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Abstract. In this paper we investigate performance-energy optimiza-
tion of tokenizer algorithm training using power capping. We focus on
parallel, multi-threaded implementations of Byte Pair Encoding (BPE),
Unigram, WordPiece, and WordLevel run on two systems with different
multi-core CPUs: Intel Xeon 6130 and desktop Intel i7-13700K. We an-
alyze execution times and energy consumption for various numbers of
threads and various power caps and demonstrate that energy consump-
tion can be minimized for both CPUs, while metrics such as EDP and
EDS could be optimized for the i7-13700K CPU. We further show that
percentage energy gain versus execution time loss could be optimized by
3-6% and 7-13%, depending on the algorithm, for the two CPUs respec-
tively, by applying proper non-default power caps.

Keywords: tokenization algorithm, power capping, performance-energy
optimization, energy consumption, EDP, EDS

1 Introduction

Performance-energy optimization of applications using high performance com-
puting systems has gained much attention in recent years [5]. Most of the con-
temporary computers feature multi-core CPU(s) and typically at least one accel-
erator such as a GPU. This applies to all: powerful cluster nodes, workstations,
desktop and even mobile machines. Nodes can be additionally interconnected
into a cluster, preferably with a low-latency, high-bandwidth network like Infini-
band. Parallelization of computations is required for utilization of the full com-
putational power of such systems, at all levels: nodes, compute devices within a
node as well as multi-threaded processing for efficient use of each compute de-
vice’s processing cores. Additionally, techniques such as DVFS and subsequently
power capping have emerged as ways for controlling performance-energy profiles
of such devices. These can be used for finding interesting performance-energy
trade-offs optimizing metrics such as Energy Delay Product (EDP) – energy
mulitplied by execution time, Energy Delay Sum (EDS) – weighted sum of en-
ergy and execution time, or energy [7]. In this work, we are exploring potential
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of power capping for the application of tokenizer training, crucial for natural
language processing systems. We are exploring multi-threaded execution using
representatives of both server and desktop class CPUs.

The outline of the paper is as follows. Section 2 contains description of state-
of-the-art works concerning incorporation of power capping for the purpose of
optimizing performance-energy metrics. Energy-aware optimization is presented
including for the applications such as training a transformer-based language
model, assessment of job’s power consumption in the context of NLP. Section 3
outlines the motivations and contribution of this work, along with the descrip-
tions of tokenization algorithms analyzed in this paper: Byte Pair Encoding
(BPE), Unigram, WordPiece, and WordLevel. Section 4 discusses the application
workflow as well as details of execution of the tokenization algorithms. Section 5
includes descriptions of the experiments that we have executed, including: de-
tails of the testbed environments with two different, server and desktop, CPUs;
results including energy consumption, execution time, Energy Delay Product
(EDP), Energy Delay Sum (EDS) and energy gain versus/relative to time loss
meant as the difference between energy gain compared to default power cap
and time loss compared to default power cap – percentage wise, all metrics for
the power cap imposed on a testbed CPU. Finally, we provide discussion of the
results and finalize with a summary and outline of future work in Section 6.

2 Related work

Power capping can be considered at various levels in a parallel system i.e. impos-
ing a power cap on a computing/data center, a particular cluster, a machine or
finally processors, memory with individual computing devices such as CPUs[14,
9] and GPUs[8].

Power capping could be enforced using technologies such as DVFS, control-
ling power states, using dedicated power capping APIs that allow setting upper
bounds on the power used by respective compute devices [5]. There are several
APIs allowing to set power caps for modern compute devices for various markets:
server, desktop and mobile. This is possible for Intel CPUs using Intel RAPL and
for NVIDIA GPUs using NVIDIA NVML. Power capping, on one hand, limits
the performance of a given compute device, on the other hand it gives potential
for lower energy consumption used throughout application execution, in spite
of larger execution time. Additionally, metrics that incorporate both execution
time and energy consumption, such as energy delay product (EDP) or Energy
Delay Sum (EDS), can also benefit from setting non-default power caps.

Energy-aware optimization considering power capping has been demonstrated
for numerous configurations and compute devices. Authors of paper [2] maximize
performance of a multi-threaded application under a power cap considering two
parameters: the number of cores used and the core power state. Performance of
numerical algorithms with different computational intensities under power caps
are investigated in [4]. Training deep convolutional neural networks for image
recognition has been shown to benefit from non-default power caps for optimiza-
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tion of energy, EDP and EDS e.g. when optimizing for EDP – 25%–28% of energy
was saved with average 4.5%–15.4% performance loss [6]. In [3] authors studied
impact of power capping on Intel KNL and KNM on three wordcount-based
mini-apps: Map+Shuffle, GroupByKey and ReduceByKey.

