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Abstract: Multicolor ethylene-norbornene (EN) composites filled with three different spinel pigments
(Cobalt Green-PG50, Zinc Iron Yellow-PY 119, Praseodym Yellow-PY159) were prepared by melt
mixing and characterized in terms of their stability under destructive environmental conditions.
The EN films were subjected to accelerated aging by ultraviolet (UV) photooxidation for 300 h,
600 h, or 900 h. The mechanical performance of the EN composites was investigated in static and
dynamic mechanical tests. The morphologies of the EN samples and their color changes during
the aging process were evaluated by scanning electron microscopy (SEM) and spectrophotometric
measurements. Fourier transform infrared (FTIR) spectroscopy was applied to determine the amount
of carbonyl groups resulting from surface oxidation at different aging times. The effects of the spinel
pigments on the thermal stability and combustion properties of the multicolor polymer composites
were also assessed, and compared with a sample containing the organic Pigment Yellow 139 (PY139).
The results show that the color changes (∆E) in the spinel pigments were minor in comparison to
those in the organic pigment (PY139) and the reference film. The Zinc Yellow (PY119) pigment
was the most effective stabilizer of EN copolymer. Moreover, the spinel pigments had a positive
effect on the flame retardancy of the EN composites. Microcombustion tests (MCC) showed that the
incorporation of both the spinels and the organic pigment PY139 into the EN matrix reduced the heat
release rate (HRR) and total heat release (THR) parameters.

Keywords: polymer composites; coloring agent; spinel pigment; composite properties; UV aging

1. Introduction

Organic and inorganic pigments are an important group of additives. They not only
give color to the materials to which they are added, but can also improve their applicative
properties, such as light stability and flammability [1–4]. Pigments can be categorized
based on their origin (natural or synthetic) and chemical composition (organic or inor-
ganic) [5]. Common classes of organic pigments used in polymers include phthalocyanines,
isoindolinones, perylenes, anthraquinones, flavanthrones, thioindigos, quinophthalones,
azocondensations, and azomethine metal complexes. Inorganic pigments fall into different
classes, according to their chemical content, such as oxides, chromates, sulfates, silicates,
borates, molybdates, phosphates, vanadates, iron cyanate, hydroxides, sulfides, and met-
als [6,7]. Organic pigments are brightly colored, but generally not as lightfast or opaque as
inorganic pigments. Due to their thermal, chemical, and solar instability, organic coloring
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materials are restricted to short-term applications and are not suitable for ceramic and
polymer processing at high temperatures [8].

Spinel pigments are mixed metal oxides with the general formula AB2O4. They are stable
toward sunlight, heat, and environmental changes [9]. The A2+B3+

2O4 spinel system consists
of divalent (2+) and trivalent (3+) metal ions in one of two distinct coordination environments.
Another type of spinel pigment is the B[AB]O4 spinel system. Known as “inverse spinels”,
the A represents metal ions situated in octahedral structures, whereas B ions appear in
tetrahedral and octahedral sites [10]. Spinel pigments have found widespread applications as
catalysts, semiconductors, and magnetic ceramic powders. As colorants, these pigments are
most often used in ceramics, due to their chemical and thermal stability [11,12].

Recent research in pigmentation technology has been aimed at lowering energy costs
related to cooling by providing infrared absorbance or reflectance. Colorants in paints and
coatings can reflect invisible heat, especially from solar radiation [13–17]. Approximately
40% of solar radiation consists of the near-infrared (NIR) radiation wavelength range from
780 nm to 1000 nm [18,19]. Therefore, painting or coating objects with NIR reflective
additives can reduce heating, which is beneficial in automotive and civil engineering
applications, among others [20–23]. Cool pigments commonly used in urban engineering
are light-colored or white. However, darker and more vivid colorants are desirable for
aesthetic reasons. Spinel pigments are available in a wide range of colors, and exhibit
infrared reflectance properties [24,25]. Spinel pigments are currently used in acrylic and
alkyd resins, to obtain paints, inks, and coatings [26,27]. Their high thermal stability,
broad range of colors, and promising UV-Vis and NIR reflectance make them promising
candidates for use in high-performance polymer composites.

The aging behavior of polymers, blends, and composites under different environ-
mental conditions is a crucial consideration when assessing the possible applications of
additives and establishing the lifetime of the final products.

