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Abstract: The present study investigates the effect of two parameters of process type and tool offset 

on tensile, microhardness, and microstructure properties of AA6061-T6 aluminum alloy joints. 

Three methods of Friction Stir Welding (FSW), Advancing Parallel-Friction Stir Welding (AP-FSW), 

and Retreating Parallel-Friction Stir Welding (RP-FSW) were used. In addition, four modes of 0.5, 

1, 1.5, and 2 mm of tool offset were used in two welding passes in AP-FSW and RP-FSW processes. 

Based on the results, it was found that the mechanical properties of welded specimens with AP-

FSW and RP-FSW techniques experience significant increments compared to FSW specimens. The 

best mechanical and microstructural properties were observed in the samples welded by RP-FSW, 

AP-FSW, and FSW methods, respectively. Welded specimens with the RP-FSW technique had better 

mechanical properties than other specimens due to the concentration of material flow in the weld 

nugget and proper microstructure refinement. In both AP-FSW and RP-FSW processes, by increas-

ing the tool offset to 1.5 mm, joint efficiency increased significantly. The highest weld strength was 

found for welded specimens by RP-FSW and AP-FSW processes with a 1.5 mm tool offset. The peak 

sample of the RP-FSW process (1.5 mm offset) had the closest mechanical properties to the base 

metal, in which the Yield Stress (YS), ultimate tensile strength (UTS), and elongation percentage 

(E%) were 76.4%, 86.5%, and 70% of base metal, respectively. In the welding area, RP-FSW speci-

mens had smaller average grain size and higher hardness values than AP-FSW specimens. 
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1. Introduction 

Among solid-state joining techniques, Friction Stir Welding (FSW) is a relatively new 

and useful technique used in various industries such as aerospace, marine, and automo-

tive industries [1–4]. In the FSW process, a non-consumable rotating tool heats the two 

pieces due to the contact and intense friction between the two pieces [5–7]. Many factors 
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affect the FSW joint, which are classified into two general categories of process parameters 

and tool geometry [5–7]. By changing the condition of each of the parameters, the heat 

and material flow distribution in the process change, which ultimately leads to a change 

in the mechanical quality of the joint [8–13]. The most important factors influencing the 

FSW process are the temperature and the material flow distribution patterns in the weld-

ing zone [14–18]. The heat and flow of materials created in the process derive from two 

factors: welding geometry and tool geometry. In the FSW process, two different zones are 

formed on either side of the weld line [19–23]. The side where the tool pin surface rotation 

direction and the tool traverse direction have the same vectorial sense is called the Ad-

vancing Side (AS), and the side where the tool pin surface rotation direction and the tool 

traverse direction have the opposite vectorial sense is called the Retreating Side (RS) 

[11,16,17]. The two regions of the AS and RS have significant differences in the way of 

heat distribution and plastic flow patterns, which cause significant differences in mechan-

ical and metallurgical quality in these areas [24]. The most important disadvantage of the 

linear FSW process is the lack of symmetry on either side of the weld [25–28]. If the asym-

metry in the temperature distribution and material flow in the FSW process can be elimi-

nated and the process turns into a relatively symmetrical process, the mechanical quality 

of the joint can be improved [29–31]. Different solutions have been suggested to eliminate 

this disadvantage, which includes the use of Reverse Dual-Rotation Friction Stir Welding 

(RDR-FSW) [32,33], implementation of the FSW process using tandem tools, using Multi-

Pass Friction Welding (MP- FSW) [34–36] with reverse rotation of the tool and the use of 

Parallel-Friction Stir Welding (P-FSW) [37]. 

A few pieces of research have been performed in the mentioned fields. Li et al. [32,33] 

investigated the RDR-FSW of AA2019-T6 aluminum alloy. Based on their findings, it was 

found that the use of the aforesaid technique significantly increases the mechanical and 

metallurgical quality of the joint and reduces the required force and torsional torque to 

perform the process. Shi et al. [38] modeled the RDR-FSW process thermo-mechanically. 

