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Abstract: This article presents the application of the radioisotope absorption method in the study
of two-phase water–air flow in a horizontal pipe. The measurement principle and the test stand
are briefly described. The main part of the article presents the signal analysis methods applied to
data obtained from scintillation detectors. Because these signals are mostly stochastic waveforms,
they were analyzed statistically using the cross-correlation function (CCF), and methods that are
a combination of CCF and differential methods: CCF/ASDF and CCF/AMDF, where ASDF is
the average square difference function, and AMDF is the average magnitude difference function.
Examples of the results of gas phase velocity measurement for four types of flow are presented. It was
found that the CCF/ASDF and CCF/AMDF methods allow more accurate results of measurements
of the dispersed phase to be obtained than the CCF method.

Keywords: two-phase flow; gamma-ray absorption; cross-correlation; combined methods; uncertainty analysis

1. Introduction

In industries such as chemicals, energy, oil and methane mining, and environmen-
tal engineering, there is a need to transport two-phase liquid–gas mixtures. Control of
this type of flow is often important in the course of industrial processes, and continuous
technological development requires the improvement of the measurement techniques. Mea-
surements of two-phase flow parameters in pipelines require the application of advanced,
usually noninvasive techniques such as tomographic methods, particle image velocimetry,
Coriolis flow meters, high-speed cameras, laser doppler anemometry, and magnetic res-
onance imaging [1–7]. For more than 50 years, research on this type of flow has utilised
methods based on the introduction of radioactive isotopes into the flow under certain
conditions (radiotracer method) or the application of closed gamma radiation sources
(absorption method) [8–14]. It should also be mentioned that the formation and movement
of air bubbles in a two-phase flow depends on many factors, that make the numerical
calculations of such processes difficult [15]. This justifies the need for experimental control
of such processes.

In this work, the gamma absorption method is used to designate the average velocity
of air bubbles transported through water in a horizontal pipe. The research involved
241Am gamma radiation sources and detectors with NaI(Tl) crystals. The study used
the results of measurements obtained on an experimental set-up built to conduct tests
on liquid–gas flows, simulating processes observed in the petrochemical industry. For
the analysis of signals from scintillation detectors, the cross-correlation function (CCF)
is used most often [16,17]. In this article, in addition to the classical CCF, the following
differential methods were added: the average square difference function (ASDF) and the
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average magnitude difference function (AMDF). In this way, the combined CCF/ASDF
and CCF/AMDF methods were developed.

Simulation studies of the combined methods were presented in the study [18]; while
the study [19] described the application of these methods to the analysis of signals from the
water–solid particle flow in a vertical pipeline.

In this work, combined methods were used to analyse signals from scintillation probes
in the study of water–air flow in a horizontal pipe. This type of flow is different from the
liquid–solid particle because a mixture of water–air creates characteristic structures in the
flow [9].

This paper is a significantly extended version of conference publications [20,21].

2. Radioisotope Absorption Method

The principle of using gamma radiation absorption to measure the velocity of gas
transport through a liquid in a horizontal pipeline is shown in Figure 1.
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age pulses; L—probes distance. 

A typical absorption measurement set includes a closed gamma radiation source (A) 
and a scintillation detector (B) with appropriate collimators (A), (C). The combination of 
two sets deployed at a distance of L from each other allows the dispersed phase flow rate 
to be determined. The flow of the tested mixture through the pipeline (E) causes changes 
in absorption of gamma-ray beam (D) and allows mutually delayed stochastic signals to 
be obtained from the probes. Analysis of these signals by statistical methods, e.g., using 
cross-correlation [17], allows determination of transport delay τ0 and the average velocity 
of air bubbles υG from the relation: 

Figure 1. The idea of application of the γ-absorption method to the liquid–gas mixture in a horizontal
pipe: A—radioactive source in the collimator; B—scintillation probe; C—detector collimator; D—a
gamma-ray beam; E—pipeline; υG—velocity of the gas; υL—velocity of the liquid; Ix(t), Iy(t)—voltage
pulses; L—probes distance.

A typical absorption measurement set includes a closed gamma radiation source (A)
and a scintillation detector (B) with appropriate collimators (A), (C). The combination of
two sets deployed at a distance of L from each other allows the dispersed phase flow rate
to be determined. The flow of the tested mixture through the pipeline (E) causes changes
in absorption of gamma-ray beam (D) and allows mutually delayed stochastic signals to
be obtained from the probes. Analysis of these signals by statistical methods, e.g., using
cross-correlation [17], allows determination of transport delay τ0 and the average velocity
of air bubbles υG from the relation:

υG =
L
τ0

(1)

where L = 97 mm is the distance of the probes.
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If necessary, the liquid flow velocity υL can be determined using an ultrasonic flow
meter, for example. In closed research installations, a radioisotope tracer method can also
be used.