Organic and inorganic pigments can have either favorable or unfavorable effects on
the properties of polymer composites, such as thermal or light stability [28]. Different
properties of pigments, such as light absorbing characteristics or photochemical behavior,
influence polymer materials during aging, especially under UV light irradiation. As a con-
sequence, pigments can provide stability by absorbing and/or scattering harmful radiation
or contribute to sensitize the degradation of the polymer materials, for example by generat-
ing singlet oxygen or via hydrogen abstraction by photoexcited pigment molecules [29].
Uzelmeier [30] observed that organic pigments such as phthalocyanine blue and green,
or quinacridone magenta, and inorganic pigments including carbon black, cadmium yel-
low, mercadmium red, and ultramarine blue, enhanced both the thermal stability and
photostability of polypropylene materials. A study on cadmium yellow, ultramarine blue,
phthalocyanine green, and blue pigments showed that all colorants contributed to improve
the stability of LDPE films [31]. Steinlin and Saar [32] investigated the impact of pigments
on the light stability of polypropylene (PP) fiber additionally containing the commercial
light stabilizer Tinuvin 770. They concluded that a significant number of the pigments had
a negative effect on the light stability of the PP fibers, especially the yellow, red, and orange
colorants (e.g., P. Yellow 94, P. Yellow 83, P. Red 224, P. Yellow 109, P. Orange 31, P. Yellow
110). Green, blue, and black pigments (P. Black 7, P. Blue 60, P. Violet 37, P. Blue 16, P.
Red 177, P. Red 220, P. Blue 15:3, P. Green 7) improved the light stability of the fiber, despite
the presence of the Tinuvin 770 stabilizer.

Carbon black and phthalocyanine pigments induce a marked protective effect in many
polymers. Gilroy and Chan [33] noticed that some organic pigments (e.g., P. Blue 15, P.
Red 220, P. Green 7, P. Green 36, P. Yellow 14) produced a favorable effect on the thermal
stability polyolefin wires and cables. Black, brown, and red pigments were recommended
to improve the color and physical properties of ABS under weather aging. In rigid PVC,
most of the pigments contributed to improved light stability under exposure to outdoor
conditions. The surfaces degraded much faster than the bulk of the polymer, with only
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minor differences in surface protection by the various organic and inorganic pigments
(phthalocyanine blue, iron oxide red, channel black, P. Red 48, P. Yellow 83) [34].

Accelerated degradation tests are often used to simulate aging processes and select
appropriate additives and stabilizers. There are no studies in the literature describing the
impact of spinel colorants on the properties of polymers during weathering. In our previous
work, we studied the impact of earth pigments on the aging process and combustion
behavior of ethylene-norbornene copolymers [35]. By adding earth pigments, we obtained
materials with attractive colors and improved resistance to unfavorable outdoor conditions.
In the present research, we prepared thermoplastic composites using ethylene-norbornene
copolymer with selected spinel colorants: Cobalt Green, Zinc Iron Yellow, and Praseodym
Yellow powders. The mechanical, colorimetric, and surface changes were monitored under
UV exposure (300 h, 600 h, 900 h). The effect of the colorants on the combustion properties
and thermal stability of the ethylene-norbornene copolymers was studied using microscale
combustion calorimetry and thermal analysis. We compared the behavior during aging of
the polymers containing spinels to an EN film containing organic pigment PY139.

2. Materials and Methods
2.1. Materials

Ethylene-norbornene (EN) random copolymer with the commercial name Topas Elas-
tomer 140 was provided by TOPAS Advanced Polymers (Germany). Three spinel pigments
were purchased from Kremer Pigmente GmbH (Germany): Cobalt Green (PG50), Zinc Iron
Yellow (PY119), and Praseodym Yellow (PY159). The organic pigment Isoindoline Yellow
(PY139) was obtained from Synthesia (Czech Republic). The chemical compositions of the
pigments are presented in Table 1.

Table 1. Chemical formulas of pigments.

Name Abbreviation Formula

Cobalt Green PG50 Co,Ni,Ti,Zn
Zinc Iron Yellow PY119 Fe2O3.ZnO

Praseodym Yellow PY159 (Zr,Pr)SiO4
Isoindoline Yellow PY139 C16H9N5O6

2.2. Methods

Compounding process was carried out on a Brabender Measuring Mixer N50 (Duis-
burg, Germany). The composites containing 100 phr (parts per hundred part of rub-
ber) ethylene-norbornene copolymer were filled with 1 phr or 3 phr of a spinel pigment.
The EN/spinel pigment composites were prepared at a rotor speed of 50 rpm with a
chamber temperature of 110 ◦C. Afterwards, the EN/pigments composites were molded
into films with a thickness of 1 mm using a hydraulic press for 5 min at 110 ◦C. The thermal
properties of the EN/pigments blends were measured using a Mettler Toledo Thermo-
gravimetric Analyzer TGA (Columbus, OH, USA). Composite samples of approximately
10 mg were placed in an aluminum oxide crucible and heated from 25 ◦C to 600 ◦C in an
argon atmosphere, with a heating rate of 10 ◦C/min. Microscale combustion calorimetry
was used to measure the flammability of the EN/spinel pigment composites. Similar
fragments of each composite weighing approximately 2.5 mg were measured on an MCC
micro-calorimeter (Fire Testing Technology Limited). Flammability tests were performed
with the following parameters: pyrolyzer temperature 750 ◦C and combustor temperature
900 ◦C. Mechanical properties were measured using a universal tensile testing machine
Zwick/Roell 1435 (Zwick Roell Group, Ulm, Germany) at a uniform crosshead speed of
500 mm/min. Testing was carried out following ISO 37 standard guidelines. Elongation at
break (EB) and tensile strength (TS) were calculated as the average of five measurements

