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Abstract This paper presents the results of an experimental investigation and a three
dimensional numerical analysis of the transient aerodynamic phenomena occurring in
the innovative modification of classic Savonius wind turbine. An attempt to explain the
increased efficiency of the innovative design a comparison with the traditional solution is
undertaken. A vorticity measure based on the integral of the velocity gradient tensor second
invariant is proposed in order to evaluate and compare designs. The discussed criterion is
related to the vortex structures and energy dissipation. These structures are generated by the
rotor and may affect the efficiency.

Keywords Wind turbines - Vorticity measures - CFD

1 Introduction

The object of the analysis is the modernisation of classic design of the turbine (i.e. the Savo-
nius wind turbine), see Fig. 1. This innovative design [5] is equipped with a stator (Fig. 2)
which experimentally shows increased efficiency in comparison with standard design. This
is true for wind tunnel experiments at least. Both turbines have the simplest design of all
devices converting wind into other energy forms, which provides opportunity to decrease its
price. The original Savonius wind turbine has numerous advantages such as low noise, sim-
plicity of design, applicability for a wide range of wind velocities. It is also independent of
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Fig. 1 Classic designs

the wind direction. The biggest problem of the classic design is its relatively low efficiency.
The innovative design, discussed here, is devoid of this disadvantage still being independent
of the wind direction.

Wind turbine research, such as Savonius turbine and its modifications, are in line with the
general strategy of development of the EU power industry. This strategy tends to quantitative
increase the use of renewable energy sources. One of the limits, as far as the wind energy is
concerned, it is high price of wind turbines available. The obtained results may increase the
knowledge of the flow around a whole family of different types of rotors whose principle
of operation is based primarily on the use of drag accompanied with a small share of lift
forces. The knowledge gained during the simulations will enable more effective designs
characterised by increased efficiency and operational reliability.

The flow inside the rotor is complicated and that is why in past investigations were
limited only to laboratory tests [2, 3, 7, 14]. Another experimental method is flow visualisa-
tion [6, 12], which allows capturing flow patterns characteristics for selected instantaneous
positions of rotor blades with respect to the wind direction. Recently, due to the rapid devel-
opment of computer hardware and software, attempts were made to analyse structure of the
flow through the Savonius rotor numerically [10, 15]. This also includes the vortex method
[1, 13]. Generally, all data presented on the numerical aspect are mostly two-dimensional.
Also, papers on attempts to modify the shape of the Savonius rotor are available [7, 11]. The
best shapes of blade tips for a given rotor geometry and physical conditions are investigated
in [8, 9, 16].

The results of an experimental investigation of the innovative modification of classic
Savonius wind turbine are presented in Section 2 together with the distributions of the
non-dimensional quantities that can be easily compared with other studies. For comparison
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Fig. 2 Innovative designs

purposes, measurements for the Savonius design are included. The details of computations
together with evaluation and comparison criteria are given in Section 3. This section also
presents results of numerical calculations in order to compare different designs. Finally,
conclusions are summarised in Section 4.

2 Coefficients and Experimental Results
2.1 Coefficients

Among many characteristics of the wind turbines the most important is the torque
coefficient. It is commonly defined as

T

Cr LU H )]
The above definition is valid for both the steady-state and transient flows. For the latter case
one should use the time dependent torque 7'(¢) instead of T, meaning that in real case we
deal with the distribution of Cr as a function of the angular position of the rotor «. The
torque coefficient (1) is directly related to the efficiency of the rotor.

A typical definition of the efficiency (power coefficient) for the steady-state case takes
under consideration the wind power P,, = riiey = pUS2~'U? and the power of the rotor
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Fig. 3 Test stand

P = oT. The wind power is regarded here as the reference power. From the two above
definitions we arrive at the following definition of the power coefficient

T

Cp=-——". 2)
1pUSHD

In the above definition w is the angular velocity, p represents the density, and U — the ref-
erence velocity. D is the diameter of the rotor, and H is the rotor’s height. For the transient

case, which is typical for the Savonius rotor operation, one should consider the total energy
of the wind within the time interval At rather than the instantaneous power. This means that
the definition (2) takes the following form now

t+At
T (t)dt _
o [ T@) oF

Cp=—1" = ) 3)
LpUSHDAr  LpU3HD

where At stands for the time of interest (e.g. one revolution). Assuming that the time step
of the transient CFD calculations is constant we can approximate the integral in Eq. 3 in
the following way 7 = n~! ', T; where T represents the arithmetical average. The total
number of time steps is denoted here as n. The last definition (3) has an analogical form as
the definition (2) and is the basis for comparison the innovative design with the traditional
solution. Furthermore, Eqgs. 1-3 are only valid for Savonius and H-Darrieus rotors. This is
because the projected area is not H D for horizontal-axis wind turbines.

