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Abstract: Weigh-in-motion systems are installed in pavements or on bridges to identify and reduce
the number of overloaded vehicles and minimise their adverse effect on road infrastructure. Moreover,
the collected traffic data are used to obtain axle load characteristics, which are very useful in
road infrastructure design. Practical application of data from weigh-in-motion has become more
common recently, which calls for adequate attention to data quality. This issue is addressed in the
presented paper. The aim of the article is to investigate the accuracy of 77 operative weigh-in-motion
stations by analysing steering axle load spectra. The proposed methodology and analysis enabled the
identification of scale and source of errors that occur in measurements delivered from weigh-in-motion
systems. For this purpose, selected factors were investigated, including the type of axle load sensor,
air temperature and vehicle speed. The results of the analysis indicated the obvious effect of the axle
load sensor type on the measurement results. It was noted that systematic error increases during
winter, causing underestimation of axle loads by 5% to 10% for quartz piezoelectric and bending
beam load sensors, respectively. A deterioration of system accuracy is also visible when vehicle
speed decreases to 30 km/h. For 25% to 35% of cases, depending on the type of sensor, random
error increases for lower speeds, while it remains at a constant level at higher speeds. The analysis
also delivered a standard steering axle load distribution, which can have practical meaning in the
improvement of weigh-in-motion accuracy and traffic data quality.

Keywords: weigh-in-motion; overweight vehicles; overloaded vehicles; heavy traffic; axle load
spectra; steering axle; bending beam; piezoelectric; piezoquartz; axle load sensors

1. Introduction

1.1. Background

Weigh-in-motion (WIM) systems are installed in pavements or on bridges for two main purposes:
(1) to identify and reduce the number of overloaded vehicles and minimise their adverse effect on
road infrastructure [1–8]; and (2) to collect traffic data, especially axle load characteristics [9–15].
Application of actual data from WIM for pavement distress analysis results in more reliable estimations
of maintenance treatment schedule and agency costs [16]. Use of WIM data in pavement analysis
requires due attention to data quality. Efforts to improve WIM data quality are laid both on the
development of new solutions for WIM construction, like multi-sensors systems [17,18], and in
developing new procedures for data processing [19]. The significance of data quality in pavement
design was studied in [16,20–22], Farkhideh and Nassiri [20] investigated weight measurements from
WIM systems installed in asphalt concrete pavements. They reported that WIM errors were reflected in
the axle load characteristics for design according to the Mechanistic-Empirical Pavement Design Guide
(MEPDG), and they did affect the thickness of the designed pavement structure—in some cases by
more than 100%. Haider et al. [21,23] investigated the effect of change in systematic error for a given
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random error on both flexible and rigid pavement design and concluded that a 10% positive bias leads
to overestimation of pavement life by approximately 5%, while in contrast, a 10% negative bias will
result in underestimation of pavement life by approximately 30% to 40%. Prozi and Hong [22] reached
similar conclusions in their work, whose results suggested that load-pavement impact estimation error
is more sensitive to over-calibration than under-calibration of the WIM system. The aforementioned
findings prove the significance of WIM system accuracy when the statistical data are further used for
pavement design and analysis.

Due to the significance of data quality in pavement design, relevant experience was collected and
described in the NCHRP Report no. 538 [24], FHWA-IF-10-018 report [25] and Cost 323 specification [26].
According to these works, the primary sources of WIM inaccuracy lie in invalid vehicle detection
and classification [27] as well as in the uncertainty of axle load measurements. While specific sets of
algorithms [28,29] enable identification of incorrectly recognised vehicles and their elimination from
the database, the problem of validation of axle load measurements is more complex. According to the
ASTM E1318 standard [30] and Cost 323 specification [26], the accuracy of a given WIM system in terms
of axle loads is expressed as the relative difference between WIM weight measurements and those
from a static scale. To ensure the required accuracy level, WIM systems are calibrated using standard
procedures that compare measurements obtained from WIM and from static scales. It is noteworthy
that WIM system accuracy is not described exclusively by the accuracy of the axle load sensor but
by the combined properties of pavement and sensor. Regardless of WIM calibration, which ensures
the required accuracy of the system for a limited period, the accuracy deteriorates over time due to
several factors, including: (1) changes in measurement conditions (e.g., temperature) [31]; (2) increase
in pavement deflections and roughness resulting from pavement distress [32]; and (3) fatigue of load
sensors [33,34]. The tendency of WIM sensors to lose calibration over time was described in greater
detail in a study by Chatterjee et al. [35].

More advanced procedures of WIM data validation were proposed by Mai, Turochy and Tim [28].
The previous works describe methods of identification of inaccurate WIM data, which should be
removed from further analysis. A study conducted by Nichols et al. [36] as well as a further study by
Burnell et al. [19] proposed WIM accuracy evaluation based on left-right wheel weight measurement
difference for each axle. They reported that the steering (front) axle in articulated vehicles with
semi-trailer (class 9 according to FHWA vehicle classification) tends to have a much lower variance
in comparison to other axles and its load depends on gross vehicle weight (GVW) to a lesser degree,
which was also confirmed in the studies of Burnos and Gajda [31].