There are tools available for automatic determination of particular power
caps, optimizing a given metric such as energy, EDP or EDS. This can be done
statically (executing an application from start until end) using SPLiT or dy-
namically using DEPO, for both CPUs [7] and GPUs [8]. In the latter case,
both performance and average power under a given power cap are determined
dynamically within a short time window, allowing to assess the value of a given
metric. The space of power caps is browsed at runtime which allows to find the
one optimizing the metric. The tool assumes an initialization phase followed by
a tuning phase (searching for a power cap) and the remaining execution phase
under the found power cap. DEPO can use one of the two algorithms for brows-
ing the space of power caps: Linear Search (LS) that browses the space of power
caps with a predefined step or Golden Section Search (GSS) that minimizes the
number of steps searching for the minimum of the metric function under the
power cap.

Energy-aware processing of language models has already gained attention.
For instance, in [10] authors demonstrated that power-capping on various GPUs
can result in optimizing performance-energy trade-offs for NLP applications.
Specifically, they trained transformer-based networks including BERT, Distil-
BERT and Big Bird using NVIDIA V100 GPUs. Applying different power caps,
compared to the default 250W limit, resulted in larger percentage energy gains
compared to percentage performance losses. For instance, for the aforementioned
GPU, using a power cap of 150 W, it was possible to save 12.3% of energy at the
cost of 8.5% performance loss for BERT and approx. 15% energy reduction at
the cost of less than 10% performance loss for DistilBERT. Interestingly, similar
trade-offs were observed for NVIDIA A100, but it was not the case for K80 and
T4 GPUs suggesting that such trade-offs depend not only on the application,
but also on the testbed computing device(s).

A different but very interesting combination of NLP and AI was presented
in [1] for prediction of HPC job’s power consumption. The former is used to
extract meaningful insights from the job’s data. A regression problem for the
job’s power consumption prediction is solved. The goal of exploration batch size
and power limit for optimization of performance-energy trade-offs for training
deep neural networks was explored with Zeus in [13]. For DeepSpeech2 trained
with LibriSpeech using the NVIDIA V100 GPU, energy consumption–training
time Pareto front was presented. A linear combination of Energy To Accuracy
and Time To Accuracy is taken into account for optimization. The proposed
technique uses a batch size optimizer with Multi-Armed Bandit with Thompson
sampling and a just-in-time profiler for obtaining power (NVML is used and
5s measurements for each power limit) and throughput for various power lim-
its during the first epoch. Several models were tested, including DeepSpeech2,
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BERT, ResNet-50, ShuffleNet V2 and NeuMF, with reported energy gains of
7%-52% at the cost of training time increase of up to 16%.

In [11] authors proposed EdgeBERT that is an algorithm-hardware co-design
aimed at latency-aware energy optimization for multi-task NLP. The solution
uses dynamic voltage-frequency scaling (DVFS) for minimal energy consumption
while meeting a target latency, at a sentence granularity. The solution requires
up to 7x and 2.5x lower energy compared to the standard inference without early
stopping and a latency-unbounded early exit method.

3 Motivation and contribution

Based on previous, aforementioned successful attempts in determining nontrivial
power caps to optimize energy use, we plan to apply these strategies to tokenizer
training. Our goal is to find configurations that optimize performance-energy bal-
ance or energy. We will focus on metrics such as Energy-Delay Product (EDP),
Energy-Delay Product (EDS), and energy minimization.

What is more, in order to increase the effective coverage of our research, we
performed a series of experiments both on a server multi-core CPU as well as
a modern multi-core CPU with both performance/efficiency cores, under power
capping. Showing results across a spectrum of configurations, we are able to
highlight the relevancy of discovered correlations. This information is valuable for
developers and researchers with access to server/workstation grade equipment.
It is also pertinent to users with desktop-class systems, who are an essential part
of rapidly growing community focused machine learning-based natural language
processing solutions.