Typically, the torque and power coefficients are expressed as a function of the rotor tip
speed ratio A which is formally defined as the ratio between the tangential speed of the tip
of a blade and the velocity of the wind U

wD

r=og 4)
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Fig. 4 Cp distribution as a function of A (Savonius — top, 20° — middle and 40° — bottom)

The non-dimensional quantities (Cp, C7) distributions as a function of A can now be easily
compared with other studies.
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Fig. 5 Cr distribution as a function of A (Savonius — top, 20° — middle and 40° — bottom)

2.2 Experimental results

Measurements were carried out in the closed return wind tunnel, shown in Fig. 3. The wind
tunnel can attain maximal velocity of about 50ms~!. The wind speed is determined by
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Fig. 6 Flow domain

means of a pitot tube located at the inlet to the test section. The two-stage Savonius design
equipped with a stator is located inside the test section with one side of the section open.
The cross-sectional area W x H; is 1.43m x 0.95m. The inflow velocity at the inlet to the
test section was measured for each case together with the rotational speed of the turbine and
the torque acting on the shaft. The tunnel blockage ratio, defined as HD/H; /W, is 0.26 for
the Savonius design and 0.31, 0.46 for the modified design with the stator angle 20° and
40°, respectively.

Experimental results of the wind tunnel measurements are shown in Figs. 4 and 5. The
former presents the power Cp and the latter the torque coefficient C7 distributions as a
function of tip speed ratios A. Absolute errors are shown as an indication of the uncertainty
in measurements.

It is clear that the torque coefficient distributions of the modified design are lower in
comparison with the original Savonius wind turbine. The larger the stator angle the smaller
the values of C7 for the corresponding wind speeds. This is not a surprise keeping in mind
that the active surface area H D in Eq. 1 is larger for the modified design due to the presence
of the stator. What is more, the same stator directing the flow makes it possible to generate
higher torques acting on a shaft and to compensate the effect of larger active surface area
H D present in Eq. 3. This results in higher efficiencies or the power coefficients C p shown
in Fig. 4 and may be regarded as an advantage of the modified design over the Savonius
wind turbine. For instance, the highest measured efficiency (3) for the Savonius design is
19 % while for the modified design, with the stator at 20° and 40°, the highest efficiency is

Table 1 Mesh statistics

Savonius 20° 40°
Nodes 2459557 2496403 2496 106
Elements total 11082969 11171561 11162695
Tetrahedral 9610941 9641158 9629399
Wedges 1471022 1529400 1532288
Pyramids 1006 1003 1008
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Fig. 7 Mesh cross-section

23 % and 29 %, respectively, for the same wind speed 10ms~!. It is evident that even for

low wind speeds the innovative design if more efficient.
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found elsewhere. Both models k-¢ and SST have now become a standard for this kind
of calculations. Good applicability of this code for solving flow problems has already
been tested. The latter model gives slightly better agreement between computation and
experiment.

The governing equations are discretised by means of the finite volume method. The
high resolution scheme is used to approximate the advection terms and the second order
backward Euler scheme is utilised to approximate the transient terms. Root mean square
normalised residual values below 10™* per time step are selected as a convergence
criteria.

3.2 Flow domain and boundary conditions

The flow domain (Fig. 6) is divided into two parts: the rotating rotor and the steady wind
tunnel. Both parts are merged by means of the domain interface of the so called ‘transient
rotor-stator’ type. The distance between the interface and the rotor was about 12 mm. The
time step of the transient calculations corresponds to four degree of revolution and the rota-
tional speed of the rotating domain (rotor) corresponds to two and three revolutions per
second.

The boundary conditions selected here are:

— Inlet. The average velocity is specified here. The turbulence intensity defined as
7 = (U)™! (2/3k)1/2 equals 5% and the viscosity ratio wep~ ! = 10. This represents a
medium turbulent intensity.