The aim of the presented paper is to contribute to the improvement of WIM system accuracy by
undertaking an investigation of steering axle load spectra. The proposed methodology and results
of the study can be helpful in: (1) validation and improvement of data quality used for pavement
design and analysis; and (2) development of algorithms for self-calibration of WIM systems to improve
their accuracy.

1.2. Objective and Scope

The main objective of the paper is to investigate steering axle load distributions derived from a
large database of 77 WIM stations operating in normal service in Poland. The aim of the proposed
methodology and analysis is to identify the scale and sources of potential errors that may occur
in measurements delivered from WIM systems. For this purpose, selected factors which have an
impact on the accuracy of WIM systems were investigated, including the type of axle load sensor,
air temperature and vehicle speed. Moreover, the analysis delivered a standard steering axle load
distribution, which can have practical meaning in the improvement of WIM accuracy and data quality.
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2. Methodology

2.1. Effect of Weigh-in-Motion System Inaccuracy on Axle Load Spectra

Axle load errors are often expressed by relative difference between static and instantaneous
dynamic load [21,22,37]. The relative error of a given measurement δi can be expressed by the
following formula:

δi =
wi −wi,re f

wi,re f
(1)

where: wi—weighing result of the i-th axle obtained from the tested WIM system; wi,ref—reference
result of weighing of the i-th axle on static scales.

The average value of relative errors obtained for a given number of observations is commonly
referred to as the measurement error for a WIM scale and data depends on its accuracy. The relative
error consists of two components: systematic and random error. In the case of systematic error, also
referred to as bias in the literature, each value of measured load is shifted in relation to the real value
of load. The main reason for the occurrence of systematic error is a change in measurement conditions
in relation to the reference conditions that were used during calibration. Random errors arise from
fluctuations in measurement, both positive and negative, from the real value. The main factors that
have impact both on relative and random error are connected with dynamic loads from the moving
vehicles (pavement smoothness, suspension and tyre characteristics, vehicle speed), imperfection of
measuring instruments (load sensors and signal computing) and variations in measuring conditions
(weather conditions, pavement material properties etc.).

Axle load spectra (further abbreviated to ALS) are calculated on the basis of the number of axles
falling within a given interval of axle load. Due to errors of measurements, some axles are assigned to
invalid load intervals. In consequence, ALS determined on the basis of weigh-in-motion data vary
from ALS determined without error that occurs in WIM systems. The effect of WIM error on ALS is
considered with regard to two error components: systematic and random errors. Figure 1 illustrates
the effect of the systematic and random components of error on an example ALS. The WIM relative
errors presented in Figure 1 were calculated according to Equation (1). In the considered example, the
distribution with relative error δ = 0 corresponds to loads obtained from static scales. To illustrate the
ALS and its change due to error occurrence, 1000 records of steering axle loads for 5 axle trucks with
semi-trailers were chosen from the dataset described later in this paper. In order to obtain the ALS
with a given error of measurement, each of the records were modified. The systematic error arises
from the calibration bias. It means that when systematic errors occur, each of recorded loads fall into
values shifted in comparison to real values. As a consequence, the whole ALS is shifted into what is
illustrated in Figure 1A. When only random component errors occur, each of the recorded loads fall
randomly with the normal distribution into values beyond the static load values. Consequently, the
ALS becomes more “flatted”, what is illustrated in Figure 1B. The effect of systematic and random
errors on the ALS shown in Figure 1 is in accordance with previous works [22].
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Figure 1. An example of the effect of (A) systematic and (B) random components of relative error on
axle load spectrum (ALS).

2.2. Identification of Factors Responsible for WIM Inaccuracy on the Basis of Steering Axle Load Spectrum
(SALS) Analysis

Steering axle loads can be used for the evaluation of WIM system accuracy [19,32,37]. This approach
was used to identify factors that have the greatest impact on the accuracy of operative WIM systems as
well as to estimate the scale of the problem. For this purpose, a group of commercial heavy vehicles
was considered that is relatively uniform in terms of construction properties and very popular as well.
Based on previous works [15,38], the best example of such a vehicle in Polish conditions is a five-axle
articulated vehicle consisting of a tractor with two single axles (steering and drive) and a semi-trailer
with one tridem axle. The gross weight of an empty vehicle ranges from approximately 16 to 20 tonnes
(Mg). Construction of this vehicle results in a minor effect of semi-trailer kerb weight, freight weight
and freight distribution on steering (first) axle load. This group of vehicles is very universal in terms of
the type of freight it may carry. Therefore, it is expected that the steering axle load spectrum (further
abbreviated to SALS) of the selected vehicle type shall be the same, regardless of traffic volume and
character of transport on a given road. Moreover, any variations in traffic volume, speed or seasonal
factors, including temperature, should have no impact on SALS.