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Materials 2021, 14, 4050 4 of 18

(the error of measurement was around ± 10%). The aging coefficient K was estimated
according to the formula [36]:

K =
(TS·EB)after ageing

(TS·EB)before ageing
(1)

Diffuse UV-Vis spectra of the pigment powders were recorded on an Evolution
201/220 UV–Visible Spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA).
The samples were stored under normal conditions and the spectra were recorded in the
range of 200–1100 nm, directly in air with no further pretreatment. The accuracy of the ap-
paratus was ±0.8 nm and the repeatability was ≤0.05 nm. Color changes were recorded in
the wavelength range of 360–740 nm with a CM-3600d spectrophotometer (Konica Minolta
Sensing Inc., Osaka, Japan) and represented in the CIELAB color space. Obtained data
were calculated as the average of five measurements from the different places of sample.
The measurement error was around ±10%. Total color change ∆E was calculated according
to the following equation [37]:

∆E =

√
∆L2 + ∆a2 + ∆b2 (2)

where ∆L, ∆a, and ∆b represent the differences between the initial and final values for L
(brightness), a (red-green color coordinate), and b (yellow-blue color coordinate), respectively.

Infrared absorbance spectra were obtained using a Thermo Scientific Nicolet 6700
(Waltham, MA, USA) for attenuated total reflection Fourier transform infrared spectroscopy
(ATR-FTIR). The ATR-FTIR technique was applied in the wavenumber range of 4000–
500 cm−1 to analyze the formation of the oxidation products. To calculate the carbonyl
index (CI), the changes in the relative absorbance intensity of the ketone group A>C=O
(corresponding to 1800–1680 cm−1) were compared to those of methylene group A-CH2- (at
3000–2800 cm−1), according to the formula [38]:

CI =
A>C=O
A−CH2−

(3)

The UV aging process was simulated in an Atlas UV 2000 (Ametek Atlas, Linsen-
gericht, Germany) apparatus. Accelerated aging was performed at wavelength λ = 343 nm
over 900 h. The procedure combined consecutively repeating segments: a daily segment
(radiation intensity 0.7 W/m2, temperature 60 ◦C, duration 8 h) and a night segment (no UV
radiation, temperature 50 ◦C, duration 4 h). The morphology of the EN copolymer samples
colored with different two spinel pigments was evaluated based on scanning electron mi-
croscopy (SEM). SEM images were taken using a scanning electron microscope (SEM, Zeiss,
ULTRA Plus, Oberchoken, Germany) at magnifications of 5000× and 1000×. Prior to SEM
observations, liquid nitrogen-fractured surfaces of the composites were carbon sputtered.