Based on the results, it was found that the use of the RDR-FSW technique leads to relative 

symmetry in heat distribution and plastic flow. In this method, two tools move in a line 

with reverse rotational speeds and perform the welding process. According to their re-

sults, this method has significant advantages over the conventional FSW process, such as 

reducing clamping force, torsional torque, and process defects and increasing joint effi-

ciency. Liu and Zhang [39] used the re-welding of the weld line technique to eliminate the 

groove defects. In the second pass, they reversed the tool rotation sense. Based on the 

results, it was found that the use of this method eliminates defects and significantly in-

creases joint efficiency. Kumari et al. [40] investigated the two-pass FSW process by re-

versing the direction of tool rotation in the first and second passes. According to the re-

ported results, the use of the MP-FSW technique with reverse rotation caused a significant 

increase in the mechanical properties of the joint. Jain et al. [41] investigated and numeri-

cally simulated the FSW process of inverted inline twin-pin tools with inverted rotation 

directions. It was found that the use of this tool increases the peak process temperature 

and symmetry of the strain distribution and strain rate in the process and reduces the 

defects of the FSW process. Ghiasvand et al. [42] introduced a new two-pass FSW method 

called P-FSW for welding two dissimilar aluminum alloys AA6061-T6 and AA7075-T6. 

Welding was performed in two passes with the same welding directions and different 

rotations of the tool, and in each pass, different offsets were used for the tool. Based on 

the obtained results, it was found that in case of using optimal values of tool offsets in the 

first and second passes, the joint efficiency for dissimilar welding sample increases signif-

icantly. 

Due to the fact that no research has been performed in the field of P-FSW technique 

other than the one mentioned above, the need for further studies in this field seems to be 

necessary. In the welding process of dissimilar materials with this method, the offset of 

the tool in the first and second passes and the type of P-FSW process are determined based 

on the difference in mechanical properties of the two materials participating in the joint. 
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However, in the welding of similar parts with the P-FSW technique same offsets in both 

passes must be used. Therefore, in the present study, the effects of two parameters of the 

tool offset and type of process on the mechanical, microhardness, and microstructure 

properties of FSW and P-FSW of AA6061-T6 alloy joints have been investigated. 

2. Materials and Methods 

2.1. Welding Methods 

In the present study, the convectional FSW method and the new P-FSW method have 

been used for welding. In the P-FSW method, welding is performed in two passes with 

the same welding direction and different tool rotation directions. For welding similar 

parts with this method, the first and second welding passes are performed symmetrically 

and with the same offsets. The directions of rotation of the tool are reverse in two passes 

to create relative symmetry in the temperature distribution and plastic flow created in the 

workpiece. According to the direction of rotation of tools in welding passes, this process 

has two different types [42]. If the direction of the tool rotation in the first and second 

passes of welding is such that the marginal zones of the welding line are in the RS region 

and the weld line is entirely in the AS region, the Advancing Parallel-Friction Stir Welding 

(AP-FSW) is formed and in reverse conditions of the mentioned condition, i.e., when the 

marginal zones of the weld line are in the AS region and the weld line is in the RS region, 

the Retreating Parallel-Friction Stir Welding (RP-FSW) is formed. The schematic of the 

FSW process and the two processes of RP-FSW and AP-FSW have been shown in Figure 

1. 

 

Figure 1. The schematic of the FSW, RP-FSW, and AP-FSW processes. 
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2.2. Workpiece, Tool, and Welding Machine 

AA6061-T6 aluminum alloy, which is widely used in aerospace, marine, and auto-

motive industries, was used to perform three techniques: FSW, AP-FSW, and RP-FSW. 

The chemical composition and mechanical properties of AA6061-T6 alloy have been 

shown in Tables 1 and 2, respectively. The chemical composition was performed by emis-

sion spectroscopy (Hitachi, Japan) according to the ASTM E415 number. 

Table 1. Chemical composition of AA6061-T6 alloy. 

Chemical Composition (%) 

Al Mg Si Cu Fe Cr Mn Zn Ti 

Balance 0.81 0.61 0.29 0.2 0.13 0.03 0.02 0.01 

Table 2. Mechanical properties of AA6061-T6 alloy. 

Yield Stress (MPa) Ultimate Tensile Strength (MPa) Elongation (%) 

268 330 17 

Weld geometry was considered as butt weld, and the dimensions of the parts partic-

ipating in the joint in all samples were considered equal to 120 mm × 50 mm × 5 mm. 