As further analysis shows, SALS can be characterised with normal distributions, thus the mean
value and standard deviation deliver a full description of SALS. If any relative errors occur, the
deviations in the first axle load would result from random differences in the kerb weight of vehicles.
Theoretically, it is expected that the mean and standard deviation of SALS should be constant, regardless
of the localisation and measurement conditions of the station. Nevertheless, differences in the mean
and standard deviation are observed and they indicate the inaccuracy of WIM systems. Differences in
mean values reflect systematic error of load measurement. Differences in standard deviation imply
random error.

Figure 2 illustrates overall steps in the analysis which were performed to identify the scale and
sources of potential errors that may occur in measurements delivered from WIM systems, and to deliver
the standard steering axle load. The proposed methodology of determination of standard steering
axle load is a step forward into new procedures of self-calibration algorithms in real time, which are a
novelty in comparison to previous calibration procedures, and which are based on comparison of the
relative difference between WIM and static weight measurements [24–26].
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Figure 2. Scheme of the steps performed in the analysis to investigate the scale and sources of errors on
weigh-in-motion (WIM) stations and to determine the standard steering axle load spectrum.

The steps performed in the analysis presented in Figure 2 can be explained as follows. At the first
step, data from various 77 WIM stations were collected. The paper investigates various cases of SALS
calculated from data selected using a series of filters. The first stage of the filtering process was focused
on identifying and removing invalid raw records from the database. Vehicle records were removed
when: the sum of the axle load was not equal to gross weight, any gap between neighbouring axles was
lower than 0.5 m, vehicle length was lower than 3 m or greater than 20 m, the record was uncompleted
or flagged as incorrect by the WIM system. The aim of the third step was to select steering axles for a
group of vehicles represented by two-single-axle trucks with semi-trailer with tridem axle. In order to
eliminate the effect of freight load and distribution, only empty vehicles with gross weights from 16 to
20 Mg were selected.
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In the further step remaining filters were selected depending on the following factors that were
investigated in the study: type of axle load sensor, vehicle speed and air temperature. As previous
studies show, pavement deflections (which in the case of asphalt pavements—are a function of load),
pavement temperature and vehicle speed significantly impact the measurement obtained from the
WIM load sensor [32]. Due to this fact, the intervals of filters set for vehicle speed and temperature
were narrow and equalled 10 km/h and 5 ◦C, respectively. When filters are set, a large number of
measurements is required to correctly determine ALS, therefore a wide range of data covering the
whole year were used. The ranges of intervals were chosen as a compromise between the change
of asphalt mixtures properties and number of records to represent reasonable measuring data from
at least 1000 records. For the selected data, statistical analysis of the results obtained for particular
WIM stations was further performed. Firstly, the SALS were calculated. When the Lillierfors test
confirmed the normality of SALS then the mean values and standard deviations of SALS obtained from
various stations at the same measurement conditions (air temperature, vehicle speed) were compared
with the use of cumulative distributions charts. This comparison allowed us to imply differences
in measurement results and potential random and systematic errors for two main axle load sensor
technologies—bending beam and piezoquartz, and allowed us to imply how temperature and vehicle
speed contribute to increasing these errors. The final output of the statistical analysis is a standard
steering axle load spectrum which correspond to real traffic condition, regardless of sensor type,
pavement structure, thermal conditions and vehicle speed.

3. Data Used in the Analysis

The data considered in this study were collected from 77 WIM stations localised on motorways
and national roads in Poland. The period of measurements was from 1 January to 31 December 2014.
Table 1 includes a summary of information about the WIM stations. Stations were installed by five
companies specialised in intelligent transport systems. Each station is equipped with axle load sensors
based on one of the two technologies: quartz piezoelectric (54 stations) and bending beam (23 stations).
Examples of load sensors of the two types installed in the pavement surface are presented in Figure 3.

Table 1. List of WIM stations considered in the analysis and number of compound data records.

Station ID Route Number Latitude and Longitude Direction (City) Load Sensor Number of
Records

1 DK3 50.86624 N, 15.61059 E Jelenia Gora piezoquartz 4156
2 DK3 50.87413 N, 15.61059 E Jakuszyce piezoquartz 2632
3 S7 54.31944 N, 18.73741 E Warszawa piezoquartz 16,394
4 S7 54.29416 N, 18.82251 E Gdansk piezoquartz 16,248
5 DK7 50.39977 N, 20.09507 E Krakow piezoquartz 12,823
6 DK7 50.37171 N, 20.04542 E Kielce piezoquartz 9979
7 DK8 50.42416 N, 16.25690 E Klodzko piezoquartz 23,278
8 DK8 50.41079 N, 16.27140 E Kudowa piezoquartz 24,924
9 DK22 53.68499 N, 17.42860 E Elblag piezoquartz 12,025

