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Abstract The paper presents some two-dimensional sim-
ulation results of granular vortex-structures in cohesionless
initially dense sand during a quasi-static passive wall trans-
lation. The sand behaviour was simulated using the discrete
element method (DEM). Sand grains were modelled by
spheres with contact moments to approximately capture the
irregular grain shape. In order to detect vortex-structures,
the Helmholtz–Hodge decomposition of a vector field from
DEM calculations was used. This approach enabled us to dis-
tinguish both incompressibility and vorticity in the granular
displacement field. In addition the predominant periods of
vortices during horizontal wall movement were determined.
The vortices were strongly connected to shear localization.
They localized in locations where shear zones ultimately
developed. In addition, the vortex-structures were calculated
during plane strain compression.

Keywords Earth pressure · Granular material · Discrete
element method · Vortex-structures · Helmholtz–Hodge
decomposition

1 Introduction

Granular vortex-structures (swirling motion of several grains
around its central point) were frequently observed in exper-
iments on granular materials [1–4] and in calculations using
the discrete element method (DEM) [5–16]. The experi-
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ments were performed during Couette shearing [1], plane
strain compression [2] and simple shear [3,4]. The vortices
were observed to form in association with the onset of peak
stress. They appeared only occasionally, quickly dissipat-
ing [1–4]. The granular vortex-structures were also obtained
with the aid of the finite element method [17]. They became
apparent in experiments [1–4] and calculations (e.g. [5,13–
16]) when the motion associated with uniform (affine) strain
was subtracted from the actual granular deformation. They
are reminiscent of turbulence in fluid dynamics [5], how-
ever the amount of the grain rotation is several ranges of
magnitude smaller (∼0.01◦–0.1◦) than the fluid vortex rota-
tion and granular flow is too slow to induce inertial forces
characteristic for turbulences in fluid. According to Peters
and Walizer [13] vortices represent an independent flow
field following its own governing equations and satisfying
its own (null) boundary conditions. Tordesillas et al. [11]
showed that two classes of vortices emerging: primary ones
concentrated in the shear zone and secondary ones form-
ing next to the zone boundaries. A dominant mechanism
responsible for the vortex formation was the breakage of
force chains [11,16]. The collapse of main force chains
lead to a formation of larger voids and their build-up to a
formation of smaller voids [11,16]. Vortex dynamics were
consistent with stick-slip dynamics [16]. The vortices have
been mainly observed in shear zones [11,16,18] which are
the fundamental phenomenon in granular bodies. A precise
mechanism behind the vortex evolution with its connection
to shear localization in granular bodies still remains elu-
sive. In numerical calculations, shear localization is usually
identified in granular bodies by grain rotations (in DEM) or
micro-polar rotations or by an increase of void ratio (in FEM)
[19].

The objective of this paper is to report the results of com-
prehensive 2D studies by DEM on vortex-structures in sand
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behind a rigid wall during its quasi-static passive transla-
tion by using the Helmholtz–Hodge decomposition (HHD)
of a vector field [20,21]. Attention was paid to the relation-
ship between vortex-structures and shear localization with
respect to the location and formation moment. The anal-
yses were carried out with spheres with contact moments
[16] to approximately capture the irregular grain shape. In
order to accelerate the computation time, some simplifica-
tions were assumed in analyses: large spheres with contact
moments, linear sphere distribution, linear normal contact
model and no particle breakage. A three-dimensional dis-
crete model YADE developed at University of Grenoble by
F.V. Donze and his co-workers was applied [22–27]. The dis-
crete calculations were solely carried out with initially dense
sand.

In our previous paper we calculated 2D vortex- and
anti-vortex structures during a quasi-static plane strain com-
pression test solved by the DEM [28]. Two-dimensional
vortex- and anti-vortex structures were determined by a
method based on orientation angles of displacement fluc-
tuation vectors of neighbouring single spheres [28]. The
proposed method used for the detection of 2D granular
vortex/anti-vortex-structures was very effective. The method
detected all vortex and anti-vortex-structures regardless of
the displacement vector length. The 2D vortex- and anti-
vortex structures solely appeared in the main inclined shear
zone. Their occurrence did not depend on the specimen depth.
The anti-vortices turned out be the best precursor of the
location of shear zones since they appeared from the begin-
ning of the deformation process, i.e. significantly earlier than
e.g. based on the average cumulative grain rotation. Other
results showed that the increase of the grain-non-regularity
decreased the predominant period of left-handed vortices and
anti-vortices by 25–40%. This method had however 3 disad-
vantages: (1) it operated on displacement fluctuation vectors
(not directly on displacement increment vectors), (2) it was
solely designed for 2D granular flow and (3) it depended
on several parameters such as: region size of the average
background translation, averaging region size of local dis-
placement increments, searching circle radius and grid move
distance [18]. The method used in this paper has the fol-
lowing advantages over the previous one: (1) it operates
directly on displacement increment vectors, (2) it is designed
for identifying vortices in both two- and three-dimensional
kinematic fields, (3) it does not need any additional param-
eters for calculations and (4) it can be used for DEM and
FEM calculations. The method does not determine the size
of vortex-structures. There exist also the methods which
take the vortex size into account [29]. However this size
depends on the displacement vector lengths, displacement
vector rotations, ratio between the height and width of vec-
tors assumed for describing the vortex shape and number of
grains comprising the vortex. In the paper [16] in order to