Before starting the welding, the surfaces of the samples were polished with sandpaper of 

different grades and cleaned using acetone to reduce the possibility of impurities. As men-

tioned, the FSW process was performed in one welding pass, and the two processes AP-

FSW and RP-FSW were performed in two welding passes. For samples welded by AP-

FSW and RP-FSW methods, the first and second passes were performed in the same di-

rections, and in each pass, the direction of tool rotation and tool position were reversed 

from the weld line. It should be noted that in all samples welded by AP-FSW and RP-FSW 

methods, the second welding pass was performed as soon as the first pass was completed. 

The convectional milling machine was used for welding. In order to fix the workpieces 

during the welding process, a suitable fixture was designed, and the workpiece was 

placed on the milling machine table during the welding process. The welding machine 

and fixture are shown in Figure 2. 

 

Figure 2. Schematic of milling machine and workpiece. 
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In the FSW-based process, tools must be such that their functions are kept at high 

temperatures, and their mechanical properties do not change [43–45]. Therefore, H13 

steel, which is a versatile chromium-molybdenum hot work steel that is widely used in 

hot work and cold work tooling applications, was used to make all the tools used, and 

after that, thermal hardening operations were performed on the tools to increase their 

hardness [46]. To perform three welding processes, a tool was used that its shoulder di-

ameter, pin diameter, and pin length were 20, 5, and 4.7 mm, respectively. The tool used 

in the FSW and P-FSW processes has been shown in Figure 3. The shoulder depth in all 

welding specimens was 0.1 mm. The dwell time for the first welding pass of all the sam-

ples was the same (5 s). 

 

Figure 3. The tool used in FSW and P-FSW processes. 

2.3. Welding Parameters and Experimental Models 

Due to the fact that the process parameters (traveling speed and rotational speed of 

the tool) play an influential role in the mechanical quality and microstructure of the 

welded parts, these parameters must be set at their optimal condition. For this purpose, 

in accordance with the proposed values in the literature review [47], the traveling and the 

rotational speed were set equal to 60 mm/min and 1180 rpm, respectively. In addition, the 

tilt angle was equal to 2 degrees. It should be noted that the same process parameters were 

used for all welding samples. 

As mentioned, in this study, the effects of two parameters of the type of welding 

process and tool offset on the mechanical and microstructural properties of the joint are 

investigated. Three welding processes, FSW, AP-FSW, and RPSW, have been used to in-

vestigate the effect of the type of welding process. In addition, in order to investigate the 

tool offset impact, 4 different offset values of 0.5, 1, 1.5, and 2 mm were used in two weld-

ing passes in two P-FSW processes, AP-FSW and RP-FSW. It should be noted that the tool 

offsets in both welding passes were equal and in reverse directions. A total of nine weld-

ing samples were performed, which differed in the type of welding process and the value 

of the tool offsets. The input parameters and their values of the nine experimental models 

have been shown in Table 3. 
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Table 3. Experimental models. 

Model’s Name Process Type Tool Offset (mm) 

Base FSW 0 

A0 

AP-FSW 

0.5 

A0.5 1 

A1 1.5 

A2 2 

R0.5 

RP-FSW 

0.5 

R1 1 

R1.5 1.5 

R2 2 

2.4. Mechanical and Metallographic Tests 

Vickers hardness test and tensile test were used to investigate the effect of the men-

tioned parameters on the welding joint. The SANTAM STM-25KN tensile test apparatus 

(Tehran, Iran) was used to perform the tensile test. Samples were cut perpendicular to the 

weld line. The samples were prepared according to the ASTM-E8M standard [48,49]. It 

should be noted that three tensile test samples were prepared from each welded specimen, 

and the results are based on the average of the three specimens. The schematic of the ten-

sile test specimen and the cutting position of three tensile tests have been shown in Figure 

4. 

 

Figure 4. Schematic of tensile test specimens and related cutting position. 