10 DK22 53.68245 N, 17.53470 E Gorzow Wlkp. piezoquartz 13,166
11 DK33 50.42523 N, 16.65970 E Bystrzyca Klodzka piezoquartz 2113
12 DK33 50.39948 N, 16.66011 E Klodzko piezoquartz 2152
13 DK46 50.69162 N, 18.23691 E Czestochowa piezoquartz 7193
14 DK46 50.70081 N, 18.25349 E Opole piezoquartz 9177
15 DK75 49.67551 N, 20.66346 E Brzesko piezoquartz 8531
16 DK75 49.71107 N, 20.64266 E Nowy Sacz piezoquartz 7372
17 DK79 50.11589 N, 19.69721 E Krakow piezoquartz 6184
18 DK79 50.11325 N, 19.73722 E Chrzanow piezoquartz 4855
19 DK94 50.54573 N, 18.23520 E Opole piezoquartz 9492
20 DK94 50.55762 N, 18.20580 E Strzelce Opolskie piezoquartz 8991
21 DK19 52.40723N, 22.87044 E Bialystok piezoquartz 11,740
22 DK61 53.45242 N, 22.18856 E Lomza piezoquartz 48,869
23 DK61 53.42590 N, 22.16835 E Augustow piezoquartz 12,170
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Table 1. Cont.

Station ID Route Number Latitude and Longitude Direction (City) Load Sensor Number of
Records

24 S6 54.44774 N, 17.08001 E Koszalin piezoquartz 7588
25 S6 54.42500 N, 17.01472 E Gdynia piezoquartz 5042
26 DK91 53.84919 N, 18.80967 E Tczew piezoquartz 8937
27 DK12 51.16373 N, 23.03384 E Chelm piezoquartz 9376
28 DK12 51.16642 N, 23.06656 E Piaski piezoquartz 9927
29 DK19 50.86038 N, 22.28020 E Janow Lubelski piezoquartz 6383
30 DK19 50.84445 N, 22.29453 E Krasnik piezoquartz 11,469
31 DK17 50.76617 N, 23.22921 E Krasnystaw piezoquartz 16,272
32 DK2 52.03615 N, 22.92944 E Miedzyrzecz Pod. piezoquartz 18,911
33 DK2 52.03129 N, 22.89799 E Biala Podlaska piezoquartz 18,529
34 DK94 50.69450 N, 17.87128 E Brzeg piezoquartz 12,323
35 DK94 50.69450 N, 17.87128 E Strzelce Opolskie piezoquartz 13,509
36 DK4 49.98664 N, 21.30347 E Rzeszow bending beam 21,468
37 DK4 50.00657 N, 21.33720 E Krakow bending beam 35,761
38 DK9 50.16616 N, 21.94198 E Radom bending beam 22,217
39 DK19 49.54055 N, 21.69250 E Barwinek bending beam 15,976
40 DK19 49.49879 N, 21.70061 E Rzeszow bending beam 14,789
41 DK9 50.19934 N, 21.88373 E Rzeszow bending beam 8963
42 DK77 50.47646 N, 22.23083 E Przemysl bending beam 6514
43 DK77 50.44843 N, 22.25040 E Nisko bending beam 5007
44 DK92 52.25508 N, 15.44278 E Swiecko bending beam 37,131
45 DK92 52.25508 N, 15.44278 E Swiebodzin bending beam 14,224
46 DK15 52.83048 N, 18.31217 E Torun bending beam 11,398
47 DK15 52.96479 N, 18.53701 E Poznan bending beam 19,176
48 S7 51.79546 N, 20.89115 E Warszawa piezoquartz 13,331
49 DK2 52.21028 N, 21.82834 E Siedlce piezoquartz 11,308
50 DK2 52.20808 N, 21.91044 E Warszawa piezoquartz 11,178
51 S11 52.39122 N, 16.74323 E Poznan piezoquartz 25,582
52 S11 52.35685 N, 16.76726 E Pila piezoquartz 17,475
53 S5 52.51238 N, 17.48577 E Poznan piezoquartz 6713
54 S5 52.47277 N, 17.40913 E Gniezno piezoquartz 14,198
55 DK11 52.57813 N, 16.82891 E Poznan bending beam 17,757
56 S11c 52.52480 N, 16.83285 E Pila bending beam 13,715
57 DK11 52.12215 N, 17.38571 E Jarocin bending beam 29,343
58 DK11 52.08284 N, 17.40425 E Poznan bending beam 24,720
59 DK32 52.22279 N, 16.51789 E Steszew bending beam 10,343
60 DK32 52.22557 N, 16.58810 E Grodzisk Wlkp. bending beam 15,409
61 DK10 53.18511 N, 16.76446 E Bydgoszcz bending beam 21,009
62 DK10 53.15213 N, 16.78864 E Szczecin bending beam 19,823
63 DK10 52.88853 N, 19.40468 E Warszawa bending beam 15,356
64 DK10 52.88854 N, 19.40506 E Torun bending beam 17,909
65 DK15 52.68775 N, 18.20600 E Poznan piezoquartz 4607
66 DK15 52.64439 N, 18.18245 E Bydgoszcz piezoquartz 14,669
67 DK10 53.16679 N, 17.73500 E Szczecin piezoquartz 2583
68 DK10 53.14440N, 17.55297 E Bydgoszcz piezoquartz 10,456
69 DK91 53.42240 N, 18.49321 E Lodz piezoquartz 14,612
70 DK91 53.27841 N, 18.50998 E Gdansk piezoquartz 7108
71 DK45 50.76055 N, 18.02683 E Opole piezoquartz 3684
72 DK45 50.75198 N, 18.01024 E Kluczbork piezoquartz 3815
73 S3 53.30924 N, 14.58104 E Gorzow Wlkp. piezoquartz 9296
74 S3 53.06696 N, 14.86213 E Gorzow Wlkp. piezoquartz 11,147
75 S3 53.02968 N, 14.88352 E Szczecin piezoquartz 12,940
76 DK10 53.45324 N, 14.37404 E Szczecin bending beam 5810
77 S8 51.93614 N, 20.47714 E Warszawa piezoquartz 7862