mathematically describe 2D vortices, the displacement fluc-
tuation vector of each grain in the neighbourhood of each
central grain was decomposed into 2 vectors: the normal
and tangential to the movement direction of each central
grain. Only the tangential displacement fluctuations were
assumed to be responsible for a vortex, i.e. if the neighbour-
ing grains had solely the tangential displacement fluctuation
component, the central grain was assumed to be located in
a vortex mid-point. In order to avoid the prescribing pure
shearing along a shear zone as a vortex, a certain limitation
was imposed, i.e. the condition that the sum of the tangen-
tial displacement fluctuations had to be at least twice as big
as the sum of the normal displacement fluctuations (to be
classified as a part of the vortex). It was assumed in Peters
and Walizer [13] that a 2D vortex was connected with the
rigid body rotation (spin) in the displacement fluctuation
field. During 2D calculations described in Tordesillas et al.
[11], vortex cores were identified by partitioning a vector
displacement field into triangles, each analyzed with respect
to a direction-spanning property (the vectors at the trian-
gle vertices were located within a certain range of angles,
i.e. each vector pointed to a unique direction range). A vor-
tex was then identified for each vortex core with the vortex
boundary set by the last member vector rotating in the vor-
tex direction. The full extent of each vortex was established
by a systematic check of the direction of neighbouring vec-
tors (in the second ring, third ring, etc.) at increasing radial
distance from the vortex core until a vector was found that
rotated in an opposite direction to the corresponding vor-
tex.

Our paper consists of two main parts. In the first part,
discrete elements results of a passive earth pressure problem
were shortly described to show the capability of DEM to real-
istically simulate the pattern of shear zones in sand [17]. In
the second part, the formation of 2D vortex-structures by the
HHD was discussed based on direct grain displacements. In
addition, the vortex-structures were calculated during plane
strain compression.

2 Three-dimensional DEM model

In order to simulate the behaviour of real sand, the 3D
spherical discrete model YADE, developed at University
of Grenoble [22–27], was used by taking advantage of the
so-called soft-particle approach (i.e. the model allows for
particle deformation which is modelled as an overlap of par-
ticles). A linear elastic normal contact model was used only.
A choice of a very simple linear elastic normal contact was
intended to capture on average various contacts possible in
real sands. The normal and tangential forces were linked to
the displacements through the normal stiffness Kn and tan-
gential stiffness Ks (Fig. 1A)
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Fig. 1 Mechanical response of
linear contact model without (A)
and with contact moments
(A+B) [22,23]: (a) tangential
contact model, (b) normal
contact model and (c) rolling
contact model and C loading
and unloading path (tangential
and rolling contact),
�Fs—tangential force vector

between elements, �Fn—normal
force vector between element,
�M—contact moment vector,
Ks—tangential stiffness,
Kn—normal stiffness,
Kr—rolling stiffness,
U—penetration depth,
�Xs—tangential displacement
vector, �ω—angular rotation
vector, μ—inter-particle friction
angle, η—limit rolling
coefficient

�Fn = KnU �N , (1)

�Fs = �Fs + � �Fs with � �Fs = Ks�
⇀

Xs, (2)

where U is the penetration depth between discrete elements,
�N denotes the unit normal vector at the contact point and
� �Xs is the incremental tangential displacement vector. The
unloading was assumed to be purely elastic (Fig. 1C). The
stiffness parameters were calculated in terms of the modulus
of elasticity of the grain contact Ec and two contacting grain
radii RA and RB (to determine the normal stiffness Kn) and
in terms of the modulus of elasticity Ec and Poisson’s ratio
υc of the grain contact, and grain radii RA and RB (to deter-
mine the tangential stiffness Ks) of two contacting spheres,
respectively [22]

Kn = Ec
2RARB

RA + RB
and Ks = νcEc

2RARB

RA + RB
. (3)

If the grain radius RA = RB = R, the stiffness parameters
are equal to: Kn = EcR and Ks = υcEcR (thus Ks/Kn =

υc), respectively. The frictional sliding starts at the contact
point when the contact forces �Fs and �Fn satisfy the limit
Coulomb condition (Fig. 1a)

∥
∥
∥ �Fs

∥
∥
∥ −

∥
∥
∥ �Fn

∥
∥
∥ × tan μ ≤ 0 (4)

with μ as the inter-particle friction angle (tension was not
allowed). No forces are transmitted when grains are sepa-
rated. The elastic contact constants were specified from the
experimental data of a triaxial compression sand test and
could be related to the modulus of elasticity of grain material
E and its Poisson ratio ν [30,31].

In order to increase the rolling resistance of pure spheres,
clusters of spheres or contact moments were introduced [30].
The normal force was assumed to contribute to the rolling
resistance. The contact moment increments were calculated
by means of the rolling stiffness Kr multiplied by the angular
rotational increment vectors � �ω (Fig. 1B)

�M = Kr� �ω. (5)
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In Eq. 5, the angular rotational increment vectors do not
depend on the spherical grain radii in contrast to equations
which take the different radii into account [32,33].