To perform the Vickers hardness test, a cross-section for each of the welded speci-

mens was prepared and polished using 220, 320, 500, 800, and 1200 grit sandpapers to test 

the microhardness. The microhardness test was performed in 30 s under a load of 50 g at 

room temperature. To record the microhardness distribution for each sample, 16 points 

were used at a depth of 1.5 mm of the weld section and perpendicular to the weld line 

with a distance of 1.5 mm. The positions of the points used to measure hardness in the 

weld have been shown in Figure 5 schematically. Welded samples were subjected to 
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metallographic tests to investigate microstructural changes. For this purpose, from each 

of the welded specimens, samples with dimensions of 5 × 5 × 20 mm were cut in the direc-

tion perpendicular to the weld line. They were then polished with 400 to 2000 grit sand-

paper. For etching, Keller reagent was used with a combination of 1% by volume of hy-

drofluoric acid, 1.5% by volume of hydrochloric acid, 2.5% by volume of nitric acid, and 

95% by volume of distilled water. The samples were etched in the prepared solution for 

30 s. 

 

Figure 5. Position of points used for hardness measurement. 

3. Results and Discussion 

3.1. Surface Morphology and Macrographs of Welding Specimens 

Three techniques, FSW, AP-FSW, and RP-FSW, were used to join AA6061-T6 alumi-

num alloys together. In this section, the surface morphology of welded specimens is first 

investigated. In Figure 6, the surfaces of welded specimens by three techniques described 

in different tool offsets have been shown. 
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Figure 6. Surfaces of welded specimens by three introduced welding techniques. 

As can be seen, the surfaces of all welded specimens with three different techniques 

are smooth, and there is no defect of lack of fill on the surfaces of the specimens. In FSW 

and RP-FSW welded specimens, the welded surfaces are smooth and fully integrated, and 

no visible protrusions or voids were formed in these specimens. However, it can be seen 

that in all four samples welded by the AP-FSW technique, protrusions and flash have been 

formed in the marginal area of the welding line. In general, the flash defect is caused by 

an increase in heat in the area of the welding edges [50–53]. According to the studies con-

ducted in the literature review, the temperature distribution in the AS is larger than the 

RS, and the maximum process temperature normally occurs in this region [2,54]. There-

fore, it was observed that in the samples welded by the AP-FSW technique, due to the 

accumulation of heat in the nugget zone (AS region) and the increase in heat from the 

optimal value, flash defects were formed. In RP-FSW welded specimens, the concentra-

tion of heat and plastic flow in the central weld zone (RS zone) is more stable, and no 

significant surface defects were observed in these specimens. In RP-FSW welded speci-

mens, the concentration of heat and plastic flow in the nugget zone (RS zone) is more 

stable, and no significant surface defects were observed in these specimens. For a more 

appropriate study, the welding cross-section macrographs of welded specimens by the 

AP-FSW and RP-FSW methods have been shown in Figure 7. 
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Figure 7. Welded section cross-section macrograph of AP-FSW and RP-FSW samples. 

As shown in Figure 7, the cross-section of all welding specimens except the A2 lacks 

common defects such as voids and wormholes. These two common defects are because of 

the lack of adequate and improper plastic flow [55–57]. In AP-FSW welded specimens, the 

direction of material flow is toward the peripheral areas of the welding line, which causes 

a lack of proper concentration of flow in the central welding area. In sample A2, due to 

the size of the weld zone caused by the increase in the tool offset and the decrease in the 

concentration of plastic flow, the bottom surface of the sample has a wormhole defect. In 

general, the presence of a wormhole defect leads to the formation of macro cracks in this 

area and greatly reduces the mechanical properties of the welded joint [58–62]. The use of 

AP-FSW and RP-FSW techniques leads to significant modifications in different welding 

areas. One of these changes is the increase in the area of the Stir Zone (SZ), which is due 

to the tool offset at the welding passes. According to Figure 7, in the AP-FSW and RP-FSW 

processes, the welding area in the welded specimens increased with increasing the tool 

offset in the first and second passes. In the FSW process, the SZ is generally formed at the 

tool pin passage locus, and its width is approximately equal to the diameter of the tool 

pin [8,37,47,63,64]. In P-FSW techniques, in addition to the dimensions of the tool, the 

width of this area depends on the tool offset in the first and second welding passes. As 

the tool offset increases, the overlap area of the first and second weld passes decreases 

and the width of the SZ increases [30,40,65,66]. Changing the direction of flow (advancing 
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or retreating) and the surface of this region directly leads to changes in the microstructural 

patterns and mechanical properties of the welding joint. 