Total number of records 1,019,112
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Figure 3. The investigated technologies of WIM axle load sensors: (A) quartz piezoelectric 
(piezoquartz); (B) bending plate. 

Table 1. List of WIM stations considered in the analysis and number of compound data records. 

Station 
ID 

Route 
Number 

Latitude and 
Longitude 

Direction (City) Load 
Sensor 

Number of 
Records 

1 DK3 50.86624 N, 15.61059 
E 

Jelenia Gora piezoquartz 4156 

2 DK3 50.87413 N, 15.61059 
E Jakuszyce piezoquartz 2632 

3 S7 
54.31944 N, 18.73741 

E Warszawa piezoquartz 16,394 

4 S7 54.29416 N, 18.82251 
E 

Gdansk piezoquartz 16,248 

Figure 3. The investigated technologies of WIM axle load sensors: (A) quartz piezoelectric (piezoquartz);
(B) bending plate.

The WIM systems used currently are not equipped with air or pavement temperature sensors.
Hence, to provide information on temperature during measurements, the WIM data were supplemented
by meteorological data delivered from weather stations administrated by the Polish Institute of
Meteorology and Water Management (IMGW). Each measurement record for a vehicle weighted in
motion was supplemented with air temperature measured at the same time in the nearest weather
station. Air temperature is not equal to pavement temperature, nevertheless, they are strongly
correlated. More detailed information about the application of air temperature data from Polish IMGW
weather stations for calculations of pavement temperatures is included in [38–41]. For the purpose of
this paper air temperatures are sufficient to represent the overall thermal conditions in the WIM station.

4. Results and Discussion

4.1. Determination of Steering Axle Load Spectra (SALS) and Normality Check

SALS were determined for each of the 77 WIM stations. SALS for WIM station no. 58 is presented
in Figure 4 as an example. For each station the shape of SALS probability distributions is very close to
normal distribution, which is also visible in the example given in Figure 4.
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Figure 4. Example of steering axle load spectrum (SALS) determined for WIM station no. 58.

SALS were investigated in terms of normality of distribution. For this purpose, during the first
stage, the Lilliefors test was conducted at the level of 99.9%. The results of the tests indicated that for
40% of the calculated distributions (including station no. 58 shown in Figure 4) the null hypothesis
about normality of distribution can be rejected. In other words, only 60% of SALS meet the assumption
that they are normal distributions. The problem with normality of distribution detected for 40% of
stations resulted from the fact that, for these stations, a number of steering axles with loads below
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40 kN were improperly detected as steering axles of a heavy articulated vehicle, while in fact they were
axles of lighter vehicles, moving very close to heavier ones. This is probably due to an inaccuracy in
the automatic vehicle classification module. While the proportion of inaccurately recognised vehicles
was below 2% of the total number of axles, due to the strength of the Lilliefors test and a large number
of observations, it had an impact on the test results. To eliminate this incoherence, the minimum value
for the steering axle load was set as 40 kN. In consequence, the Lilliefors test performed again for each
SALS confirmed normality of distributions.

4.2. Determination and Comparison of Distributions of Means and Standard Deviations of SALS

Normal distributions of SALS were determined for each of the 77 WIM stations; means and
standard deviations were used as comprehensive parameters to characterise SALS. It was noted that
there were differences, both in mean values and standard deviations of SALS, between particular
stations. To characterise the extent of these differences, distributions of previously calculated means
and standard deviations were determined. They are shown in Figure 5. Moreover, distributions
presented in Figure 5 are divided into two groups of WIM stations, to compare the two technologies of
axle load sensors: bending beam and quartz piezoelectric.Sensors 2019, x FOR PEER REVIEW  11 of 18 
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Figure 5. Distributions of (A) mean values of SALS and (B) standard deviations of SALS calculated
on the basis of data from WIM systems equipped with bending beam or quartz piezoelectric axle
load sensors.

Distribution of mean values of SALS, shown in Figure 5A, leads to the following findings:

1. Mean values of SALS range from 50 kN to 61 kN, which implies that systematic error does occur.
The range of the observed means is wider in the case of quartz piezoelectric sensors, which implies
that this technology of axle load sensors for WIM systems can be potentially more susceptible to
relative errors caused by de-calibration.