3. Results
3.1. Morphology and Mechanical Properties of EN Composites

The ethylene-norbornene (EN) copolymer was compounded with different spinel
pigments at 1%wt. The EN films containing spinels exhibited different colors and retained
moderate levels of clarity. The morphologies of both the spinel pigments and the EN
composites filled with the colorants were analyzed using scanning electron microscopy
(SEM) at different magnifications. Figure 1 shows SEM images of the pigment powders.
It is known from the literature that the optical properties of a pigment, in particular the
color and hiding power, depend on the form and dimensions of its particles [39]. Usually,
the particles appear in the form of different conglomerates, in which individual particles of
various forms and dimensions can be identified. Based on the microscopic photos, it can
be seen that the particles of the spinel pigments differed in shape and size. The PG50
pigment particles exhibited oval cube shapes, the PY119 pigment had tiny particles that
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were spherical in shape, the PY159 particles were brick-like in shape, whereas the particles
of the organic PY139 pigment took the form of large spherical agglomerates. The largest
clusters of agglomerates were noted for the PY139 pigment, the lateral dimensions of which
were in the order of several dozen microns. Pigment PY119 had the smallest particle size,
at about 200 nm.
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of the polymer composite. Generally, spherically shaped pigment particles exhibit higher
hiding power than other particles of a given size. For the purposes of comparison, Figure 2
presents digital photographs and SEM images of the EN composites colored with PY119
and PY139 pigments. In contrast to the PY119 particles, which were easily distinguished
in the cross-section of the EN/PY119, the particles of PY139 were not perceptible in the
SEM images of the EN polymer. The SEM analysis revealed that the tiny particles of
the PY119 spinel pigment exhibited a tendency to accumulate into larger clusters in the
polymer matrix. Thus, the relatively small irregular clusters visible in the SEM images of
the EN/PY119 samples can be ascribed to agglomerations of particles with different sizes
(up to 1 µm). Despite the presence of agglomerates of PY119 particles, the color of the dyed
EN was generally uniform.
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ature range, EN can be used to replace other polymers, for example polypropylene in
thin film capacitors. There are numerous studies in the literature describing the synthesis
or modification of different grades of EN copolymers, but only a few have investigated
the impact of UV aging on these materials [40,41]. It is known that long-term ultraviolet
radiation causes photooxidative degradation, which results in the breakage of polymer
chains, producing radicals and reducing the molecular weight [42]. Eventually, after a
certain time, the mechanical properties of the material deteriorate to the point that it can
no longer be used. We therefore studied the strength behavior of the samples following
different periods of exposure to UV irradiation. Figures 3 and 4 summarize the results of
the mechanical tests performed for the samples subjected to long-term UV radiation.
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aging, the reference samples of EN exhibited tensile strengths (TS) of 40.6 MPa. However,
after 300 h of UV irradiation, degradation of the reference sample led to a decrease in the
tensile value by up to 8 MPa. This was most likely caused by the reduction in mobility due
to cross-linking and chain scission. The composites containing pigments showed better
resistance to UV irritation, as the TS values and aging factors remained almost unchanged
after 300 h of photoaging. The samples colored with PG50 and PY119 demonstrated the
most minor changes in terms of mechanical properties. After 900 h of aging, only the
sample containing the pigment PY 119 showed TS and EB values similar to the sample
before aging, at 39 MPa and 500%, respectively. Further aging of the samples with PG
50 and PY159 led to a dramatic reduction in TS (around 7 MPa) and EB (around 40%) in
comparison to the unaged samples. The organic colorant PY 139 was found to provide
less-efficient protection than the spinel pigments, especially during long-term UV radiation.
The sample of EN with PY139 showed TS values of 23 MPa and 19 MPa after 600 h and 900 h
aging, respectively. After 900 h, the copolymer containing 1 phr of spinel PY119 showed
aging mechanical parameters similar to those of the starting sample. Only in the case of
this pigment, its higher concentration in polymer matrix (3 phr) contributed to extend the
UV stability of the samples. The progress of degradation was also expressed as an aging
factor, which is the combination of tensile strength and elasticity before and after aging
(Figure 4a,b). The aging factors of the pure EN composites were much lower than 1 (after
300 h), which confirmed that they had undergone considerable degradation. The durability
of the EN films was enhanced by the application of spinels (with concentrations of 1 phr
and 3 phr) in comparison to the PY139 organic pigment. The results of reflectance studies
(Figure 4c) showed that the pigment powders absorbed UV light and reflected other
irradiation in the solar spectra. The samples were subjected to irradiation at a wavelength
of 343 nm. The most significant protection against UV aging was provided by PY119,
however the level of UV absorption between 200 and 400 nm for PY119 was at similar level
like in case of other pigments. From the current study it is not clear, why PY119 provided
the most efficient protection against UV aging. Different effect of pigments on the aging
stability of polymers may be related to their chemical composition and impact on thermal
conductivity of the polymer composite. However, this effect was not confirmed and needs
to be further considered in future research.
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3 phr (b) of pigment; reflectance spectra of the pigment powders (c).

3.2. Colorimetric Study and Carbonyl Index Investigation

Generally, it is known that polymer materials exposed to solar irradiation tend to
change their color easily. The CIE-Lab scale provides a standardized photometric system
in which color is characterized by three parameters, a, b, and L, and where ∆E is the total
change of color. The range of values for lightness (L) was from 0 to 100, where values
near to 0 denote black and near to 100 denote white. Spectrophotometer tests provided
information about the reflectance curve as a function of wavelengths characteristic for
the visible range, and thus numerically described the perceived color of the object. The a
(red-green axis) and b (blue-yellow axis) parameters were described as numerical correlates.
Changes in hue were plotted as +a red, −a green, and changes in chroma as +b yellow and
–b blue in a three-dimensional graph (Figure 5). Color measurements were performed for
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samples before aging and after 300, 600, or 900 h of UV-accelerated aging. As expected,
the sample of EN copolymer changed color rapidly, which indicates that the polymer
matrix is not photostable by itself. The values for b increased and the L values decreased,
indicating that the EN sample turned yellow and darkened.

Based on the Figure 5, one sees that all the incorporated pigments exhibited apprecia-
ble coloring ability. The spinel pigments (PG50, PY119, PY159) showed great photostability
in the EN matrix compared to the composite filled with PY139 organic pigment and the EN
reference sample. Incorporation of the spinel pigments PG50, PY119, and PY159 increased
the photostability of the composites noticeably (Figures 5 and 6). However, after 900 h of
UV aging the sample with organic pigment PY139 exhibited comparable changes in ∆E to
the reference sample. The poor photostability of this composite may have been due to the
different chemical structure of the pigment. At high temperatures and under long-term UV
irradiation pigments may undergo several various degradation reactions. These reactions
include dehydroxylation, oxidation, changes in the crystal structure, and decomposition.
The aging process probably induced structure changes or even decomposition of pigments,
or at the least led to unacceptable alterations in color or gloss [43]. Organic PY139 pos-
sesses carbonyl groups, which are susceptible to photodegradation. Therefore, the stable
inorganic structures of the spinel pigments seem to show better photostability. After 900 h,
the reference sample and EN/PY139 showed the highest values for ∆E (above 6), whereas
the total color changes for the samples containing the inorganic colorants were around 2.
A similar tendency was observed for the EN samples containing 3 phr of the pigments.
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Further changes upon UV aging of EN composites was evaluated by Fourier transform
infrared spectroscopy analysis. FTIR spectroscopy revealed significant changes in the aging
behavior of the EN films. Figure 7 shows the photooxidation profiles of the EN, measured
over 900 h of UV irradiation. As expected, exposure to UV irradiation led to structural
changes in the composites, which were observed on the absorbance spectra as increases
in bands characteristic for carbonyl groups (1600–1800 cm−1). The highest increment was
noticed for EN at precisely 1712 cm−1, which is attributed to the carbonyl groups (C=O).
Other characteristic absorbance maximums observed for EN, such as 2915 and 2847 cm−1,
might be related to the stretching vibration of CH2. The peak at 1462 cm−1 can be assigned
to vibrations of C-O-C, and the band at 718 cm−1 is typical for CH2 rocking vibrations [44].