3. Experimental Setup

A general view of the experimental hydraulic installation is shown in Figure 2. This
installation was built at the AGH University of Science and Technology in Kraków. A
scheme of the laboratory set-up is introduced in Figure 3.
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12—shifting system of absorption set; Z—radiotracer injection. 

The hydraulic system is a closed circuit with a venting tank (7), which also forms a 
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verter. The pump speed control range is 1000–2800 rpm, which corresponds to velocity 
range of the flow from 0.5 m/s to 3.6 m/s. The measuring section of the pipeline (5) is a 
transparent Plexiglas pipe, length 4.5 m and internal diameter 30 mm, which is connected 
to the pump and the expansion-venting tank using flexible reinforced pipes (8, 9). The 
transparent section of the pipe allows the recording of a gas phase image using a fast 
camera. In addition, it is possible to mount ultrasonic probes (4) directly in the measuring 
section of the pipeline. Air from compressor (11) is forced into the initial part of the meas-
uring section of the pipeline through a nozzle (10). The shifting system (12) with a rail 
guide is used to mount the absorption sets. The carts are equipped with tables with holes 
for source collimators (1) and clamps for gamma radiation detectors (2). The sliding sys-
tem enables the distance between the detector and the radiation source to be changed by 
means of a lead screw and to change the distance between the sets. 

In the experiments two gamma-ray sources 241Am were used emitting photons with 
59.5 keV energy, and detectors with NaI(Tl) 2″ scintillation crystals.  

The stand shown in Figure 3 also allows for testing of flows using the tracer method. 
Measurements by means of radioactive markers are possible thanks to the fixed catches 
for the probes together with collimators (3) and the possibility of introducing radioactive 
solutions through the vent hole in the expansion tank (the marker feed site is marked Z in 
Figure 3). The test stand also includes a DAQ system, a PC with software that enables the 
analysis of signals from probes, and an ultrasonic flow meter to measure the velocity of 
the liquid. The DAQ module and software are used to allow data acquisition with an ad-
justable sampling time Δt from 0.1 ms, and the typical measurement time required to col-
lect a representative number of data is 3–8 min. 

Figure 3. A diagram of the set-up to investigate water–air flow in a horizontal pipe; 1—sealed gamma-
ray source; 2—detector for absorption measurement; 3—probe for tracer measurement 4—ultrasonic
flow meter; 5—measurement section (Plexiglas pipe); 6—pump; 7—air-removal container; 8—feed
hose (supply pipe); 9—return line (return hose); 10—air nozzle; 11—compressor; 12—shifting system
of absorption set; Z—radiotracer injection.
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The hydraulic system is a closed circuit with a venting tank (7), which also forms
a liquid expansion container. Water flow is achieved using a pump (6) controlled by an
inverter. The pump speed control range is 1000–2800 rpm, which corresponds to velocity
range of the flow from 0.5 m/s to 3.6 m/s. The measuring section of the pipeline (5) is a
transparent Plexiglas pipe, length 4.5 m and internal diameter 30 mm, which is connected
to the pump and the expansion-venting tank using flexible reinforced pipes (8, 9). The
transparent section of the pipe allows the recording of a gas phase image using a fast camera.
In addition, it is possible to mount ultrasonic probes (4) directly in the measuring section
of the pipeline. Air from compressor (11) is forced into the initial part of the measuring
section of the pipeline through a nozzle (10). The shifting system (12) with a rail guide is
used to mount the absorption sets. The carts are equipped with tables with holes for source
collimators (1) and clamps for gamma radiation detectors (2). The sliding system enables
the distance between the detector and the radiation source to be changed by means of a
lead screw and to change the distance between the sets.

In the experiments two gamma-ray sources 241Am were used emitting photons with
59.5 keV energy, and detectors with NaI(Tl) 2′′ scintillation crystals.

The stand shown in Figure 3 also allows for testing of flows using the tracer method.
Measurements by means of radioactive markers are possible thanks to the fixed catches
for the probes together with collimators (3) and the possibility of introducing radioactive
solutions through the vent hole in the expansion tank (the marker feed site is marked Z
in Figure 3). The test stand also includes a DAQ system, a PC with software that enables
the analysis of signals from probes, and an ultrasonic flow meter to measure the velocity
of the liquid. The DAQ module and software are used to allow data acquisition with an
adjustable sampling time ∆t from 0.1 ms, and the typical measurement time required to
collect a representative number of data is 3–8 min.