2. SALS determined from WIM stations equipped with bending beam sensors tend to provide
higher values of measured axle loads than WIM stations equipped with quartz piezoelectric
sensors. This observation implies that the type of axle load sensor does have an impact on results
of measurements of axle loads.
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3. It is worth mentioning that stations are maintained by five different companies. Each company
performs calibration of WIM stations periodically. In spite of the fact that the same standards
are used, some differences in calibration process can occur. Thus, it can be one of the reasons for
differences in mean values of SALS.

4. Distributions of standard deviation of SALS, which are presented in Figure 5B, are very similar
for both sensor types. This observation leads to the statement that both technologies of axle load
sensors are prone to random error to a similar degree. However, the range of standard deviations
varies from 3.0 kN to 5.5 kN (up to 6.5 kN in one case), which implies that axle load measurements
from a number of WIM stations include higher random error than from other stations.

4.3. Investigation of the Sources and Scale of Axle Load Measurement Inaccuracy on the Basis of Mean and
Standard Deviations of SALS

Vehicle speed and pavement temperature can be the source of visible differences in means and
standard deviations of SALS presented in Figure 5. Therefore, in the next stage of the analysis,
SALS were considered for selected intervals of air temperature (with gradation of 5 ◦C) and intervals
of vehicle speed (with gradation of 10 km/h). Figure 6 presents an example comparison of SALS
determined for measurements performed at two different air temperatures (Figure 6A) and at two
different vehicle speeds (Figure 6B). The four presented SALS were calculated for data delivered from
the same WIM station (no. 58). It is visible that an increase in air temperature caused positive bias in
SALS. In contrast, an increase in vehicle speed caused negative bias in SALS. The observations from
this station are consistent with the theoretical explanation of the phenomena developed in previous
research [32,33]. The source of the error is identified as the difference in the distribution of vertical
and horizontal stresses in the pavement structure at various conditions of load (speed, temperature).
Differences in stress distribution result—to a major extent—from the stiffness moduli of asphalt layers,
whose values significantly depend on temperature and vehicle speed.
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Figure 6. Example of the effect of bias of SALS determined for data from WIM station no. 58 and caused
by: (A) differences in air temperatures; (B) differences in vehicle speed.

While the sensitivity of the WIM system to temperature and vehicle speed was detected for
site no. 58, not all the considered WIM stations exhibited such visible effects. Due to this fact, a
comparison of means and standard deviations of SALS was performed. SALS were calculated again at
different temperatures and vehicle speeds for data obtained from WIM stations with particular sensor
types according to the procedure showed in Figure 2 in methodology section. The comparison is

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Sensors 2019, 19, 3272 11 of 17

presented in Figures 7–10 as cumulative distributions analogous to those presented in Figure 5. While
Figure 6 present SALS and calculated mean and standard deviation for one example of WIM stations,
Figures 7–10 show means and standard deviations for all of 77 WIM stations.

The effect of temperature on cumulative distributions of mean values and standard deviations of
SALS is presented in Figures 7 and 8, respectively.Sensors 2019, x FOR PEER REVIEW  13 of 18 
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Figure 7. Distributions of mean values of SALS in relation to air temperature based on data from WIM
systems equipped with: (A) quartz piezoelectric; (B) bending beam axle load sensors.
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Figure 8. Distributions of standard deviations of SALS in relation to air temperature based on data
from WIM systems equipped with: (A) quartz piezoelectric; (B) bending beam axle load sensors.D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl


Sensors 2019, 19, 3272 12 of 17

Sensors 2019, x FOR PEER REVIEW  14 of 18 

 

indicate that the accuracy of bending beam sensors decreases in winter due to an increase in 
systematic and random error. 

The effect of vehicle speed on cumulative distributions of mean values and standard deviations 
of SALS is presented in Figures 9 and 10, respectively. 

 
Figure 9. Distributions of means of SALS in relation to vehicle speed based on data from WIM systems 
equipped with: (A) quartz piezoelectric; (B) bending beam axle load sensors. 

 
Figure 10. Distributions of standard deviations of SALS in relation to vehicle speed based on data 
from WIM systems equipped with: (A) quartz piezoelectric; (B) bending beam axle load sensors. 

The investigation of the impact of vehicle speed on means and standard deviations of SALS 
(Figures 9 and 10) leads to the following findings: 

1. The shapes of cumulative distributions of mean values of SALS (Figure 9) differ from each other, 
implying that systematic error on WIM systems is sensitive to vehicle speed, and the error 
increases significantly for the vehicle speed of 30 km/h. For around 60% of stations, mean values 
at the speed of 30 km/h are lower than means obtained at other speeds, which suggests that axle 
loads can be underestimated. In contrast, the remaining 40% of stations delivered higher means 
of SALS, which reflects overestimation of axle loads measured at the vehicle speed of 30 km/h. 

