence twice under a different 

acoustic treatment (in a room with and without an acoustically treated interior that sup-

presses reverberation). To obtain the Lombard effect while speaking, closed head-

phones played back the interfering noise were used. The recordings were split into 

smaller segments, the length of which was 1 second. As a result, 2719 recordings of the 

acoustically treated room and 3109 ones of the room without acoustic treatment were 

used in the experiment. This is to balance stratification sampling. Moreover, in this 
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research, we employ four real-life noise recordings, including babble speech (i.e., a mix 

of many talkers), city streets, rain, and pub that were added to audio data. These record-

ings were taken from the YouTube platform. The sampling rate of speech and noise 

signal has been adjusted to 16 kHz before the test. 

5 Experimental results 

The experiment is designed to measure the influence of noise interference on the 

frequency tracks of Lombard speech. The effect of different types of noise was inves-

tigated at varying levels of SNR, from -10 dB to 40 dB (i.e., from high to slightly dis-

torted speech). The investigation carried out concerned both acoustically treated and 

untreated rooms, however, the results were quite similar. As the untreated room condi-

tions are closer to a typical real-life scenario, therefore these results are shown in Ta-

ble 1. The SSIM index values indicating the correspondence between the shape of a 

speech signal with LE and its noisy version on different SNR conditions are contained 

in Table 1. The graphical representation of the results obtained is given in Fig. 3.  

The best results were obtained for babble speech noise, followed by recordings 

mixed with pub noise. Results for city street and rain noises are very similar. For city 

street noise, there is a slightly higher estimate at the 10 dB condition towards a better 

result. Further, we analyzed the spectrum of noise signals. The following spectral en-

velope shape parameters were extracted: Spectral Entropy, Spectral RollOff, and Spec-

tral Brightness. The normalized values are given in Table 2. 

When comparing the spectrum-based values (see Table 2) of the noise signal ana-

lyzed, we can observe that the spectral entropy, which gives a measure of spectrum 

irregularity [16], reflects the unpredictability of these signals. This may have led to 

lower values of the SSIM index values for these noises. Also, the amount of high-fre-

quency information, which is reflected by Spectral Brightness and RollOff, has a direct 

impact on the SSIM index presented in Table 3. 

Table 1. The SSIM index values for recordings (a room without acoustic treatment) 

  -10 dB 0 dB 10 dB 20 dB 30 dB 40 dB 

Pub noise Mean 0.412 0.428 0.514 0.634 0.767 0.862 
 STD 0.001 0.001 0.002 0.003 0.003 0.002 
City street 
noise 

Mean 0.3733 0.3789 0.4198 0.5379 0.6985 0.8188 

STD 0.0007 0.0007 0.0013 0.0025 0.0033 0.0030 

Babble 
speech noise 

Mean 0.5214 0.5618 0.6610 0.7656 0.8547 0.9146 
STD 0.0015 0.0019 0.0026 0.0027 0.0021 0.0016 

Rain noise Mean 0.3672 0.3701 0.3843 0.5214 0.6959 0.8202 
 STD 0.0006 0.0007 0.0009 0.0026 0.0035 0.0031 
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Fig. 3. The SSIM index values for recordings of a room without acoustic treatment.  

Table 2. The normalized spectral characteristics of the noise signals 

 Spectral Entropy Spectral RollOff Spectral Brightness 

Pub noise 0.88 0.51 0.34 

City street noise 0.97 0.84 0.84 

Babble speech noise 0.82 0.47 0.17 

Rain noise 1.00 1.00 1.00 

 

The investigations carried out also contain the first attempt to automatic noise profile 

based on recordings contained in the MODALITY multimodal corpus of English 

speech recordings [17]. Based on the frequency characteristics, the classification model 

was built. For that purpose, Naïve Bayes [18] algorithm was employed. The following 

target classes were used: airport, babble speech, car noise, exhibition, restaurant, street 

noise, subway, train, and pink noise. The test was performed only for a 2-seconds frame, 

and the window was moved by 2 seconds. An example of when the recording was clas-

sified as “street,” which is the correct classification, is given in Fig. 4. 

 

Fig. 4. Classification results on the real-world recordings − the solid line represents the classifi-

cation in the averaging mode, while the dashed line represents the momentary classification. 
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In the context of noise profiling, the model’s usefulness is measured by evaluating 

its stability, not the correctness of classification. It can be seen that this process of clas-

sification fluctuates while the averaging mode is stable (dashed and solid lines in Fig.4). 

6 Conclusions 

By analyzing the impact of the noise interference on the Lombard effect, we believe 

that the existing theoretical background is extended. In this study, we have pointed out 

that building a human-centric interface for ambient intelligence is an extension of 

speech processing. The paper shows the outcome of the study that analyzes Lombard 

speech to understand how the spectral characteristics are affected by noise interference.  

The analysis presented in this paper shows that the best results are obtained for bab-

ble speech noise, followed by recordings mixed with pub noise. When comparing the 

spectrum-based values of the noise signal analyzed, there is a clear correlation between 

the obtained SMM indexes and the obtained spectral characteristics. The greater the 

Spectral Brightness, RollOff, and Entropy of the interference noise signal, the more the 

speech signal is degraded. 

The influence of noise interference was tested on Lombard speech through an exper-

iment in an acoustically treated room. In real-life, different kinds of noise can be inter-

mingled. The model was not tested against such a combination of noises. The first at-

tempt to profiling noise automatically revealed that LE is applicable in this case. How-

ever, this issue needs to be further investigated, which we intend to do in the future. 

It is envisioned that the results of this analysis allow for developing a method of 

monitoring and enhancing speech automatically in the presence of noise. The ultimate 

goal is to prepare a system capable of synthetically generating Lombard speech through 

noise profiling.  
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