The main modifications in the IR spectra of the copolymer films were observed in the
carbonyl regions. Therefore, the presence of photooxidized products at 1712 cm−1 was
reflected in the carbonyl index [38]. We used the intensity of this band as an indicator of
the degree of composite degradation. After 300 h of aging, the highest carbonyl index
value was observed for the reference sample (Figure 8). The films containing even 1 phr of
spinel pigments showed considerably lower concentrations of photoxodized products for
the same irradiation time. The highest values after 600 h were observed for the EN and
EN colored with organic pigment (PY139) films, indicating pronounced oxidation of the
surfaces of the materials. The concentration of photooxidized products, also expressed in
terms of the carbonyl index, was found to be the lowest for the sample containing PY 119
(below 0.2).

After 900 h of irradiation, the carbonyl index values increased for all studied samples
above 0.5. Pilar et al. [45,46] studied the photooxidation of polypropylene and ethylene-
norornene copolymers induced by Xenon light. Higher concentrations of oxidation prod-
ucts were found in the non-stabilized samples of EN copolymer than in the non-stabilized
PP. Therefore, it seems important to select pigments capable of enhancing the photostability
of EN copolymer and delay surface photooxidation. Based on our results, PY 119 and
PG50 are able to protect the surface of EN copolymers against UV irradiation for up to
600 h. The literature describes several different strategies to improve the stability of EN
copolymers, including the application of commercial stabilizers such as Irganox 1010 or
Tinuvin 770. Pigments PY 119 and PG50 can be considered as complementary additives
for use with commercial stabilizers such as phenolic antioxidants or radical scavengers
(for example HAS). Higher concentrations of the colorants provided better protection.
The carbonyl indexes for the colored samples with 3 phr of pigment were lower than those
for the films containing 1 phr. This was most likely related to the higher concentration of
the pigment next to the polymer surface.



Materials 2021, 14, 4050 12 of 18

Materials 2021, 14, x FOR PEER REVIEW 11 of 19 
 

 

Therefore, the stable inorganic structures of the spinel pigments seem to show better pho-
tostability. After 900 h, the reference sample and EN/PY139 showed the highest values for 
ΔE (above 6), whereas the total color changes for the samples containing the inorganic 
colorants were around 2. A similar tendency was observed for the EN samples containing 
3 phr of the pigments. 

 
Figure 6. Total color changes as a function of the aging time for EN and EN/pigment samples at 
concentrations of 1 phr. 

Further changes upon UV aging of EN composites was evaluated by Fourier trans-
form infrared spectroscopy analysis. FTIR spectroscopy revealed significant changes in 
the aging behavior of the EN films. Figure 7 shows the photooxidation profiles of the EN, 
measured over 900 h of UV irradiation. As expected, exposure to UV irradiation led to 
structural changes in the composites, which were observed on the absorbance spectra as 
increases in bands characteristic for carbonyl groups (1600–1800 cm−1). The highest incre-
ment was noticed for EN at precisely 1712 cm−1, which is attributed to the carbonyl groups 
(C=O). Other characteristic absorbance maximums observed for EN, such as 2915 and 2847 
cm−1, might be related to the stretching vibration of CH2. The peak at 1462 cm−1 can be 
assigned to vibrations of C-O-C, and the band at 718 cm−1 is typical for CH2 rocking vibra-
tions [44]. 

  
(a) (b) 

Materials 2021, 14, x FOR PEER REVIEW 12 of 19 
 

 

  
(c) (d) 

Figure 7. FTIR spectra of the EN copolymer (a), EN copolymer with PY119 (b), PG50 (c), and PY139 (d) at different aging 
times (pigment concentration 1 phr). 