0%

20%

40%

60%

80%

100%

40 42 44 46 48 50 52 54 56 58 60 62 64

P
er

ce
nt

ag
e 

of
 s

ta
tio

ns
 [%

]

Mean of SALS [kN]

30 50 70 90

B

0%

20%

40%

60%

80%

100%

40 42 44 46 48 50 52 54 56 58 60 62 64

P
er

ce
nt

ag
e 

of
 s

ta
tio

ns
 [%

]

Mean of SALS [kN]

A

Vehicle speed [km/h]:

0%

20%

40%

60%

80%

100%

0 2 4 6 8 10 12 14 16 18 20

P
er

ce
nt

ag
e 

of
 s

ta
tio

ns
 [%

]

Standard deviation of SALS [kN]

A

Vehicle speed [km/h]:

0%

20%

40%

60%

80%

100%
0 2 4 6 8 10 12 14 16 18 20

P
er

ce
nt

ag
e 

of
 s

ta
tio

ns
 [%

]

Standard deviation of SALS [kN]

30 50 70 90

B

Figure 9. Distributions of means of SALS in relation to vehicle speed based on data from WIM systems
equipped with: (A) quartz piezoelectric; (B) bending beam axle load sensors.
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Figure 10. Distributions of standard deviations of SALS in relation to vehicle speed based on data from
WIM systems equipped with: (A) quartz piezoelectric; (B) bending beam axle load sensors.

The investigation of the impact of temperature on means and standard deviations of SALS
(Figures 7 and 8) leads to the following findings:

1. The parallel shift of cumulative distributions of mean values of SALS, which is visible in Figure 7,
shows that a change in temperature is one of the sources of systematic error. A decrease in
temperature causes negative bias of SALS. Bending beam sensors exhibit significantly lower
mean values of SALS for the temperature of −5 ◦C, at which the value is around 10% lower than
at the temperature of 25 ◦C. The effect is also visible in the case of quartz piezoelectric sensors,
but the relative difference between means at −5 ◦C and 25 ◦C is lower and equals around 5%.
This finding is significant when ALS are determined for individual months or seasons, like in
input data for MEPDG. The systematic error could be the reason of the decrease in axle loads
commonly observed in winter months.

2. According to Figure 8, a change in temperature affects standard deviation of SALS to a minor
degree. However, in the case of bending beam sensors, a slight increase in standard deviation
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is observed for the low temperature of −5 ◦C. The observations presented in Figures 7 and 8
indicate that the accuracy of bending beam sensors decreases in winter due to an increase in
systematic and random error.

The effect of vehicle speed on cumulative distributions of mean values and standard deviations of
SALS is presented in Figures 9 and 10, respectively.

The investigation of the impact of vehicle speed on means and standard deviations of SALS
(Figures 9 and 10) leads to the following findings:

1. The shapes of cumulative distributions of mean values of SALS (Figure 9) differ from each
other, implying that systematic error on WIM systems is sensitive to vehicle speed, and the error
increases significantly for the vehicle speed of 30 km/h. For around 60% of stations, mean values
at the speed of 30 km/h are lower than means obtained at other speeds, which suggests that axle
loads can be underestimated. In contrast, the remaining 40% of stations delivered higher means
of SALS, which reflects overestimation of axle loads measured at the vehicle speed of 30 km/h.

2. For typical vehicle speeds of 70 km/h and 90 km/h the cumulative distributions obtained for
standard deviations are almost identical. For low speeds, an increase in standard deviations is
observed for 25% and 35% of the total amount of WIM stations equipped with quartz piezoelectric
and bending beam sensors, respectively (see Figure 10). It shows that in some cases the accuracy
can decrease at lower speeds while it is satisfactory at higher speeds. It is noteworthy that the
current calibration procedure does not include running of test vehicles at speeds of 30 km/h and
lower. The observation presented in Figure 10 is contrary to the hypothesis that random error
should increase with vehicle speed due to an increase in dynamic loads. For 60% of WIM stations
the standard deviation of SALS equals 5 kN or less, regardless of vehicle speed. However, WIM
stations are localised at very smooth road sections. If pavement roughness significantly increased,
the random error would probably increase too.

The results delivered from the presented analysis were compared to results from previous
works [31,37] and the comparison is summarized in Table 2. Systematic error of WIM measurement
can be the result of temperature change, which has been proved both in this study and previous
works. However, in some cases of WIM stations the decrease in accuracy can be more problematic
than previous studies showed. Moreover, this study revealed that WIM with bending beam sensors
underestimate axle load when temperature drops below 0 °C. Findings delivered from this work
converge with previous works on the minor impact of traffic speed on WIM accuracy when vehicle
speed is in the range from 50 to 90 km/h. The presented studies showed that when vehicle speed
decreased to 30 km/h the WIM systems lost their accuracy regardless of sensor type. Findings presented
in these case studies have a theoretical justification [32], that the loss of WIM system accuracy due
to change of temperature and vehicle speed rise up from the change of mechanical properties of
pavement structure.