— Opening. The so called ‘far field’ condition is chosen with prescribed constant
atmospheric pressure.

—  Symmetry. This means than the velocity normal component equals zero n- (U) = 0 and
all the scalar values ¢ must fulfil i - Vo = 0 where n represents a unit vector normal
to the surface.

— Wall. The flow domain resembles a wind tunnel with one side partially open to the
atmosphere, see Figs. 6 and 3. As for the rotor blades, plates and the shaft they are
modelled as no slip wall in the rotating frame of reference.
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0.27F 10.27
~
)
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0.25E, ‘ ‘ ‘ ‘ 10.25
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Fig. 9 Mesh convergence
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Fig. 10 Cr distribution as a
function of the angular position
of the rotor o (wind speed
63ms™! — top, 8.5ms ! —
middle and 10.5ms~! — bottom)
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Fig. 11 —Q distribution as a
function of the angular position
of the rotor o (wind speed
6.3ms™! — top, 8.5 ms~! -
middle and 10.5ms~! — bottom)
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Table 2 Velocity gradient

second invariant (Q)/{Qs) n [revs™!] U [ms™!] Savonius 20° 40°
2 6.3 0.433 0.244 0.173
8.5 0.722 0.422 0.354
10.5 1.000 0.534 0.322
3 6.3 0.551 0.281 0.217
8.5 0.724 0.347 0.266
10.5 1.000 0.573 0.404
3.3 Mesh

Both flow domains, i.e. the rotor and the wind tunnel, were discretised separately. Both
domains have an unstructured grid consisting of mostly tetrahedral elements. The total num-
ber of elements covering the flow area is above 11 million. There are also special elements
around the blades to ensure that flow near a wall is properly resolved. The scalable wall
function approach has been used to provide near wall boundary conditions for the mean
flow. The quality of the grid near the blades may be inspected in terms of the average value

of yT distribution
_ 1 //
+ +
jt=—[] ytds ®)
IS1JJs

where || stands for the area of blade surface S. The average y T value was in the range 1-2
and the maximal 5-6 for all angles.

Table 1 shows the mesh statistics for the considered flow geometries. Figure 6 presents
global view on the computational domain that consists of the wind tunnel (see Fig. 3) and
a quarter-cylindrical part of ‘far field’ surroundings. The mesh can be inspected in Fig. 7.
This figure presents a cross-section which is perpendicular to the rotor axis.

A time step convergence for the Savonius design (n =3revs™, U =85 ms’l) for
three revolutions is shown in Fig. 8. Three different case are presented, namely 4°, 3° and
2° per time-step. Additionally, moving averages of the torque coefficient Cr are super-
imposed. It is evident that decreasing the temporal resolution from 4° to 2° per time-step
has little effect on the results in terms of Cr. However, it makes it possible to increase

T[Nm]

14

nfrev s~

Fig. 12 Torque T distribution as a function of the rotational speed n for the Savonius wind turbine
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the computational speed. In general, the transient simulations requires typically 3 to 5
revolutions to reach periodic state.

Figure 9 demonstrates mesh convergence by showing the influence of number of ele-
ments on the torque coefficient Cr. Two cases are considered here. By ‘Case 1’ it is meant
the increase in the boundary layer elements and decrease in this layer thickness. Special
care needs to be taken around the blades and plates where the velocity gradients are very
high. Increasing the number of the mesh elements above 10 x 10° has negligible effects on
the torque coefficient C7. By ‘Case 2’ it is meant the increase in the rotor vicinity mesh
keeping the boundary layer elements and its thickness constant and properly resolved. One
can observe little influence of the mesh size on Cr. Results are nearly constant within the
range of 9.5-11 x 10° elements.