3.2. Tensile Test Results 

According to the explanations provided in Section 2, 27 samples were provided for 

tensile testing from 9 experimental joints. It should be noted that the average results ob-

tained from three tensile tests were reported as the final results. Four parameters of Yield 

Stress (YS), Ultimate Tensile Stress (UTS), Elongation Percentage (E%), and failure posi-

tion of the samples were considered to study. The results obtained from the tensile tests 

are shown in Table 4. 

Table 4. Results of tensile tests. 

Process 
Sample YS (MPa) UTS (MPa) E% Fracture Location 

BM 268 311 17 Middle 

FSW Base 132 179 8.3 AS-HAZ 

AP-FSW 

A0.5 136 185 9.3 SZ 

A1 151 195 9.5 SZ 

A1.5 179 211 10.2 SZ 

A2 125 163 8.4 SZ 

RP-FSW 

R0.5 150 201 10.8 AS-HAZ 

R1 191 246 11.2 AS-HAZ 

R1.5 205 269 11.9 AS-HAZ 

R2 189 223 11.6 AS-TMAZ 

Failure of tensile test specimens may occur mainly in four zones, which are the SZ, 

Thermo-Mechanically Affected zone (TMAZ), Heat-Affected Zone (HAZ), and the Base 

Metal (BM), respectively. Depending on the type and connection conditions, the final fail-

ure occurs in one of the zones listed in the AS or RS sections. In FSW welded specimens, 

due to the endurance of large thermal cycles and lack of proper plastic flow in the AS, the 

final failure generally occurs in this region. Based on the results presented in Table 4, the 

samples studied in the present study also generally experienced final failure in the AS. 

Due to the location of the AS in the middle of the welding section of AP-FSW specimens, 

it can be seen that the specimens welded by this method failed from the central section. In 

addition, in the samples welded by the RP-FSW method, due to the location of the AS 

areas at the edge of the workpiece, failure occurred in the edges of the weld line. Based 

on the results of tensile tests presented in Table 4, in all studied offsets, the UTS, YS, and 

E% parameters of the joints welded by the RP-FSW technique are larger than the AP-FSW 

specimens. According to the researches, in general, the mechanical and microstructural 

properties of the joint in the RS region are more suitable than in the AS region, which is 

due to the appropriate and significant plastic flow in the RS region compared to the AS 

[67–69]. Due to the inversion of the flow direction and the direction of tool movement in 

AS, a relatively fewer material flow is formed in AS than in RS. This leads to a lack of 

proper microstructure and concentration of defects in this area of the weld, which ulti-

mately reduces the mechanical properties of the final joint. In the RP-FSW process, the 

central part of the weld line is completely located in the RS region, which increases the 

mechanical properties of the joint. In Figures 8–10, the diagrams of changes in the YS, UTS, 

and E% parameters for different specimens have been shown, respectively. 

Based on the results presented in Figure 8, it was found that the tool offset in the AP-

FSW and RP-FSW processes is the most important factor affecting the mechanical proper-

ties of the joint. In both AP-FSW and RP-FSW processes, by increasing the tool offset, the 

YS parameter experiences a significant increase to an offset of 1.5 mm and then decreases. 

In the 1.5 mm offset, in the AP-FSW and RP-FSW process, the YS parameter experiences 
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35.6% and 55.3% growth in comparison with the base specimen (FSW joint), respectively. 

These significant changes in mechanical properties can be attributed to changes in the heat 

distribution pattern, material flow pattern, and microstructural changes that occur with 

changes in the tool offset during the weld zone. 

 

Figure 8. Comparison of YS values of welded specimens with FSW, AP-FSW, and RP-FSW tech-

niques. 

According to Figures 9 and 10, a similar pattern is observed in the UTS and E% vari-

ables. The final values of these two parameters are also directly dependent on the type of 

welding process and the tool offset in two welding passes. In samples welded by AP-FSW 

and RP-FSW methods, the UTS and E% variables were at maximum level at a tool offset 

of 1.5 mm. In this situation, the UTS and E% parameters for the AP-FSW specimen expe-

rienced 17.8% and 50%, respectively, and the RP-FSW specimen experienced 22.8% and 

43.3% growth compared to the FSW specimen. In both groups welded by AP-FSW and 

RP-FSW methods, increasing the tool offset by more than 1.5 mm reduced the joint’s me-

chanical properties. 
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Figure 9. Comparison of UTS values of welded specimens with FSW, AP-FSW, and RP-FSW tech-

niques. 