4. Analysis of Measured Signals

The impulse waveforms Ix(t) and Iy(t) received from the probes counted at a specific
sampling time ∆t create discrete stochastic measuring signals x(n) and y(n). Examples of
such signals (first 10,000 samples, after centring) obtained in the LIW experiments for four
types of flow types as the bubble, plug-bubble, plug, and slug are shown in Table 1. The
signal bandwidth was below 100 Hz, the sampling frequency 1 kHz (∆t = 1 ms), and the
recorded data blocks counted N = 480,000 samples (8 min of measurement). The waveforms
in the Table 1 require filtering before further analysis to remove radiation background noise
and interference from fluctuations of nuclear decay [22]. This was accomplished using
appropriate pass-band digital filters. A correspondingly long collection of such signals can
be considered ergodic and can be resolved in the time and frequency domain by various
statistical methods [16,23,24].

Table 2 summarizes the basic parameters of the analyzed flows from Table 1.
The Reynolds number Re was calculated from the equation [25]:

Re =
υL ·Dch·ρ

η
(2)

where ρ is the density of the liquid, η is the dynamic viscosity, and Dch is the characteristic
dimension for the liquid phase, defined for the pipeline with inner radius r, as [25]:

Dch= r
√

1 − α (3)

Void fraction α is defined as follows:

α =
VG
V

(4)

where VG is the volume of air, and V is the total volume of medium in the pipe.
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Table 1. Examples of flow structures and signals x(n) obtained in LIW1, LIW2, LIW4, and LIW5 experiments.

Experiment Example of Flow Structure Signal x(n)

LIW1
bubble flow
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number, α—void fraction.

Experiment υL (m/s) Re (-) α (-)

LIW1 3.56 4.7 × 104 0.227

LIW2 3.28 4.3 × 104 0.240

LIW4 2.92 3.7 × 104 0.266
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In the absorption method, a γ ray beam passes through the cross-section of the pipeline.
For this cross-section, Equation (4) can be replaced by the formula [9]:

α =
AG
A

(5)

where AG is the surface area taken up by gas, and A is the surface area of the internal
cross-section of the pipe.

4.1. Cross-Correlation Method

The cross-correlation method has been known and used for many years in signal
analysis [16,17]. The discrete estimator of the CCF can be calculated from the relationship:

R̂CCF(k) =
1
N

N−1

∑
n=0

x(n)y(n + k) k = 0, 1, 2 . . . K (6)

where N is the number of samples, k is the discrete value of the transportation time delay
k = τ/∆t, and K is the number of function values.

The transportation time delay is designated as the argument of the main maximum
CCF [16]. An example of the CCF in the LIW experiments is presented in Figure 4.
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Figure 4. Normalized CCF and CCF/ASDF and CCF/AMDF functions gained in the run: (a) LIW1,
(b) LIW2, (c) LIW4, (d) LIW5.
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4.2. Differential Methods

Discrete estimators of the AMDF and ASDF differential functions can be presented by
the following equations [24,26]:

R̂AMDF(k) =
1
N

N−1

∑
n=0
|x(n)− y(n + k)| k = 0, 1, 2 . . . K (7)

R̂ASDF(k) =
1
N

N−1

∑
n=0

[x(n)− y(n + k)]
2

k = 0, 1, 2 . . . K (8)

In both differential functions, the transportation time delay can be designated as the
location of the main minimum of functions (7) and (8). Simulation studies of differential
methods AMDF and ASDF were presented in the work [18].

4.3. Combined Methods

Good metrological properties can be obtained by using combined methods for the
analysis of stochastic signals from scintillation detectors, such as a quotient of CCF and
ASDF and AMDF differential functions according to the formulas:

R̂CCF/AMDF(k) =
R̂CCF(k)

R̂AMDF(k)
k = 0, 1, 2 . . . K (9)

R̂CCF/ASDF(k) =
R̂CCF(k)

R̂ASDF(k)
k = 0, 1, 2 . . . K (10)

The use of functions (9) and (10) to analyse the signals registered in the LIW experi-
ments allows us to obtain the waveforms shown in Figure 4. Figure 4 shows the functions
normalized to the maximum values, CCF was normalized similarly. Due to this, it is easy
to see that the obtained CCF/ASDF and CCF/AMDF waveforms have a slightly higher
steepness in the vicinity of the extreme points than the CCF.

5. Measurement Results

For all waveforms presented in Figure 4, the procedure for designating the location
of the main extreme was used, consisting of the interpolation of the selected fragment of
obtained characteristics with the Gauss function (in each case the same number of points
was used):

p(τ) = p0 +
1

σ
√

2π
exp

(
− (τ − τ̂0)

2

2σ2

)
(11)

where p0 is the normalization level of the Gauss function and σ is the standard deviation of
its distribution.