The rolling stiffness Kr [kNm] in Eq. 5 was related to
the tangential stiffness Ks [kN/m] in Eq. 2 by the following
formula proposed by Iwashita and Oda [34]

Kr = β × Ks × R2 = β × Ks × RARB, (6)

where β is the dimensionless rolling stiffness coefficient
and R is the equivalent grain radius (at small displacements
dXr ≈ dXs). The dimensionless rolling coefficient η speci-
fies the limit friction moment of the rolling motion

| �M| − η
RA + RB

2
| �Fn| ≤ 0. (7)

In order to dissipate excessive kinetic energy in the dis-
crete system, a simple local non-viscous damping scheme
was adopted [35], by assuming a change of forces and
moment reduced due to the damping effect specified by the
parameter α

�Fk
damped = �Fk − α · sgn

(

�νk
) ∣

∣
∣ �Fk

∣
∣
∣ (8)

and

�Mk
damped = �Mk − α · sgn

(
⇀
ω
k
) ∣

∣
∣ �Mk

∣
∣
∣ , (9)

where �Fk and �Mk are the kth components of the residual force
and moment vector and �νk and �ωk are the kth components of
the translational and rotational velocity. A positive damping
coefficient α is smaller than 1 (sgn(•) returns the sign of
the kth component of velocity). The equations are separately
applied to each k-th component of a 3D vector x , y and z.
Note that the effect of damping is insignificant in quasi-static
calculations [31].

Although a non-linear contact law is more realistic, a lin-
ear contact law provides similar results with the significantly
reduced computation time [31] and therefore was used in the
present simulations. The five main local material parameters
are necessary in our DEM simulations: Ec (modulus of elas-
ticity of the grain contact), νc (Poisson’s ratio of the grain
contact), μ (inter-particle friction angle), β (rolling stiff-
ness coefficient) and η (limit rolling coefficient). In addition,
a particle radius R, particle mass density ρ and numeri-
cal damping parameter α are required. The DEM material
parameters: Ec, νc, μ, β, η and α were calibrated using the
corresponding homogeneous axisymmetric triaxial labora-
tory test results on Karlsruhe sand with the different initial
void ratio and lateral pressure by Wu [36]. The procedure for
determining the material parameters in DEM was described
in detail by Kozicki et al. [30,31]. The index properties of

Karlsruhe sand are: mean grain diameter d50 = 0.50 mm,
grain size between 0.08 and 1.8 mm, uniformity coefficient
Uc = 2, maximum specific weight γmax

d = 17.4 kN/m3,
minimum void ratio emin = 0.53, minimum specific weight
γmin
d = 14.6 kN/m3 and maximum void ratio emax = 0.84.

The sand grains are classified as sub-rounded/sub-angular.
The following material constants were found in DEM by
fitting numerical outcomes with experimental ones during
homogeneous triaxial compression: Ec = 0.3 GPa, νc = 0.3,
μ = 18◦, β = 0.7, η = 0.4 ρ = 2.55 g/cm3 and a = 0.08.
The constants Ec and νc do not correspond to the elastic con-
stants of grains [31]. Note that the other set of the material
constants μ, β and η is also possible.

3 DEM results of passive earth pressure model tests

The DEM calculation results were described in detail in
Nitka et al. [16]. The simulations were performed for a 2D
sand body of lw = 0.40 m length and hw = 0.20 m height
in order to compare with experiments with Karlsruhe sand
(d50 = 0.5 mm) [37,38]. The vertical retaining wall and the
bottom of the granular specimen were assumed to be stiff
and very rough, i.e. there was no relative displacement along
vertical and bottom surface [19]. Since the experiments were
idealized as a 2D boundary value problem and the effect of
the specimen depth in the out of plane direction turned out
to be almost negligible during direct shearing in DEM calcu-
lations [15] in order to significantly accelerate simulations,
the computations were performed with the specimen depth
equal to the grain size (i.e. one layer of spheres was simulated
along the depth only).

The spheres with d50 = 1.0 mm, characterized by a lin-
ear grain size distribution, were assumed (grain size range
0.5–1.5 mm, 62,600 spheres). Along the height of 200 mm,
about 200 spheres were used. The initial void ratio of sand,
obtained by generating random spheres above a box and
then allowing them to fall down by gravity, was eo = 0.62.
The loading speed was slow enough to ensure that the tests
were conducted under quasi-static conditions. The calculated
mean inertial number (which quantifies the significance of
dynamic effects) in the mid-length of the curved shear zone
for the maximum horizontal earth pressure force was in the
analyses I = γ̇ d50√

P
ρ

= 5 · 10−4 (γ̇ = 0.751/s—the shear

rate, P = 5 kPa—the mean pressure and ρ = 2.55 g/cm3).
The inertial number obviously changed along the specimen
height and in time during the entire granular flow. The value
of I ≤ 10−3 corresponds usually to a quasi-static regime
[39].