4.4. Determination of Standard Steering Axle Load Spectrum

The performed analysis of SALS enabled determination of a standard steering axle load spectrum
that can be potentially used in algorithms for self-calibration of WIM systems. For this purpose,
cumulative distributions presented in Figures 7–10 were used. At the first stage, cumulative
distributions were used to identify those conditions (air temperatures or vehicle speeds) at which
systematic or random error significantly increased. Thus, results obtained for the temperature of −5 °C
and vehicle speeds of 30 km/h and 50 km/h were excluded. Furthermore, 20% of WIM stations that
delivered the lowest mean values and 20% of WIM stations with the highest mean values of SALS
were excluded.
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Table 2. Comparison of methodologies and results obtained from presented analysis to results obtained
from previous works [32,38].

Compared Aspect This Studies Studies [31,37]

Approach

Comparison of mean and standard
deviations of steering axle load spectra
obtained for 77 cases of WIM stations
being in normal service.

Comparison of dynamic loads of
particular axles with a reference value of
axle load for several WIM stations
(including MS-WIM).

Effect of temperature

Increase in air temperature from −5 ◦C to
+25 ◦C causes decrease of mean values of
SALS by around 10% in the case of
bending beam sensors 5% in the case of
quartz piezoelectric sensors, which
indicates the relative error caused by
temperature change.

Change of pavement temperature
within the range −5 ◦C to +25 ◦C
produced a weighing error change of
10% in the case of bending beam sensor
and 7% in the case of quartz
piezoelectric

Effect of vehicle speed

Minor effect of vehicle speed on SALS in
the range of speed from 70 to 90 km/h.
When speed drops below 50 km/h a
deterioration of WIM accuracy is
observed. The problem is serious both in
the case of WIM systems equipped with
bending beam and quartz sensors.

The effect of vehicle speed on weighing
results for the same vehicle traveling at
speeds of 55 km/h and 85 km/h differed
by 4% for quartz sensors and by 1% for
bending plate sensors.

The range of mean values determined according to this approach equals from 52 kN to 56 kN for
systems with quartz piezoelectric sensors and from 54 kN to 58 kN for systems with bending beam
sensors. Mean values of SALS are shifted depending on the type of axle load sensor, thus 55 kN, being
the mean value for the range of 52 kN to 58 kN, seems to be the most reasonable value to represent the
mean of the standard steering axle load spectrum. Analogously, the range of standard deviations of
SALS equals from 3 kN to 5 kN, and the mean for such a range equals 4 kN.

Therefore, definition of the standard steering axle load spectrum as a normal distribution with the
mean equal to 55 kN and standard deviation equal to 4 kN is proposed.

5. Summary

1. The presented analysis was based on data delivered from 77 weigh-in-motion stations, which
are in normal service on motorways and national roads in Poland. Each of the considered
weigh-in-motion systems used one of the two axle load sensor technology: bending beam or
quartz piezoelectric. The weigh-in-motion data delivered steering axle load spectra, which were
further used to investigate the source and scale of inaccuracy of in axle load measurements.

2. In order to include several factors—such as the type of axle load sensor, pavement temperature
and vehicle speed—various cases of steering axle load spectra were calculated from a data set
selected using a series of filters. The Lilliefors statistical test proved that all the spectra were
normal, which enabled valid comparisons of their means and standard deviations.

3. The results of the analysis indicated evident effect of axle load sensor type on the measured axle
load. Weigh-in-motion stations equipped with bending beam load sensors tend to provide higher
values of axle loads than WIM stations equipped with quartz piezoelectric sensors. Moreover,
systems with bending beam sensors are more sensitive to low temperatures, while systems with
quartz piezoelectric sensors are more sensitive to changes in vehicle speed, which is expressed by
an increase in systematic error. Both technologies are prone to random error to a similar degree.

4. Systematic error of weigh-in-motion systems increases during winter, causing underestimation of
axle loads. Systems with bending beam sensors are more susceptible to this problem. When air
temperature decreases from 25 °C to −5 °C, the negative bias of axle load spectra equals 5% and
10% for quartz piezoelectric and bending beam load sensors, respectively.
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5. Vehicle speed has an impact on the accuracy of weigh-in-motion systems. The increase in
error—both systematic and random—is most evident for low speeds (30 km/h). For 25% to 35%
of the cases, the random error increases at lower speeds, while it remains at a constant level at
higher speeds of 50 km/h to 90 km/h.

6. As a final output of the analysis, a standard steering axle load spectrum was determined. It is a
normal distribution with the mean equal to 55 kN and standard deviation equal to 4 kN. It represents
a model of steering axle load spectrum obtained for vehicles classified as five-axle articulated vehicles:
trucks with two single axles (steering and drive) with one tridem axle in semitrailer. The gross weight
of those vehicles is limited to a range of 16 Mg to 20 Mg. The standard spectrum was determined
for Polish heavy traffic conditions, which are comparable to conditions in other European Union
countries. Nevertheless, the same methodology may be freely adopted in determination of standard
steering axle load spectra in other countries.

7. The standard steering axle load spectrum correspond to real traffic conditions, regardless of
sensor type, pavement structure, thermal conditions and vehicle speed. In further works the
standard steering axle load spectrum will be used to improve self-calibration algorithms for
direct enforcement weigh-in-motion systems and also to develop the procedures of traffic data
processing for mechanistic-empirical pavement design.
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