The samples of Gauss fit results for the characteristics CCF, CCF/AMDF, and CCF/ASDF
obtained in the LIW 1 run are presented in Figure 5. In this case, the transportation time
delay estimator τ̂0 is designated as the first moment of the matched distribution. The
standard uncertainty of the time delay u(τ̂0) can be determined from the equation [18]:

u(τ̂0) =
σ√
m

(12)

where m is the number of points used in the interpolation procedure (m = 51 for all cases).
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Figure 5. Exemplary results of the Gauss fit in the LIW1 experiment: (a) CCF, (b) CCF/AMDF,
(c) CCF/ASDF.

The average velocity of the dispersed phase υG (air bubbles) can be calculated from
Formula (1). With negligibly small uncertainties in the measurement path, the combined
standard uncertainty uc(υG) depends on the inaccuracy of determining the uncorrelated
quantities L and τ̂0:

uc(υG) =

√(
∂υG
∂L

)2
uB2(L) +

(
∂υG
∂τ̂0

)2
uA

2(τ̂0) (13)

where uB(L) is the standard uncertainty of measuring the distance between probes
(uB(L) = 0.02 mm), and uA(τ̂0) is the standard uncertainty in determining the average
transportation time delay. Indexes A and B mean, respectively, uncertainty type A and
type B [27,28].

Expanded uncertainty U0.95(υG) was calculated from dependence:

U0.95(υG) = kp uc(υG) (14)

where kp is the coverage factor (kp = 2 was adopted).
The results of the measurements of the average velocity υG and the expanded un-

certainties U0.95(υG) obtained in the LIW experiments are summarized in Table 3. The R2

parameter means the determination coefficient.
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Table 3. The results of measurements obtained in the LIW experiments.

Experiment Method ^
τ0(ms) σ(ms) u(

^
τ0)(ms) υG[ m

s ] U0.95(υG)[ m
s ] R2[−]

LIW1

CCF 36.21 16.43 2.30 2.68 0.34 0.99998

CCF/AMDF 36.24 11.22 1.57 2.68 0.23 0.99996

CCF/ASDF 36.22 9.34 1.31 2.68 0.24 0.99993

LIW2

CCF 41.80 22.61 3.17 2.32 0.35 1.00000

CCF/AMDF 41.82 9.55 1.34 2.32 0.15 0.99759

CCF/ASDF 41.80 6.96 0.98 2.32 0.11 0.99620

LIW4

CCF 47.31 22.61 3.17 2.05 0.27 0.99999

CCF/AMDF 47.29 9.55 1.34 2.05 0.12 0.99876

CCF/ASDF 47.30 6.96 0.98 2.05 0.08 0.99938

LIW5

CCF 72.86 28.37 3.97 1.33 0.15 0.99917

CCF/AMDF 73.02 22.90 3.21 1.33 0.12 0.98822

CCF/ASDF 72.83 17.45 2.44 1.33 0.09 0.99921

Table 4 shows the relative uncertainty values U0.95(υG)rel relative to the uncertainty
values for CCF. As can be seen, in each case the uncertainties for the combined methods
CCF/ASDF and CCF/AMDF are smaller than for the cross-correlation.

Table 4. The values of relative uncertainty U0.95(υG)rel .

Experiment Method U0.95(υG)rel(%)

LIW1

CCF 100

CCF/AMDF 68

CCF/ASDF 57

LIW2

CCF 100

CCF/AMDF 42

CCF/ASDF 31

LIW4

CCF 100

CCF/AMDF 42

CCF/ASDF 31

LIW5

CCF 100

CCF/AMDF 80

CCF/ASDF 62

6. Conclusions

This article presents an example of the application of the gamma absorption method to
measure the dispersed phase velocity of a two-phase water–air flow in a horizontal pipe. In
addition to the classical cross-correlation function, the analysis of signals from scintillation
probes uses the relatively less popular methods, AMDF and ASDF, which allow obtaining
combined methods: CCF/ASDF and CCF/AMDF.

As shown in Figure 4, the combined functions have a steeper course in the vicinity
of the extreme point than the CCF. Comparison of the measurement results obtained for
the four flow structures as the bubble, transitional plug-bubble, plug, and slug flows
shows that the smallest values of the uncertainty of all measurements of average air bubble
velocity were obtained in order for methods: CCF/ASDF, CCF/AMDF, and CCF. For
CCF/AMDF, the uncertainty U0.95(υG)rel is from 42% to 80% of the uncertainty for cross-
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correlation. For the CCF/ASDF method, it is from 31% to 62%, respectively. The results
obtained confirm the universality of the described methods for the experimental conditions
obtained. In two-phase flows, the velocity of movement of individual bubbles in a swarm of
bubbles is different and depends on many parameters. Therefore, the obtained uncertainties
undoubtedly contain deviations resulting from the natural movement of gas bubbles and
do not reflect only the uncertainty of the measurement method.
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