3.4 Evaluation and comparison criteria

These criteria allow for direct evaluation and comparison of various designs and solutions.
One should formulate criteria that are invariant. This is because they remain unchanged
under certain transformation. Invariants of velocity gradient tensors are used in turbulence
modelling because they contain all the necessary information involving the rates of rotation,
stretching and angular deformation being responsible for kinetic energy dissipation and
vortex stretching [17]. Invariants of velocity gradient tensor and their analysis are useful
because they unambiguously determine the local topology of the fluid motion [4].
Let us first recall enstrophy £* [17]

e [[[ narav = [[[ Sierav = [[[ e av. ®)

where €* = 271||2||> may be regarded as a specific enstrophy. Here A stands for asym-
metrical part of the velocity gradient tensor VU and  is the vorticity vector. Enstrophy
determines the rate of dissipation of kinetic energy being a global measure of the dissipation
rate and vorticity measure.

nfrev s~

Fig. 13 Torque T distribution as a function of the rotational speed n for the modified wind turbine (20°)
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The vorticity measure Q, investigated further, is defined by means of the integral of the
velocity gradient tensor second invariant in the following form

Q:///Vtr(VU)zdv:///V (1? — ) av, @)

where D stands for symmetrical part of the velocity gradient tensor. Bearing in mind the
definition of the dissipation function ¢, = 2u trD? and the dissipation power Py =
[[fy ¢,.dV as well as enstrophy defined in Eq. 6 we arrive at

_ P e
Q=g —€" @®)

The above criterion represents a global balance between the power of energy dissipation
and vortex structures by means of the vorticity magnitude or enstrophy. These structures are
generated by the rotor and may affect the efficiency. Equation 8 is appropriate for each time
step, while for the total revolution one should use the time integral of Q instead

1+ At

3.5 Results

Figure 10 present the torque coefficient Cr distribution as a function of revolution angle o
for various wind speeds and for n = 3revs™!. The present calculations are fully transient
and three-dimensional. The four peaks are visible in the curves instead of two. This is
because the device consists of two rotors rotated by an angle relative to each other. Addi-
tionally, there is a stator directing the flow. The presence of the stator increases the active
surface area H D. As in the previous case (Fig. 5), the torque coefficient distributions of the
modified design are lower in comparison with the original Savonius wind turbine.

Figure 11 shows the distribution of the vorticity measure —Q defined by means of Egs. 7
or 8 which can be used to compare various designs. This indicates the importance of this
equation because it makes it possible to visualise the global balance between the power of
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e | ‘ | | | : 76
4r {4
2t 12
T 1r 11
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Fig. 14 Torque T distribution as a function of the rotational speed n for the modified wind turbine (40°)

@ Springer


http://mostwiedzy.pl

A\ MOST

Flow Turbulence Combust (2015) 95:739-754 753

energy dissipation and enstrophy as a function of the angular position « of the rotor. It is
visible that the more efficient the turbine the lower the values of —Q. The time integral
(9) of this measure can be used directly to evaluate specific turbine in terms of a vorticity
measure. Table 2 presents the ratio of (Q) to (Qg) of the respective Savonius design. It sim-
ply confirms previous observations. Furthermore, one can anticipate a relationship between
vorticity measure and efficiency of a turbine. It can be expected that the performance of a
wind turbine is affected by vortices generated during the rotor revolutions. These vortices
are complicated in their nature and dynamically change their configurations and undoubt-
edly intensities. This may affect pressure distribution around the blades and accordingly the
performance of a rotor.

Figures 12-14 show the measured torques 7T versus CFD calculations for the three
designs as a function of rotational speed n. Black dots correspond to the numerical pre-
diction. The above comparison should be used as a reference point. This is because the
velocities for the CFD calculations were kept at the same level for the different designs.

4 Conclusions

A three-dimensional analysis of the transient aerodynamic phenomena occurring in the
innovative modification of the classic Savonius wind turbine has been shown. This includes
both: transient CFD calculations and wind tunnel experiments both being consistent. The
innovative modification of the classic Savonius design shows higher efficiency. This is due
to presence of the stator which directs the air and generate higher torques acting on a shaft.
Furthermore, it makes it possible to take better advantage of wind energy and compensate
the effect of larger active surface area. The larger the stator angle the higher the efficiency.
This is true for wind tunnel experiments at least.

A vorticity measure, based on the integral of the velocity gradient tensor second invari-
ant, has been proposed allowing for evaluation and comparison of various designs. The
proposed quantity represents a global measure between the dissipated power and enstrophy.
The latter is related to vortex structures through the vorticity magnitude. The time integral
of this measures can be used directly to evaluate specific turbine. A relationship between
the proposed vorticity measure and efficiency of a turbine can be anticipated. The higher
the efficiency the lower the the time integral of —Q. It is then expected that vortex struc-
tures generated by the rotor affect pressure distribution around the blades and accordingly
the performance of a rotor.
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