Preparing a well trained tokenizer is a crucial aspect of developing efficient
and effective natural language processing systems. Training a tokenizer is essen-
tially a statistical and stochastic process, wherein the primary goal is to break
down text into smaller, manageable units called tokens. This process is vital be-
cause different corpora, comprising varied linguistic features, necessitate distinct
tokenization strategies. For example, languages from different linguistic families
may require separate tokenizers to enable localization in large language models
(LLMs).

Among the most prominent tokenization algorithms are Byte Pair Encoding
(BPE), Unigram, WordPiece, and WordLevel, described in Section 4 in more
detail. BPE, initially used in data compression, iteratively merges the most fre-
quent pair of bytes in a corpus. This approach is highly effective in managing
subword units, reducing the out-of-vocabulary issue common in language mod-
eling. The Unigram algorithm, on the other hand, starts with a large vocabu-
lary and prunes it down using a language model. It is particularly effective for
languages with logographic characters like Chinese. WordPiece, popularized by
models like BERT, splits words into a limited set of common subwords, balancing
between the character and word levels. This method improves the handling of
unknown words and morphological richness of languages. Lastly, the WordLevel
algorithm is a straightforward approach where the vocabulary consists of whole
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words. While simple, it is less effective for languages with rich morphology or
those that do not use whitespace as a word delimiter.

These tokenization methods are the backbone of most state-of-the-art tok-
enizers, mainly due to their efficiency in capturing linguistic nuances and adapt-
ing to different languages and contexts. Their application is crucial in LLMs, as
they are required for the models to understand and generate human-like text,
making them making them inseparable from current NLP research.

Every research and development endeavor in natural language processing us-
ing large language models necessitates the use of a tremendous volume of data.
Realistically, even in small-scale experiments, the computational cost of prepar-
ing a tokenizer on a new or modified corpus represents a significant expense.
The process of tokenization, essential for parsing and understanding text data,
requires substantial computational resources, especially when adapting to new
languages or unique linguistic features.

Consequently, any percentage reduction in energy consumption during this
phase can translate into substantial monetary savings. Furthermore, the envi-
ronmental impact of such efficiency gains cannot be overstated. Lower energy
consumption directly correlates to reduced carbon emissions and a lesser environ-
mental footprint. This aspect is particularly crucial given the growing concerns
about the energy-intensive nature of training and deploying LLMs. Therefore,
advancements in reducing the energy requirements for tokenizer preparation and
other NLP processes contribute not only to economic efficiency, but also to the
urgent need for more sustainable practices in the field of artificial intelligence.

Our research provides a novel contribution by optimizing the training pro-
cess of base tokenizers for energy conservation, a topic not extensively covered
in previous literature. Unlike prior studies, which have primarily focused on the
accuracy and speed of tokenizers, our work emphasizes the environmental and
cost-saving benefits. This approach is especially crucial for those intending to
develop new tokenizers using established algorithms mentioned before as a back-
bone for their solutions. Moreover, the possibilities extend beyond just future
developments and novelty applications. By enhancing the efficiency of these base
tokenizers, we can provide a ripple effect of energy savings across various appli-
cations leading to a positive environmental impact, as well as democratizing the
field by lowering the overall cost of development.

4 Application workflow

In order to maximize the impact of the differences between the tested algo-
rithms, we preprocessed the dataset with the Whitespace pretokenizer. This
dataset consists of reviews of miscellaneous products and books from online
stores. The Whitespace pretokenizer splits text into tokens based on spaces and
other whitespace characters. This basic yet crucial step allows for further, more
sophisticated tokenization and analysis. Finally, the processed data was saved
to a file. With such a procedure we are able to isolate the noise of the additional

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


6 O. Diakun et al.

computational cost not related with the algorithm that is currently investigated
and highlight its energy characteristic.

Every analysis begins with creating an instance of a chosen tokenizer, us-
ing an implementation provided via The Huggingface[12] models and trainers
from the tokenizers API. The algorithms are prepared using Rust, a language
renowned for its performance and concurrency capabilities. Rust’s design allows
the tokenizers to be highly parallelized, making them ideal for handling large
datasets efficiently, which enables our research giving hope for unique powercap
configurations that allow for energy consumption optimization using the SPLiT
tool discussed in Section 2.

As we delve into the specific tokenization algorithms, it is important to rec-
ognize their different levels of complexity and room for efficient parallelization.
This section examines used tokenizers, highlighting how their distinct character-
istics influence the overall performance of the text analysis pipeline.