Figure 2A shows the evolution of the resultant normalized
horizontal earth pressure force (earth pressure coefficient)
Kp = 2Eh/

(

γ h2
wd50

)

versus the normalized horizontal
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Fig. 2 DEM results (passive
case, translating wall, initially
medium dense sand, height
hw = 0.2 m, initial volumetric
unit γ = 25.5 kN/m3, initial
void ratio eo = 0.62, mean grain
diameter d50 = 1 mm): A
evolution of resultant
normalized horizontal earth
pressure force 2Eh/(γ h2

wd50)

versus normalized horizontal
wall displacement uh/hw and B
deformed granular body
0.2 m2 × 0.4 m2 with
distribution of single sphere
rotations for different translation
uh/hw: (a) 0.01, (b) 0.02, (c)
0.04, (d) 0.06, (e) 0.10 and (f )
0.15 (red colour denotes
clockwise rotation ω > +30◦,
blue colour denotes
anticlockwise rotation
ω < −30◦) [16] (colour figure
online)

wall displacement uh/hw(hw = 0.2 m, Eh—the horizon-
tal force acting on the wall, γ = 16.75 kN/m2—the initial
unit weight) for d50 = 1 mm from DEM simulations. The
normalized horizontal earth pressure force evolved typically
for initially dense granulates in biaxial compression, triaxial
compression and direct shearing. The specimen exhibited the
initial strain hardening up to the peak (uh/hw = 0.038), fol-
lowed by some softening before the common asymptote was
reached (critical state). The horizontal force fluctuated after

the peak that was attributed to the build-up and collapse of
force chains—the main carrier of stresses transferred within
the granular assembly [16]. The earth pressure coefficient
was Kmax

p = 30 for d50 = 1 mm. It can be thus anticipated
that for d50 = 0.5 mm (real sand), Kmax

p should be about 25–
27. The value of Kmax

p = 30 for d50 = 1 mm was slightly
smaller than Kmax

p = 31 obtained by FEM (d50 = 0.5 mm)

[38] and was closer to the engineering earth pressure coeffi-
cients [40].
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Fig. 2 continued
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The distribution of single sphere rotations ω during wall
translation is presented in Fig. 2B which are usually the
best indicator for shear localization in DEM (red denotes the
sphere rotation ω > +30◦ and blue ω < −30◦, dark grey
is related to the sphere rotation in the range 5◦ ≤ ω ≤ 30◦,
light grey in the range −30◦ ≤ ω ≤ −5◦, medium grey in the
range −5◦ ≤ ω ≤ 5◦, positive sign means clockwise rota-
tion). Such a colour convention made shear zones clearly
observable (only particles within shear zones significantly
rotated). There existed a clear grain separation between a
clockwise (red) and an anti-clockwise (blue) rotation—the
majority of ‘red grains’ was located within the dominant
curve shear zone while the majority of ‘blue grains’ was
placed within the straight radial shear zone (however there
existed also a small amount of blue grains within the ‘red
shear zone’ and vice versa). Based on grain rotations, a
curved shear zone started to develop along the specimen bot-
tom for the normalized wall translation of uh/hw = 0.02
(Fig. 2Bb). It was fully developed for uh/hw = 0.06. Its
thickness was ts = 20 mm (20×d50). The radial shear zone
started later to form for uh/hw = 0.04 (Fig. 2Bd) and for
uh/hw = 0.06 connected the curved shear zone. Its thick-
ness was ts = 10 mm (10 × d50). There was a satisfactory
agreement between DEM simulation results and real exper-
imental outcomes [41,42] and FE results [19,38].

4 Helmholtz–Hodge decomposition

The HHD of vector fields is one of the fundamental the-
orems in fluid dynamics [20,21,43]. It describes a vector
displacement increment field in terms of its curl-free and
divergence-free components based on potential functions.
The unique HHD of the smooth 3D vector field �ξ provides
the following formula

�ξ = �∇u + �∇ × �ν + �h, (10)

where ∇ =
(

∂
∂x , ∂

∂y ,
∂
∂z

)T
is the gradient, ∇· =

(
∂
∂x + ∂

∂y

+ ∂
∂z

)

denotes the divergence operator, ∇× is the curl oper-

ator, u denotes the scalar potential field, �ν is the vector
potential field and �h denotes the harmonic vector field. The
gradient of the scalar potential function �∇u is called the
curl-free component and is related to expansion/contraction
(because is irrotational) while the curl of the vector potential
function �∇ × �ν is called the divergence-free component and
is related to vorticity and pure shear (because is incompress-
ible). The harmonic component is related to pure translation.

A variational calculus approach was used [44] which
allowed for finding the vector fields �∇u and �∇ × �ν by exam-
ining the difference between the unknown vector field and
provided field �ξ (see Eqs. 11, 12). By requesting that this

difference is minimum (the minimum was found by request-
ing that the derivatives of the functionals were equal to zero,
Eqs. 13, 14), the vector fields �∇u and �∇ × �ν were explic-
itly determined. The explicit calculation for �∇u was given in
Eqs. 15 and 16 and for �∇ × �ν in Eq. 17.

The HHD on irregular grids has been already used e.g. in
graphics [43]. In order to create a grid, the centre of each
sphere was a node in a Delaunay triangulation [45] and the
i-th node had the coordinate �ri . Then the discrete piecewise-
constant vector field �ξ (�ri ) = ∑

k ψk(�r)�ξk was created by
assigning the constant vector value �ξk to each k-th tetrahedron
(ψk is the piecewise-constant basis function equal to 1 inside
the k-th tetrahedron and 0 otherwise). This value was calcu-
lated as the average of sphere displacement increments �dn
which constituted each tetrahedron �ξk = 1/4

∑n=4
n=1

�dn in the
3D case or each triangle �ξk = 1/3

∑n=3
n=1

�dn in the 2D case.
Since u and �ν are the piecewise linear functions described
using a piecewise-linear basis shape function φi (�r), their
derivatives ∇ will be piecewise-constant, hence the solution
for the piecewise-constant �ξ(�r) discrete vector field is exact
[43].