The main modifications in the IR spectra of the copolymer films were observed in the 
carbonyl regions. Therefore, the presence of photooxidized products at 1712 cm−1 was re-
flected in the carbonyl index [38]. We used the intensity of this band as an indicator of the 
degree of composite degradation. After 300 h of aging, the highest carbonyl index value 
was observed for the reference sample (Figure 8). The films containing even 1 phr of spinel 
pigments showed considerably lower concentrations of photoxodized products for the 
same irradiation time. The highest values after 600 h were observed for the EN and EN 
colored with organic pigment (PY139) films, indicating pronounced oxidation of the sur-
faces of the materials. The concentration of photooxidized products, also expressed in 
terms of the carbonyl index, was found to be the lowest for the sample containing PY 119 
(below 0.2). 

 
(a) 

Figure 7. FTIR spectra of the EN copolymer (a), EN copolymer with PY119 (b), PG50 (c), and PY139 (d) at different aging
times (pigment concentration 1 phr).

Materials 2021, 14, x FOR PEER REVIEW 12 of 19 
 

 

  
(c) (d) 

Figure 7. FTIR spectra of the EN copolymer (a), EN copolymer with PY119 (b), PG50 (c), and PY139 (d) at different aging 
times (pigment concentration 1 phr). 

The main modifications in the IR spectra of the copolymer films were observed in the 
carbonyl regions. Therefore, the presence of photooxidized products at 1712 cm−1 was re-
flected in the carbonyl index [38]. We used the intensity of this band as an indicator of the 
degree of composite degradation. After 300 h of aging, the highest carbonyl index value 
was observed for the reference sample (Figure 8). The films containing even 1 phr of spinel 
pigments showed considerably lower concentrations of photoxodized products for the 
same irradiation time. The highest values after 600 h were observed for the EN and EN 
colored with organic pigment (PY139) films, indicating pronounced oxidation of the sur-
faces of the materials. The concentration of photooxidized products, also expressed in 
terms of the carbonyl index, was found to be the lowest for the sample containing PY 119 
(below 0.2). 

 
(a) 

Figure 8. Cont.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Materials 2021, 14, 4050 13 of 18Materials 2021, 14, x FOR PEER REVIEW 13 of 19 
 

 

 
(b) 

Figure 8. Carbonyl index as a function of the UV irradiation of EN and EN/pigment samples con-
taining 1 phr (a) and 3 phr (b) of pigment. 

After 900 h of irradiation, the carbonyl index values increased for all studied samples 
above 0.5. Pilar et al. [45,46] studied the photooxidation of polypropylene and ethylene-
norornene copolymers induced by Xenon light. Higher concentrations of oxidation prod-
ucts were found in the non-stabilized samples of EN copolymer than in the non-stabilized 
PP. Therefore, it seems important to select pigments capable of enhancing the photosta-
bility of EN copolymer and delay surface photooxidation. Based on our results, PY 119 
and PG50 are able to protect the surface of EN copolymers against UV irradiation for up 
to 600 h. The literature describes several different strategies to improve the stability of EN 
copolymers, including the application of commercial stabilizers such as Irganox 1010 or 
Tinuvin 770. Pigments PY 119 and PG50 can be considered as complementary additives 
for use with commercial stabilizers such as phenolic antioxidants or radical scavengers 
(for example HAS). Higher concentrations of the colorants provided better protection. The 
carbonyl indexes for the colored samples with 3 phr of pigment were lower than those for 
the films containing 1 phr. This was most likely related to the higher concentration of the 
pigment next to the polymer surface. 

3.3. Dynamic-Mechanical Analysis of EN Composites (DMA) 
Dynamic mechanical analysis (DMA) was performed to investigate the viscoelastic 

behavior of the EN composites filled with different spinel pigments following long-term 
UV aging. The alterations in the dynamic mechanical properties of the studied composites 
were examined at 5 Hz of frequency, in a temperature range from −60 to +60 °C. The stor-
age modulus (E’), loss modulus (E”), and loss tangent (tanδ) over the temperature for all 
samples before and after 900 h of aging are presented in Figure 9a–c. The Tg values of the 
EN compounds were calculated from the maxima (peaks) of the tanδ curve (Figure 9c). 
The results show that the application of 1 phr spinel pigments did not cause any change 
in Tg, which for all composites was approximately 16 °C. The results for Tg are in line 
with our previous studies on EN copolymers [47,48]. 

Figure 8. Carbonyl index as a function of the UV irradiation of EN and EN/pigment samples
containing 1 phr (a) and 3 phr (b) of pigment.

3.3. Dynamic-Mechanical Analysis of EN Composites (DMA)

Dynamic mechanical analysis (DMA) was performed to investigate the viscoelastic
behavior of the EN composites filled with different spinel pigments following long-term UV
aging. The alterations in the dynamic mechanical properties of the studied composites were
examined at 5 Hz of frequency, in a temperature range from −60 to +60 ◦C. The storage
modulus (E’), loss modulus (E”), and loss tangent (tanδ) over the temperature for all
samples before and after 900 h of aging are presented in Figure 9a–c. The Tg values of the
EN compounds were calculated from the maxima (peaks) of the tanδ curve (Figure 9c).
The results show that the application of 1 phr spinel pigments did not cause any change in
Tg, which for all composites was approximately 16 ◦C. The results for Tg are in line with
our previous studies on EN copolymers [47,48].