Byte Pair Encoding (BPE) starts by treating each word as a sequence of
characters with an end-of-word symbol. Initially, each character is a separate
token. BPE then merges the most frequent adjacent token pairs repeatedly until
a set number of steps or desired vocabulary size is reached. This results in
high-frequency character pairs, or byte pairs, which are used as single tokens in
further processing. These tokens often represent common character combinations
or whole words, allowing the model to efficiently represent and process text data.

The Unigram Language algorithm begins with a large vocabulary of subwords
and iteratively prunes it. In each iteration, it calculates the likelihood of the
training data under the current vocabulary and then removes each token one
at a time. The algorithm measures the change in likelihood from each removal,
estimating the loss. Tokens with the least impact on likelihood are pruned. This
process continues until the vocabulary reaches the desired size or further pruning
no longer optimally reduces the model’s complexity.

WordPiece is similar to BPE but differs in its token merging criterion. It
starts by segmenting text into characters and builds a vocabulary by combining
tokens that minimize loss in a language model’s likelihood. This process balances
the frequency of individual tokens and their co-occurrences. Unlike BPE, which
focuses solely on token frequency, WordPiece better captures linguistic structure.
It continues merging the most beneficial token pairs until a specified vocabulary
size is reached, creating efficient tokens for the model to process.

WordLevel tokenization is the simplest one of these algorithms. It involves
splitting the text into tokens based on spaces and punctuation, treating each
unique word as a separate token. This method starts by building a vocabulary
of all unique words in the training corpus. Each word is then assigned a unique
ID. In processing text, each word is simply replaced by its corresponding ID.

5 Experiments

In our series of experiments, we evaluated the performance of various algorithms
across different hardware configurations. Tokenizer fitting initially involves col-
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lecting and aggregating statistics into a shared structure. To accurately reflect a
real-world scenario and minimize the risk of over-parallelization, the text corpus
must be relatively large compared to the available computational resources. If
excessive computing power is allocated to a relatively small dataset, there’s a
high likelihood that the problem will become overly granular. This could shift
the computation-communication ratio to a suboptimal level during the tests,
potentially distorting the collected results. These concerns have led to the deci-
sion to create a small, yet representative dataset that can accommodate multiple
testbed platform-algorithm combinations. We will empirically determine a subset
of thread numbers and progressively extend it until scaling problems emerge.

After performing numerous tests and refining the dataset, 1,2 and 4 threads
configurations were deemed representative for the purpose of portraying how the
algorithms scale and behave under the restrain of power capping. The dataset
was carefully composed to showcase maximal linguistic richness, capturing as
many linguistic features as possible within a size limit of 2GB. This constraint
ensures that the duration of a single test run remains below 6 hours. Furthermore,
this approach offers promising insights into the scalability of results for larger
configurations, provided that the corpus is sufficiently large to avoid impeding
the parallelization of the algorithm used.

Following the initial test tuning and analysis, we assigned each machine to
perform two series of experiments. This approach was adopted to mitigate the
impact of random variations in the results. Each series consisted of 12 tests, each
conducted 5 times to eliminate the impact of outlier results, encompassing three
different thread configurations for each algorithm. Consequently, this structured
methodology led to a total of 180 comprehensive experiments being executed
across three distinct hardware configurations.

5.1 Testbed environments

Our testing was conducted on two distinct machines, configured in three different
hardware setups.

The first machine, referred to as the ’server machine’, operates on Ubuntu
22.04.3 LTS. It boasts 180GB of RAM and is powered by dual Intel(R) Xeon(R)
Gold 6130 CPUs. This configuration offers a total of 64 logical processors at
2.10GHz, with the capability to reach a peak frequency of 3.70 GHz. Each of
these CPUs has a Thermal Design Power (TDP) of 125W.

The second machine is designed to emulate the typical resources available
within a desktop system, also running on Ubuntu 22.04.3 LTS. This setup in-
cludes 32GB of RAM and utilizes an Intel(R) Core(TM) i7-13700K CPU, with
a TDP equivalent to the Xeon Gold CPUs at 125W.

A unique feature of the Intel(R) Core(TM) i7-13700K CPU enables us to
create two distinct sub-configurations, treated as separate entities for our tests.
The first sub-configuration uses the CPU’s ’performance’ cores (cores 0-15),
which have a base frequency of 3.40GHz and can reach up to 5.30GHz. The
second sub-configuration is limited to the ’efficient’ cores (cores 16-23), operating
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at a lower maximum frequency of 4.20GHz and, theoretically, consuming less
power.