The decomposition of the discrete vector field �ξ was sep-
arately solved for each component of u and �ν by finding the
minimum of 2 following quadratic functionals [43] using the
variational calculus principle [44]

F (u) = 1

2

∫

Γ

( �∇u − �ξ
)2

dV (11)

and

G(�ν) = 1

2

∫

Γ

( �∇ × �ν − �ξ
)2

dV, (12)

where

– Γ is the domain where the vector field �ξ is defined—the
total volume of all tetrahedrons (or triangle areas) where
the Delaunay triangulation was performed,

– u is the discrete scalar potential at the node ‘i’ u(�r) =
∑

i φi (�r)ui ,
– �ν is the discrete vector field at the node ‘i’ �ν(�r) =

∑

i φi (�r)�νi ,
– φi (�r) is the piecewise-linear basis function (shape func-

tion) valued 1 at �ri (the i-th node) and valued 0 at all
other nodes,

– �r is the spatial coordinate in Γ using the Cartesian coor-
dinate system �r = (x, y, z).

The minimum of the quadratic functionals F(u) and G(�ν)

is found by requiring that their functional derivatives are zero

∂F (u)

∂ui
= 1

2

∂

∂ui

∫

Γ

( �∇u − �ξ
)2

dV = 0 (13)
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and

∂G (�ν)

∂vi
= 1

2

∂

∂νi

∫

Γ

( �∇�ν − �ξ
)2

dV = 0. (14)

Solving for u(�r) using the variational calculus :

0 = ∂F (u)

∂ui
= 1

2

∫

Γ

∂

∂ui

( �∇u − �ξ
)2

dV,

= 1

2

∫

Γ

2
( �∇u − �ξ

)

· ∂

∂ui

( �∇u − �ξ
)

dV =
∫

Γ

( �∇u − �ξ
)

· ∂

∂ui

⎛

⎝ �∇
⎛

⎝
∑

j

φi (�r)u j

⎞

⎠ − 0

⎞

⎠ dV

=
∫

Γ

( �∇u − �ξ
)

·
( �∇φi (�r)

)

dV . (15)

Thus
∫

Γ

�∇φi (�r) · �∇u (�r) dV =
∫

Γ

�∇φi (�r) · �ξ (�r) dV . (16)

Similarly for �ν
∫

Γ

�∇φi (�r) ×
( �∇ × �ν (�r)

)

dV =
∫

Γ

�∇φi (�r) × �ξ (�r) dV .

(17)

The integrals in Eqs. 16 and 17 may be re-written in a
discrete form as a sum over tetrahedron volumes for each
i-th node, creating a set of linear equations (one equation per
node) that is solved for the unknows ui and �νi using standard
methods (e.g. inverting matrix or conjugate gradient).

∑

Tk∈N (i)

( �∇φi

)

k
·
( �∇u

)

k
|Tk | =

∑

Tk∈N (i)

( �∇φi

)

k
·�ξk |Tk | ,(18)

∑

Tk∈N (i)

( �∇φi

)

k
×

( �∇ × �v
)

k
|Tk |=

∑

Tk∈N (i)

( �∇φi

)

k
×�ξk |Tk | ,

(19)

where
|Tk |—the tetrahedron volume (triangle area),
�(∇φi )k—the vector orthogonal to the tetrahedron face f

(triangle edge f for 2D cases) opposite to the i-th node in
the k-th tetrahedron (triangle), pointing towards the i-th node

with the magnitude of area( f )
3|Tk |

(

or length( f )
2|Tk | for 2D cases

)

,

N (i)—the set of all tetrahedrons (triangles) containing the
i-th node.

Equations 18 and 19 describe the i-th row of 2 sparse
matrices and were numerically solved for the unknowns ui

and �νi using the Eigen library with a bi-conjugate gradient
stabilized solver [45]. The third component of Eq. 10 the
harmonic vector field (which contains a non-integrable field
component) is determined as �h = �ξ− �∇u− �∇×�ν. The sphere
displacement increments were calculated during 10,000 iter-
ations (�uh/hw = 0.002) [16].

In order to obtain a unique solution, appropriate bound-
ary conditions have to be assumed [20,43]. The system of
linear equations in HHD was solved using the following
general boundary conditions: �∇×�ν (divergence-free compo-
nent) was tangential to the domain boundary �v|∂T = 0 and
�∇u (curl-free component) was orthogonal to the boundary
domain u|∂T = 0. The proof of uniqueness and orthogonality
for these boundary conditions, called N-P (normal-parallel)
boundary conditions, which should be always maintained
for flow problems can be found in Denaro [46]. Note that a
change of these boundary conditions suggested in Petroneto
et al. [47] may create an invalid or ill-posed problem [48]. The
so-called Hodge–Morrey–Friedrichs boundary conditions
may be also used [21]. The boundary conditions obviously
influence vector fields close to specimen boundaries. In par-
ticular when the spheres’ number is low; vortex-structures
may be solely detected in the specimen centre since the vector
field �∇ × �ν is forced by boundary conditions to be paral-
lel to boundaries. In our calculations the number of spheres
along the height and length of the granular specimen was
high enough (200–400) and the effect of boundaries proved
to be insignificant on the distribution of vortices based on
preliminary calculations (e.g. in the case of 20-times smaller
number of spheres with the diameter of 10 mm along the
specimen height, a very low number of vortices was detected
due to a strong effect of boundary conditions). The effect
of boundary conditions may be weakened by introducing
virtual particles outside the boundary [47]. The calculated
vector fields were plotted using the line integral convolu-
tion method [49]. No additional smoothing techniques [43]
were used in the detection’s method to find sinks, sources and
vortices.