Based on the DMA results, one sees that the values for the storage modulus of all
the studied samples increased after aging. This increase is particularly noticeable in
the case of the reference sample (EN), for which the E’ value at 25 ◦C was as much as
400 MPa higher after aging. This means that the samples were progressively degraded,
resulting in greater stiffness and simultaneously lower flexibility, due to the formation of
photoproducts and a crosslinked network. A similar effect had been observed previously
for polymer composites exposed to long-term aging [49]. Interestingly, after aging the loss
modulus peak of the unprotected EN sample rose significantly and shifted toward higher
temperatures, which further confirms that the EN copolymer was strongly degraded due
to UV exposure. The composites with pigment PY119 showed higher E” peaks, but the
increases were much lower than for the unprotected sample or the sample with organic
PY139, indicating better resistance to UV radiation after the incorporation of the spinel
pigments. The progressive aging of the studied samples was also reflected in the visible
changes in the shapes of their tanδ peaks, which became considerably wider compared to
the unaged materials. A significant increase in Tg (from 16 up to about 44 ◦C) was also
observed in the case of the aged unfilled EN copolymer, most likely due to the complex
changes that occurred in the polymer structure.
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3.4. Thermal Properties and Combustion Behavior of EN Composites

The incorporation of the spinel pigments into the EN copolymer had ambiguous
effects on the thermal stability of the resulting composites. The addition of 1 phr of organic
pigment (PY139) to the EN composites resulted in a slight increase in the T5 parame-
ter. It can be assumed that the carbon ring structure of the PY139 pigment improved
carbonization processes. The carbonized boundary layer inhibits diffusion of thermal
degradation products in the gas phase (Table 2, Figure 10). The inorganic cobalt pigment
(PG50) also had a positive effect on the T5 parameter. Generally, the initiation of thermal
transformations of polymers occurs as a result of the decomposition of hydroperoxide
groups in the polymer macromolecules, as well as of those formed during heating in
an air atmosphere. The presence of a metal of variable valence in the pigment structure
(e.g., PY119) caused the hydroperoxide groups in the EN to break down into free radicals
and hydroxyl anions (homogeneous–heterogeneous decomposition). The macroradicals
resulting from the splitting of hydroperoxide groups reacted with each other or initiated
proton cleavage, including the chains of other polymer macromolecules (thermal crosslink-
ing reactions) [50,51]. Thermal cross-linking reactions are accompanied by cyclization
as well as degradation of polymer chains (the presence of radicals and hydroxyl ions).
The predominance of cyclization and thermal cross-linking reactions over degradation
reactions is confirmed by the increase in the residue after thermal decomposition (Table 2).
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Due to the fact that the presence of 1 phr of the pigments had only slight impact on the
thermal stability of the EN copolymer, we decided to perform microcombustion calorimetric
test for samples with 3 phr of the pigments. The spinel additives had a positive effect on
the flammability of the EN copolymer. Based on the MCC results, the addition of 3 phr of
PY139 pigment improved the flame retardancy of the EN copolymer, as evidenced by the
significant reduction in HRR and THR parameters, by 15% and 40% compared to the neat
copolymer, respectively (Table 3). Given the very small amounts of each sample (several mg)
used in the MCC analysis, the reduction in the flammability of the EN/PY139 composite can
be assumed to be directly related to the high thermal stability of the pigment, which delayed
the thermal decomposition of the composite. Another important factor that should be
mentioned when considering the reduced flammability of the EN/PY139 composite is the
high content of amino groups in the pigment structure. The nitrogen compounds formed
during thermal decomposition of PY139 dilute the combustible destructs of the composite,
inhibiting the combustion process. The application of 3 phr of PY119, PY159, or PG50 of the
spinel pigments also reduced the HRR and THR parameters, indicating lower flammability.
The flame-retardant effects of the PY119 and PY159 inorganic pigments were a direct result
of the presence of metal oxides, mainly iron and zinc. Metal oxides can act as radical
scavengers, which interrupt high-energy reactions in the gas phase and thus reducing the
transfer of heat to the composite boundary layer. Such thermal cross-linking reactions also
have an important role in reducing the flammability of the composite with PG50 pigment.

Table 2. Thermal stability of EN/pigment samples at concentrations of 1 phr.

Sample Code T5 (◦C) T10 (◦C) T50 (◦C) Char Residue (%)

EN 403 424 460 0.58
PG50 405 426 464 1.12
PY119 410 425 462 1.64
PY139 412 425 462 1.00
PY159 409 425 461 1.24

T5,10,50—degradation temperatures of 5, 10, and 50% weight of sample loss.

Table 3. Combustion parameters of EN/pigment samples at concentrations of 3 phr.