5.2 Results

Efficient cores Due to the fact, that the efficient cores are already heavily opti-
mized, when it comes to energy expenditure - computational efficiency trade-off,
all efforts to further optimise it resulted in the lack of positive, or purely negative
change in this field. Due to that reason the results will not be presented in detail,
manipulating the power caps in that scenario for the considered applications is
not advised, based on our experience.

Fig. 1: Absolute Energy Consumption
in relation to power cap value for 1, 2
and 4 threads. Intel(R) Xeon(R) Gold,
BPE.

Fig. 2: Absolute Execution Time in re-
lation to power cap value for 1, 2 and 4
threads. Intel(R) Xeon(R) Gold, BPE.

Xeon Gold—BPE algorithm In Figure 1, it is observed that the variant uti-
lizing 4 threads is most efficient in both energy and time metrics. The minimum
energy consumption is observed at a power cap of approximately 102 W, amount-
ing to 22.9 kJ. In Figure 2, the absolute execution time for the 4-thread variant
exhibits a relatively stable pattern, oscillating around 225 seconds, and begins
to increase at a power cap value of 142 W. At the energy optimal powercap value
the execution time reaches 282 seconds.

In Figure 3, the value of EDP oscillates around 6 MJs before starting to
increase at a power cap of approximately 124 W. The values of EDS for k=1.5
and k=2.0 exhibit similar behavior, maintaining a mostly stable value of approx-
imately 0.97, but they begin to increase at a power cap of 83 W.

The 4 threads scenario, shown in Figure 4, shows a pattern, with energy gain
relative to time loss remaining quite close to 0%, achieving the best value of 3%
with power cap set to 169 W, and steadily decreasing after the point of 119 W.

Xeon Gold—WPL algorithm In the case of the WPL algorithm, a signifi-
cantly distinctive minimum can be observed in Figure 5. It occurs for 4 threads,
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Fig. 3: Energy Delay Product and En-
ergy Delay Sum in relation to power
cap value for 4 threads. Intel(R)
Xeon(R) Gold, BPE.

Fig. 4: Energy gain relative to time
loss in relation to power cap value for 4
threads. Intel(R) Xeon(R) Gold, BPE.

Fig. 5: Absolute Energy Consumption
in relation to power cap value for 1, 2
and 4 threads. Intel(R) Xeon(R) Gold,
WPL.

Fig. 6: Absolute Execution Time in re-
lation to power cap value for 1, 2
and 4 threads. Intel(R) Xeon(R) Gold,
WPL.

just as in the other cases, and reaches a value of 18.1 kJ, which is the least
amongst all of the other cases. However, the nature of its occurrence is similar
- at a power cap of 93 W. As for the results shown in Figure 6, the character of
execution time is the same as in the previous cases - this value oscillates around
200 seconds until around 115 W, where it then begins to rise. For a power cap
of 93 W, the execution time is equal to 228 seconds. It is easily noticeable that
this algorithm significantly deviates from its predecessors in terms of achieved
values and the distinctiveness of the minimum, yet it still follows the pattern
already observed earlier.

In Figure 7, it can be observed that the EDP values follow the same pattern
as previously, but this time they appear to be much more correlated with the
EDS values. For a power cap of 102 W, a minimum of 3.9 MJs can be observed.
Immediately after the minimum, there is a significant increase in values. As
for the EDS metrics, both of the analysed cases are oscillating around 1[-] and
showing a stable pattern correlated with the shape of EDP until 88 W where it
starts to increase smoothly.

When it comes to the values visible in Figure 8 – energy gain relative to time
loss, it is interesting to note that for 4 threads the sharp decrease occurs at a far
part of the plot, which leads to the conclusion that we can reach a lower power
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Fig. 7: Energy Delay Product and En-
ergy Delay Sum in relation to power
cap value for 4 threads. Intel(R)
Xeon(R) Gold, WPL.

Fig. 8: Energy gain relative to time
loss in relation to power cap value
for 4 threads. Intel(R) Xeon(R) Gold,
WPL.

cap value without significant energy-time tradeoff loss. This graph reaches its
maximum for 97 W at 3%.

Fig. 9: Absolute Energy Consumption
in relation to power cap value for 1,
2 and 4 threads. Intel(R) Core(TM)
i7-13700K, Performance Cores, BPE.