5 Numerical results

5.1 Passive wall translation

The calculation results are described in Figs. 3, 4, 5 and
6. Figure 3 shows the evolution of the vector displacement
increment field �ξ during the normalized horizontal wall trans-
lation uh/hw (sphere displacement increment directions are
marked by white arrows). The scale attached denotes the
sphere displacement increment vector length during 10,000
iterations in [mm/iteration] which changes between 0 and
1 mm. Based on the displacement increment vector length
and vector direction changes, a curved shear zone between
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the wall bottom and free upper boundary already started in
the first calculation step. Later it moved to the right to reach
its ultimate position due to wall friction along the bottom that
was close to the maximum resultant normalized horizontal
earth pressure force of Fig. 2A (uh/hh = 0.04). Behind the

curved shear zone the material was totally rigid. A radial
shear zone was approximately created for uh/hw = 0.065.

The evolution of the scalar field gradient �∇u (curl-free
component related to compressibility) during normalized
wall translation uh/hw is described in Fig. 4. The scale
attached denotes the scalar potential u in [mm2/iteration]

Fig. 3 Evolution of vector field �ξ in granular specimen area x × y during normalized wall translation uh/hw: a 0.0025, b 0.025, c 0.04, d 0.05, e
0.075, f 0.1, g 0.125 and h 0.15 [scale denotes displacement increment vector length in (mm/iteration)]
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31 Page 10 of 21 J. Kozicki, J. Tejchman

Fig. 4 Evolution of scalar field gradient �∇u (curl-free component
related to contractancy/dilatanacy) in granular specimen area x× y dur-
ing normalized wall translationuh/hw: a 0.0025, b 0.025, c 0.04, d 0.05,
e 0.075, f 0.1, g 0.125 and h 0.15 (scale denotes scalar potential u in

(mm2/iteration) [sign (−)—dilatancy, sign (+)—contractancy, green
circles—sources (local dilatancy minima), red circles—sinks (local
contractancy maxima)] (colour figure online)

(sign (−)—dilatancy, sign (+)—contractancy), changing
between −4 and 2 mm2/iter. The green circles describe
the sources (local minima of the scalar potential u - local
dilatancy minima) and the red circles denote the sinks

(local maxima of the scalar potential u - local contrac-
tancy maxima). The local extrema of the scalar field u
were defined by requesting that the values of u in all
neighbouring nodes in the mesh created by the Delaunay
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Fig. 5 Evolution of vector field curl �∇×�ν (divergence-free component
related to vorticity) in granular specimen area x × y during normalized
wall translation uh/hw: a 0.0025, b 0.025, c 0.04, d 0.05, e 0.075, f
0.1, g 0.125 and h 0.15 [scale denotes component of vector potential �ν

perpendicular to specimen in (mm2/iteration)], green circles describe
local minima (right-handed vortices) and red circles local maxima (left
handed vortices) (colour figure online)

triangulation were smaller/larger than ui at the node in ques-
tion.

Initially global contractancy and later global dilatancy
occurred in the granular specimen. The global dilatancy was
the largest after the stress peak (Fig. 4d) and later dimin-

ished. The local contractancy maxima and local dilatancy
minima started to develop in two main shear zones before the
stress peak (Fig. 4c). In the residual state (uh/hw ≥ 0.075,
Fig. 2A), local regions of dilatancy and contractancy alter-
nately happened along both shear zones (with the prevalence
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31 Page 12 of 21 J. Kozicki, J. Tejchman

Fig. 6 Evolution of harmonic vector field �h in granular specimen area x × y during normalized wall translation uh/hw: a 0025, b 0.025, c 0.04,
d 0.05, e 0.075, f 0.1, g 0.125 and h 0.15 (scale denotes increment vector length h)

of dilatancy). This outcome is in accordance with the dis-
tribution of local void ratio in a shear zones in calculations
by DEM [16]. Note that local dilatant regions may be con-
nected to the collapse of main force chains and creation of
vortices and local contractant regions may be connected to

the build-up of main force chains and disappearance of vor-
tices [16].

Figure 5 presents the evolution of the vector field curl
�∇ × �ν (divergence-free component related to vorticity) dur-
ing normalized wall translation uh/hw. The scale denotes
the component of the vector potential �ν perpendicular to the
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specimen in [mm2/iteration]), changing from −8 mm2/iter
up to 8 mm2/iter. The green circles describe the local minima
of the scalar field ‖v‖ (right-handed vortices) and red circles
the local maxima of the scalar field ‖v‖ (left handed vortices).
The local extrema of the scalar field ‖v‖ were interpreted as
vortices and were calculated in the same way as the local
extrema of the scalar field u. The vortex-structures appeared
from the wall translation beginning. They were immediately
concentrated in regions of the shear zones’ occurrence. Thus
the ultimate shear zone pattern turned out to be encoded in
the grain kinematics from the deformation beginning. This
outcome is in accordance with our earlier calculation results
for plane strain compression based on displacement fluctu-
ations [18] using the method described in Gould et al. [28]
and calculation results based on bottlenecks in force trans-
mission through the contact network [50]. Right-handed and
left-handed vortices alternately occurred. The right-handed
vortices dominated in the curved shear zone and left-handed
vortices dominated in the radial shear zone. Their distance
along the shear zones was different.