Sample Code HRR (W/g) THRR (◦C) THR (kJ/g) HRC (J/gK)

EN 1857 ± 85 497 ± 5 79.4 ± 5 1851 ± 90
PG50 (3%) 1433 ± 59 496 ± 5 49.9 ± 4 1390 ± 63
PY119 (3%) 1754 ± 72 496 ± 5 54.9 ± 4 1698 ± 62
PY139 (3%) 1584 ± 64 487 ± 5 47.9 ± 3 1535 ± 59
PY159 (3%) 1748 ± 70 494 ± 5 57.0 ± 4 1692 ± 60

HRR—heat release rate; THRR—total heat release rate; THR—total heat release; HRC—heat release capacity.
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4. Conclusions

We have proposed a strategy for improving the photostability of ethylene-norbornene
composites by the application of colorful spinel pigments. Three different spinel pigments
were applied as colorants in ethylene-norbornene (EN) copolymer: Cobalt Green, Zinc Iron
Yellow, and Praseodym Yellow. An EN composite with the addition of the organic pigment
PY 139 was prepared for the purpose of comparison. The colorful EN composites with
spinel pigments were subjected to long-term UV aging (300, 600, and 900 h), as well
as thermal, mechanical, and combustion tests. Color changes were measured in the
CIE Lab color space. The results confirmed that the spinel pigments were effective in
protecting the EN copolymer against UV radiation. This contrasts with the pure copolymer,
which showed a dramatic decrease in tensile strength from 40 MPa up to 8 MPa after
900 h of aging. Dynamic mechanical analysis revealed a significant increase in the storage
and loss of moduli of the pure EN composite after UV aging, which indicates an increase
in the stiffness of the composite because of progressive photodegradation. The organic
pigment protected the polymer matrix against UV exposure, but was markedly less effective
than the spinel pigments. This was evidenced by the higher total color change (∆E)
and carbonyl index (CI) determined for the EN/P139 composite compared to the film
containing especially PY 119 pigment. The flammability of the EN copolymer also reduced
considerably following the incorporation of spinel pigments. Based on microcombustion
analysis, the application of 3 phr of the PG50, PY119 or PY159 pigments reduced the heat
release rate parameter from 1857 W/g (for neat EN composite) to 1433 W/g, 1754 W/g,
and 1480 W/g, respectively. This effect can be explained by the presence of metal oxides in
the spinel pigments, which act as radical scavengers reducing heat transfer to the boundary
layer of the composite. Overall, this study shows that spinel pigments can improve the
resistance of polymer composites to elevated temperatures and long-term exposure to UV
radiation, while providing aesthetic properties to the final products.
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35. Szadkowski, B.; Kuśmierek, M.; Rybiński, P.; Zukowski, W.; Marzec, A. Application of Earth Pigments in Cycloolefin Copolymer:
Protection against Combustion and Accelerated Aging in the Full Sunlight Spectrum. Materials 2020, 13, 3381. [CrossRef]
[PubMed]

36. Maciejewska, M.; Sowinska, A.; Kucharska, J. Organic Zinc Salts as Pro-Ecological Activators for Sulfur Vulcanization of
Styrene-Butadiene Rubber. Polymers 2019, 11, 1723. [CrossRef] [PubMed]

37. Maslowski, M.; Aleksieiev, A.; Miedzianowska, J.; Strzelec, K. Common Nettle (Urtica dioica L.) as an Active Filler of Natural
Rubber Biocomposites. Materials 2021, 14, 1616. [CrossRef]

38. Plota, A.; Masek, A. Plant-Origin Stabilizer as an Alternative of Natural Additive to Polymers Used in Packaging Materials. Int. J.
Mol. Sci. 2021, 22, 4012. [CrossRef]

39. Gueli, A.M.; Bonfiglio, G.; Pasquale, S.; Troja, S.O. Effect of particle size on pigments colour. Color Res. Appl. 2017, 42, 236–243.
[CrossRef]

40. Lago, W.S.R.; Aymes-Chodur, C.; Ahoussou, A.P.; Yagoubi, N. Physico-chemical ageing of ethylene–norbornene copolymers:
A review. J. Mater. Sci. 2017, 52, 6879–6904. [CrossRef]

41. Lamonte, R.; Mac Nally, D. Cyclo olefin copolymers. Adv. Mater. Proces. 2001, 159, 33–36.
42. Kamweru, P.K.; Ndiritu, F.G.; Kinyanjui, T.K.; Muthui, Z.W.; Ngumbu, R.G.; Odhiambo, P.M. Study of Humidity and Uv

Wavelength Effects on Degradation of Photo-Irradiated Polyethylene Films Using DMA. J. Macromol. Sci. Part B Phys. 2012, 51,
817–827. [CrossRef]

43. Ghelardi, E.; Degano, I.; Colombini, M.; Mazurek, J.; Schilling, M.; Khanjian, H.; Learner, T. A multi-analytical study on the
photochemical degradation of synthetic organic pigments. Dye. Pigm. 2015, 123, 396–403. [CrossRef]

44. Masek, A.; Plota, A. Influence of a Natural Plant Antioxidant on the Ageing Process of Ethylene-norbornene Copolymer (Topas).
Int. J. Mol. Sci. 2021, 22, 4018. [CrossRef] [PubMed]
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