Fig. 10: Absolute Execution Time in
relation to power cap value for 1, 2
and 4 threads. Intel(R) Core(TM) i7-
13700K, Performance Cores, BPE.

Performance Cores—BPE algorithm Already at first glance, looking at
Figure 9, it can be observed that it does not exhibit the same behaviour that
could be observed for the results carried out for Xeon Gold. In this case, as far as
energy consumption is concerned, the variant that reaches the minimum values
in question is the 2-threaded variant. Initially, it fluctuates around the value of
3.8 kJ until the power cap of 43 W is reached, at which point the graph drops
dramatically to a value of 2.2 kJ for 16 W. For the execution time, shown in
Figure 10, it can be stated that all variants show similar results. The values are
consistent, oscillating around 86 seconds, up until around 43 W, at which point
the values begin to rise smoothly, reaching a value of 142 seconds for 16 W. Due
to the deviation noticeable for the variant with 4 threads, the optimum in this
case is analyzed for the scenario of 2 threaded execution.
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Fig. 11: Energy Delay Product and
Energy Delay Sum in relation to
power cap value for 2 threads. In-
tel(R) Core(TM) i7-13700K, Perfor-
mance Cores, BPE.

Fig. 12: Energy gain relative to time
loss in relation to power cap value
for 2 threads. Intel(R) Core(TM) i7-
13700K, Performance Cores, BPE.

In Figure 11, the line corresponding to EDP is showcasing high stability
with a smooth transition into the easily noticeable minimum, exhibiting different
behaviour than in the case of the previously covered Xeon Gold. EDP takes on
a constant value of 0.33 MJs until a power cap of 41 W is reached. Further on,
the values decrease, reaching a minimum of 0.29 MJs for 22W. The EDS values
oscillate steadily around the value of 1 until 41W, then EDS k=1.5 starts to
increase and EDS k = 2.0, starts to decrease up until the power cap reaches the
value of 27 W and then increases converging to EDS k = 1.5. Figure 12 for the
variant with 2 threads is characterized by stable behaviour around the 0% value
and reaching a maximum value of 7% at 27W.

Fig. 13: Absolute Energy Consump-
tion in relation to power cap value for
1, 2 and 4 threads. Intel(R) Core(TM)
i7-13700K, Performance Cores, WPL.

Fig. 14: Absolute Execution Time in
relation to power cap value for 1, 2
and 4 threads. Intel(R) Core(TM) i7-
13700K, Performance Cores, WPL.

Performance Cores—WPL algorithm In Figure 13 we can observe a sig-
nificant advantage in energy consumption for the variant with 2 threads. The
nature is the same as in previous algorithms for this processor. The 2 threads
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12 O. Diakun et al.

result in a constant value of 3.8 kJ until the power cap is reached at 42W, then
there is a steep drop to a value of 2 kJ for the power cap of 13 W.

Figure 14 shows the clustered lines for the variants tested. The lowest inter-
spersed lines are for the variants with 2 and 4 threads, for a execution time value
of around 87 and 83 seconds respectively, while it is the variant for 2 threads
that starts to rise later and for a power cap of 13 W reaches 163 seconds.

An interesting observation can be made while analyzing this particular case,
when power caps are applied, the four threaded version shows the biggest energy
gains, but at the simultaneous cost of rapid execution time increase. This cannot
be stated about the results acquired in the trials that used two threads only,
where even though the energy gains were smaller, the final energy consumption
- execution time is much more favorable, proving that the tight coupling of
gathered metrics is required for proper analysis of the results.

Fig. 15: Energy Delay Product and
Energy Delay Sum in relation to
power cap value for 2 threads. In-
tel(R) Core(TM) i7-13700K, Perfor-
mance Cores, WPL.

Fig. 16: Energy gain relative to time
loss in relation to power cap value
for 2 threads. Intel(R) Core(TM) i7-
13700K, Performance Cores, WPL.

The line for EDP in Figure 15 oscillates steadily around the constant value
of 0.33 MJs, which diminishes at 44 W reaching a minimum for the power cap
of 22 W with a value of 0.26 MJs. Behaviour of EDS matches the previous
observations, both of the version revolve around the value of 1, until it forks
with k=1.5 rising and k=2 reaching a minimum of 0.93 at the power cap of 24
W, before starting to rise and converging with the other one.