Finally Fig. 6 shows the evolution of the harmonic
increment vector field �h during normalized wall translation
uh/hw. The scale denotes the increment vector length during
10’000 iterations in [mm/iteration] changing from 0 mm up
to 0.8 mm. The evolution �h was practically the same inde-
pendently of uh/hw since the wall continuously moved at
the same displacement increment.

Figure 7 shows the number of vortex-structures N detected
in the entire granular specimen (Fig. 7A), curved shear zone
(Fig. 7B) and radial shear zone (Fig. 7C). They were con-
tinuously created. Their number rather increased from the
beginning up to the residual state (uh/hw = 0.06, Fig. 2A).
The number of right-handed vortices was significantly larger
in the entire specimen (Fig. 7A). The right-handed vortices
were dominant in the curved shear zone (Fig. 7B) and left-
handed ones were dominant in the radial shear zone (Fig. 7C).
The maximum/minimum number of right-handed vortices in
the curved shear zone was 42/22 (uh/hw > 0.06). The max-
imum/minimum number of left-handed vortices in the radial
shear zone was 13/1 (uh/hw > 0.06).

During the entire wall translation (in the range ofuh/hw =
0−0.15), the predominant period of the right-handed vortices
was equal to 4% of uh/hw (entire specimen and curved shear
zone) (Figs. 8, 9). The predominant period of the left-handed
vortices was also equal to 4% of uh/hw (entire specimen
and radial shear zone) (Figs. 8, 9). For the case of Fig. 9Ca,
the predominant periods could not be precisely determined.
For the residual state (uh/hw = 0.06 − 0.15), the predomi-
nant period of the right-handed vortices in the curved shear
zone of the left-handed vortices in the radial shear zone was
smaller (1–2% of uh/hw, Fig. 10).

The number of sources (local dilatancy minima) and sinks
(local contractancy maxima). was larger than of vortices by

the factor 3–7 (Fig. 11A). However their predominant period
(4% of uh/hw) was similar (Fig. 11B).

5.2 Plane strain compression

Our numerical outcomes with respect to vortex-structures
were next checked during quasi-static plane strain compres-
sion. The details of DEM 3D calculations are given in Kozicki
and Tejchman [18]. The granular specimen used in DEM
had the same size as in the experiments by Vardoulakis [51],
namely: the width b = 4 cm, height h = 14 cm and depth
l = 8 cm (out-of-plane direction) (Fig. 12a). The linear grain
distribution curve was assumed; the grain diameter range was
between 1.25 and 3.75 mm withd50 = 2.5 mm. About 56,000
spheres were used with the same material constants. The ini-
tial void ratio was eo = 0.53. The flexible vertical walls were
assumed to model the membrane surrounding the specimen
in experiments (Fig. 12a). Both the front and rear specimen
sides 4 cm2 ×14 cm2 were blocked in a perpendicular direc-
tion to the specimen to enforce plane strain conditions. The
bottom surface 4 cm2 × 8 cm2 was fixed in a vertical direc-
tion and the top surface 4 cm2 × 8 cm2 was subjected to
a constant vertical displacement uν . Along the top, bottom
and membrane granular surfaces, the inter-particle friction
angle was μ = 0. During the loading process, the constant
confining pressure of σc = 200 kPa was applied through
the flexible membrane. The evolution of the mobilized inter-
nal friction angle (calculated with principal stresses from the
Mohr’s equation) versus the vertical normal strain and dis-
placement vectors of spheres in the specimen are shown in
Fig. 12b, c. Similarly as in real experiments [51], the ini-
tially dense specimen showed an asymptotic behaviour; it
exhibited initially small elasticity, hardening (connected first
to contractancy and then dilatancy), reached a peak strength
at about of ε1 = 5%, gradually softened and dilated reach-
ing a residual state at the large vertical strain of 25–30%
(Fig. 12b). During deformation a distinct internal inclined
shear zone occurred inside the sand specimen which was
marked by shear strain, larger grain rotation and volume
increase. The thickness of the inclined interior shear zone
ts was on average in the residual state for ε1 = 30% about
ts = 25 mm (10 × d50) based on strain deformation in the
specimen. The calculated shear zone inclination to the bot-
tom was 60◦ at ε1 = 10% and 67◦ at ε1 = 30%. Based
on the cumulative grain rotation, the internal inclined shear
zone might be noticed for ε1 ≈ 3% [18]. Due to a rather
small number of spheres along the specimen width (about
16), the effect of boundary conditions during calculations of
vortex-structures was weakened by introducing virtual parti-
cles outside boundaries [47] (Fig. 12c). Artificial nodes were
added in the Delaunay’s triangular mesh at the distance of
up to 50 mm around the specimen (with the grid inter-node
distance of 1 mm) (Fig. 12c). The vector �ξ in these artificial
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Fig. 7 Number of single vortices N against normalized wall translation uh/hw: in: A entire specimen, B curved shear zone and C radial shear
zone (a) right-handed and (b) left-handed vortex-structures
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Fig. 8 Number of single vortices N against normalized wall translation inverse 1/(uh/hw) in: A entire specimen, B curved shear zone and C
radial shear zone (a) right-handed and (b) left-handed vortex-structures
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Fig. 9 Number of single vortices N as function of period of normalized wall translation uh/hw = 0 − 0.15 based on Fourier transformation in:
A entire specimen, B curved shear zone and C radial shear zone (a) right-handed and (b) left-handed vortex-structures
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Fig. 10 Number of single vortices N as function of period of normalized wall translation uh/hw = 0.06–0.15 based on Fourier transformation
(FFT) in: a right-handed vortices in curved shear zone and b left-handed vortices in radial shear zone