 

Figure 10. Comparison of E% values of welded specimens with FSW, AP-FSW, and RP-FSW tech-

niques. 

This decrease in mechanical properties is due to the reduction in plastic flow concen-

tration in the central area of the weld and the formation of defects in the weld nugget. The 

lowest tensile mechanical properties among welded specimens using the three methods 

belong to specimen A2. According to the results, it was found that except for the A2 spec-

imen, the mechanical properties of other joints performed by two processes of AP-FSW 
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and RP-FSW in all different tool offsets had a significant increase compared to the FSW 

specimen. According to the presented results, it was found that the use of AP-FSW and 

RP-FSW methods in comparison with conventional FSW significantly increases the me-

chanical properties of the joint. The RP-FSW peak model (specimen R1.5) has the closest 

mechanical properties to the base metal, in which the parameters YS, UTS, and E% are 

76.4%, 86.5%, and 70% of the base metal, respectively. 

3.3. Microhardness and Microstructure 

The microhardness patterns of welded specimens with AP-FSW and RP-FSW tech-

niques with different tool offsets have been shown in Figures 11 and 12, respectively. 

 

Figure 11. Hardness profiles of AP-FSW specimens with different tool offsets. 

According to Figures 12 and 13, regardless of the tool offset, the hardness profiles of 

the zones located in the first and second passes of specimens welded by AP-FSW and RP-

FSW are asymmetric. In both groups of welded specimens, the hardness of the zones cov-

ered in the second pass is greater than the zones covered in the first pass. This is due to 

the intensification of microstructural changes in the zones covered by the second welding 

pass, which leads to further microstructural corrections and improved hardness of these 

zones. Hardness changes of welded specimens with two processes of AP-FSW and RP-

FSW have a relatively similar pattern. In both groups, the highest hardness belongs to the 

welded specimens with offsets of 1.5, 1, 0.5, and 2 mm, respectively. The main difference 

in the stiffness pattern formed in these two processes is related to the weld nugget. The 

RP-FSW specimens, due to higher material flow concentration and better microstructure 

modification, had greater hardness in comparison with AP-FSW specimens. According to 

the diagrams presented in Figures 11 and 12, regardless of the type of welding process, 

the pattern of microhardness distribution across the weld cross-section of all samples is 

W-shaped, which is in accordance with the patterns obtained in most FSW studies 

[65,70,71]. 
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Figure 12. Hardness profiles of RP-FSW specimens with different tool offsets. 

 

Figure 13. Microstructure of different areas of the sample welded by FSW technique. 

In all samples, the lowest hardness values occurred in the HAZ. After the HAZ re-

gion, TMAZ and SZ had the least amount of hardness. In the SZ, due to the presence of 

large plastic flow and heat close to the melting temperature, complete dynamic recrystal-

lization, and more appropriate microstructure modification are formed in this region. Due 
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to the inverse relationship between hardness and grain size, by reducing the grain size in 

the SZ, the hardness of this region experiences significant growth compared to other areas 

of the weld section [2]. The microstructure images of different regions of the FSW welding 

sample have been shown in Figure 13. 

As can be seen, the grain size differentiation in the SZ, TMAZ, and HAZ regions is 

well marked in the microstructural images. No dynamic recrystallization has taken place 

in the HAZ, and the grain sizes in this region are almost similar to that of the base metal 

and are only partially elongated. The TMAZ is formed by high temperature and uniform 

deformation during the welding process. Deformed and somewhat recrystallized grains 

can be seen in this zone. Recrystallization is rare in TMAZ due to insufficient temperature 

and less deformation intensity than in the central region. The SZ has the highest defor-

mation rate among other regions and contains fine and equiaxed grains resulting from 

complete dynamic recrystallization. This zone experiences the highest temperature and 

plastic deformation during the process. Severe plastic deformation and high temperature 

in this area have led to complete recrystallization and severe microstructural changes in 

this area. As can be seen in Figure 13, in the SZ, relatively microstructural modification 

and severe being fine-grained have occurred. To compare the difference in grain size in 

the weld nugget of different samples, the SZ grain size image of welded specimens using 

the AP-FSW and RP-FSW techniques has been shown in Figure 14. In addition, for the 

purpose of quantitative comparison, the average grain size diagram of the SZ of welded 

specimens with three techniques, FSW, AP-FSW, and RP-FSW, has been shown in Figure 

15. 
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Figure 14. Distribution of SZ microstructure for welded specimens using AP-FSW and RP-FSW techniques. 
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Figure 15. Comparison of average SZ grain size of welded specimens. 