Energy gain relative to time loss, shown in Figure 16, reaches a maximum
for the variant with 2 threads for a power cap of 22 W and is equal to 13%.

5.3 Discussion of the results

The results presented in Table 1 highlight distinct outcomes when comparing four
algorithms tested across the two testbed processors. We can observe consistent
patterns in the behavior of these algorithms on both processors, suggesting their
reliability and the effectiveness of the energy-limiting tool used in this study. A
consistent region of optimal values of the power cap for each processor across
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all four algorithms was found: approximately 100W for the Intel Xeon Gold and
around 15W for the Performance Cores of the 13th generation i7.

There were notable similarities in metrics such as energy consumption and
execution time across tested algorithms. After taking the reduced available re-
sources and limited scale of the problem, results for optimal configurations have
been presented. For the Xeon Gold processor, the optimal number of threads for
all algorithms was found to be four, whereas for Performance Cores, it was two.

Table 1: Parameters for each architecture
Intel(R) Xeon(R) Gold

Architecture
Optimal
Number of
Threads [-]

Minimum Energy
Consumption
[kJ]

Corresponding
Power Cap
[W]

Execution
Time [s]

Energy Gain
versus Time
Loss [%]

BPE 4 22.9 102 282 3%

UNI 4 30.7 101 377 3%

WPC 4 22.7 102 279 6%

WPL 4 18.1 93 228 3%

Intel(R) Core(TM) i7-13700K, Performance Cores

BPE 2 2.2 16 142 7%

UNI 2 2.1 13 159 7%

WPC 2 3.4 16 222 11%

WPL 2 2 13 163 13%

The variation in the optimal thread count can be attributed to the differing
computational powers of the CPUs used. According to cpubenchmark.net, the
single-thread performance of the Intel i7 processor is 4,369 MOps/Sec, signifi-
cantly higher than the Xeon Gold’s 2,067 MOps/Sec. This disparity explains the
reduced scalability of problems on our limited-size dataset. With more threads,
the balance between computation and communication becomes less than ideal.
The observed speed-ups are better for the Xeon Gold for a given number of
threads, apparently because of the relatively slower core performance and larger
computation/communication ratio, compared to the i7 CPU, for a given number
of threads. On the other hand, in order to fully benefit from the Xeon Gold CPU,
as a representative of a server CPU, the application would need to scale well for
a much larger number of cores/threads than the 4 for which it was tested. Such
scalability of the application was not the case, unfortunately. For optimal scal-
ability with increased resources, a larger dataset would be required. However,
this would change the nature of the task assigned to the processors and affect
the comparison between them.

The aforementioned differences also affected energy optimization. For the
Xeon Gold, it is possible to optimize energy consumption, but as can be seen in
Figures 3, 7, it is not possible to optimize parameters such as EDP and EDS. On
the other hand, on Performance Cores of the i7, besides the possibility of energy
optimization, there is also potential for optimizing EDP and EDS. The results,
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especially after observing how the problem size for these algorithms impacts
scalability, give a very optimistic outlook on the potential of applying power
capping to real-life scale problems, and potentially making processing vast text
corpora more energy efficient resulting in high monetary gains and substantial
reduction of carbon footprint caused by rapid AI growth in recent years.

6 Summary and future work

Within the paper, we have demonstrated that it is possible to perform performance-
energy optimization of tokenizer training under CPU power capping. Performed
analysis consists of several algorithms including Byte Pair Encoding, Unigram,
WordPiece, and WordLevel, using two different types of CPUs: server Intel Xeon
6130 and desktop Intel i7-13700K. We have identified the optimal parallel con-
figurations (4 and 2 threads respectively) and demonstrated that energy gains
versus execution time losses can be optimized by 3-6% and 7-13% for two dif-
ferent CPUs through appropriate power capping. This represents a significant
advancement in understanding how power caps can be leveraged to balance en-
ergy efficiency and performance. Additionally, we have shown that efficiency
metrics like EDP and EDS can be optimized for the i7-13700K CPU. This re-
search establishes a foundational understanding of how energy efficiency can be
systematically improved across different CPU architectures, showing how impor-
tant it is to gather insights from different platforms.

Our findings suggest two key directions for future research. First, implement-
ing a stream-based data loader could efficiently process large datasets in dis-
tributed storage. Second, validating our thesis with larger datasets (50-100GB)
could achieve greater gains by shifting the time distribution away from the pre-
processing phase.
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