Fig. 11 Results for sources (local dilatancy minima) (a) and sinks
(local contractancy maxima) (b) in entire specimen against normalized
wall translation uh/hw: A total number against normalized wall trans-

lation uh/hw and B total number as function of period of normalized
wall translation based on Fourier transformation (FFT)
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31 Page 18 of 21 J. Kozicki, J. Tejchman

Fig. 12 DEM calculations for plane strain compression with sand
(eo = 0.53, Ec = 0.3 GPa, νc = 0.3, μ = 18◦, β = 0.7, η = 0.4):
a vertical mid-section 4 cm3 × 14 cm3 × 1.25 cm3 cut out from gran-
ular specimen 4 cm3 × 14 cm3 × 8 cm3 for vertical normal strain

ε1 = 8% (marked in red) [18], b mobilized internal friction angle φ

versus ε1 [18] and c displacement vectors of specimen spheres and arti-
ficial nodes around specimen for ε1 = 10% (vectors are enlarged by
factor 200) (colour figure online)

nodes was calculated using the Gaussian averaging for true
specimen nodes with the averaging radius of 80 mm (2 ×b).
Some wild vectors in Fig. 12c appeared if single grains sud-
denly undergo large displacements.

Figure 13 presents the evolution of the vector field curl �∇×
�ν (divergence-free component related to vorticity) during the
normalized top displacementuν/h in the vertical mid-section
slice with the area of 4 cm2 × 14 cm2 and thickness of 5 ×
d50(1.25 cm) (Fig. 12a) cut out from the granular specimen
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Fig. 13 Evolution of vector field curl �∇ × �ν (divergence-free com-
ponent related to vorticity) in granular specimen area x × y during
vertical normal strain ε1: a 1%, b 1.5%, c 2%, d 3%, e 4%, f 5%, g
10%, h 20% and i 30% [scale denotes component of vector potential �ν

perpendicular to specimen in (mm2/iteration)], green circles describe
local minima (right-handed vortices) and red circles local maxima (left
handed vortices) (colour figure online)
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[18]. The vortex-structures appeared from the deformation
beginning. They were immediately concentrated in the region
of the mean shear zone occurrence. Right-handed vortices
were dominant in the shear zone.

In order to fully validate the proposed method for detecting
vortex-structures, several various boundary value problems
with shear localization will be investigated as. e.g. during
simple and direct shearing and wall shearing [38]. The grain
properties, shear rates and grain size distribution ranges will
be changed. Moreover, 3D vortex-structures will be calcu-
lated during plane strain compression [18] using HHD. The
effect of the different definition of the rolling velocity [33]
will be also investigated. In parallel, similar calculations will
be carried out within micro-polar hypoplasticity [38].

6 Conclusions

The following conclusions may be listed from DEM simu-
lations of 2D quasi-static granular vortex-structures in sand
the mean grain diameter of 1 mm during a quasi-static passive
earth pressure problem:

– The HHD allowed for separating a vector field into the
sum of three uniquely defined components: curl free,
divergence free and harmonic. It proved to be an objec-
tive, universal and effective technique for identifying all
vortex-structures during granular flow which was directly
based on single grain displacement increments (but not
on displacement fluctuations). The method did not use
any additional non-objective parameters. A large num-
ber of spheres was however required to avoid the effect
of boundary conditions assumed. The size of vortex-
structures could not be deduced since they corresponded
to points only which were associated with the centre of
shear zones. The method may be used for the detection
of 3D vortices.

– A strong connection between the location of vortex-
structures and progressive shear localization was found
out. The vortex-structures were the precursor of shear
localization since they clearly concentrated in the area
where a curved and radial shear zone ultimately later
formed. Thus the ultimate shear zone pattern was
detected in early loading stages. The vortex-structures
allowed to identify shear localization significantly ear-
lier than e.g. based on single grain rotations which were
always a reliable indicator of shear localization. They
developed from the deformation process beginning. They
solely emerged in main shear zones. They had a tendency
to move along shear zones. Their number varied and was
larger on average at the residual state.

– The right-handed vortices were dominant in the curved
shear zone and left-handed ones were dominant in the
radial shear zone. In the curved shear zone, the predom-

inant period of right-handed vortices was 4% of u/h
during the entire wall movement. In the radial shear zone,
the predominant period of left-handed vortices was also
4% of u/h.

– In the residual state, local regions of dilatacy and contrac-
tancy alternately happened along globally dilatant shear
zones with a dominance of local dilatancy.

– An early prediction possibility of shear localization
through vortex-structures may open new perspectives
for a detection of impending failure in granular bod-
ies (inherently connected with shear localization) within
continuum mechanics.
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