As shown in Figures 14 and 15, the lowest grain size in the SZ region belongs to the 

samples welded by RP-FSW, AP-FSW, and FSW methods, respectively. It can be seen that 

the trend in the average grain size in the three welding methods is in accordance with the 

results obtained from tensile and microhardness tests. In the samples welded by AP-FSW 

and RP-FSW methods, due to the overlap formed in the first and second passes, the mi-

crostructural modification increased, which resulted in increasing the being fine-grained 

in the SZ. As can be seen, up to 1.5 mm tool offset, the mean grain size in the SZ is inversely 

proportional to the tool offset value in the first and second passes. As the tool offset in-

creases, due to the reduction in the area of the overlap region in the first and second passes 

and the reduction in severe plastic deformation and heat in this region, the phenomenon 

of crystallized grain growth decreases, and finally, this process leads to a decrease in av-

erage grain size. The lowest average grain size belongs to the sample R1.5. The average 

grain size in this sample has decreased by 34.4% compared to the FSW sample. The reason 

for the differences in mechanical properties and microstructure of specimens welded with 

introduced three methods used is the different nature of these methods. In the conven-

tional FSW method, due to the non-uniformity of the translational and rotational speeds 

directions of the tool on both sides of the welding line, the material flow and temperature 

distribution have an asymmetric trend in the process. This asymmetry in the process leads 

to the formation of fundamental differences in the RS and AS. Using AP-FSW and RP-

FSW techniques, the temperature, and material flow distribution patterns change from an 

asymmetric condition to a relatively symmetrical one, and the regions formed in the weld-

ing section have similar and balanced conditions on both sides of the weld line. 

4. Conclusions 

The present study investigated the effect of two parameters of process type and tool 

offset value on tensile, microhardness, and microstructure properties of AA6061-T6 alu-

minum alloy joints. Three methods were used: FSW, AP-FSW, and RP-FSW. The following 

results were obtained: 
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1. In both AP-FSW and RP-FSW processes, the mechanical properties of the joint in 

most of the tool offset values significantly increased compared to the FSW process, 

which indicates the superiority of the joint in P-FSW processes over conventional 

FSW. 

2. In all tool offset values, the mechanical properties and efficiencies of the joints formed 

by the RP-FSW technique were greater than those of the AP-FSW specimens. 

3. In both AP-FSW and RP-FSW processes, the UTS, YS, and E% of welded specimens 

increased by increasing the tool offset up to 1.5 mm. The best mechanical properties 

for both AP-FSW and RP-FSW processes were formed at the tool offset of 1.5 mm. 

4. At the tool offset of 1.5 mm, in the AP-FSW and RP-FSW processes, the YS parameter 

grew 35.6% and 55.3% relative to the base sample (FSW joint), and the UTS parameter 

relative to the base sample (FSW joint) experienced 17.8% and 50.2% increase, respec-

tively. 

5. The peak sample of the RP-FSW process (1.5 mm of tool offset) had the closest me-

chanical properties to the base metal. In this sample, the parameters YS, UTS, and E% 

are 76.4%, 86.5%, and 70% of the base metal values, respectively. 

6. The failure position of the welding specimens in the tensile test was significantly de-

pendent on the type of welding process. In all welded specimens using FSW, RP-

FSW, and AP-FSW techniques, specimen failure occurred in the AS. 

7. Regardless of the type of welding process, the lowest hardness values occurred in the 

HAZ in all specimens. After HAZ, TMAZ and SZ had the lowest hardness compared 

to the hardness of the base material. 

8. RP-FSW welded specimens had more suitable microstructure modification, finer 

grain size, and higher hardness values compared to AP-FSW specimens. 
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