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Summary

The article describes investigations on vehicle driving in nighttime conditions. Apart from a comparison 
with the impact of conventional vehicles’ road illumination systems on the test results obtained, the good 
points of new driver’s aids such as thermal imaging cameras have been presented. The systems of this 
kind are increasingly often installed in advanced vehicles and they really improve the driving safety.
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1. Introduction

The type, distribution, and intensity of the light emitted by motor vehicle headlamps have 
a critical impact on the driving safety [1, 2]. The motor vehicle and headlamp manufac-
turers have been developing their products for many years for the best visibility during 
nighttime drives to be achieved. The insufficient illumination has also an impact on driver’s 
efficiency and stress related to vehicle driving, especially during a dynamic drive with 
a high speed. When driving on an inadequately illuminated road, the driver is not certain 
as regards the course of the road and the potential obstacles that can be present on it. 
The driver is forced to function under continuous stress, which adversely affects his/her 
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concentration and causes additional tiredness. Such a situation especially takes place 
in the case of drivers of emergency service vehicles (fire-fighting vehicles, ambulances, 
etc.), who very often must intervene in nighttime conditions. The ensuring of adequate 
conditions of driving an emergency service vehicle is often critical not only for the time of 
arrival at the incident place but also for the safety of the crew when travelling to that place.

The authors would like not only to draw reader’s attention to the potential risks arising from 
the vehicle driving in nighttime conditions but also to review the engineering solutions be-
ing now introduced as driving aids, such as thermal imaging and night vision systems. At 
present, this area of technology, previously reserved for military applications, increasingly 
often finds application in passenger cars.

The results of the tests carried out at various road illumination intensities and described 
herein may also be utilized for the training of emergency service vehicles drivers, who 
have to move with high speeds in nighttime conditions. The measurements were made 
with the use of GPS-based measuring techniques, with a gyroscopic module and accel-
eration sensors incorporated in the basic test apparatus, thanks to which the vehicle dy-
namics could be fully analysed and the impact of specific environmental conditions on 
driver’s behaviour could be defined.

2. Object of the tests

The tests were carried out on a Renault Clio 2.0 16v passenger car with F4R 730 engine 
of 1 998 cm3 capacity and 169 hp (metric) maximum power output. The maximum output 
torque of 200 Nm was attained at an engine speed of 5 400 rpm.

The vehicle was provided with standard main-beam and dipped-beam headlamps and 
a special structure for the mounting of four additional main-beam headlamps with 100 W 
bulbs each on it (Fig. 1). Such a solution is exclusively allowed for use at sports events 
(motorcar rallies), but the additional lighting is often used in special vehicles as well, e.g. 
in fire-fighting vehicles

                 a) sports headlamps                             b) standard (mass-produced) headlamps

Fig. 1. Number of lights (by: Krzysztof Stryjek)
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2.1. Testing of the dynamics of vehicle driving

To determine the impact of the illumination intensity on the dynamics and efficiency of 
vehicle driving, pilot tests were first carried out with the test runs being done on a prede-
fined road section with different types of the vehicle’s road illumination system. The driver 
had to travel the predefined road section (about 1 500 m long) within as short a time as 
possible, depending on the visibility at a specific road illumination type. The tests were 
performed on a road closed for the normal traffic. Approximate values of the speed with 
which the vehicle, provided with sports headlamps in this case, was driven on the test 
road section have been presented in Fig. 2.

Fig. 2. Example test run on the test road section, with the drive speeds having been shown  
(by: Krzysztof Stryjek)

The measurements were carried out with the use of a measuring apparatus based on the 
global positioning system (GPS) and manufactured by Race-Technology LTD, presented 
in Fig. 3. This device was additionally provided with a gyroscopic module and accelera-
tion sensors. The dedicated software made it possible to carry out a subsequent in-depth 
analysis of the data recorded.
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Fig. 3. GPS unit made by Race-Technology LTD installed in the vehicle (by: Krzysztof Stryjek)

For the differences in the road illumination in individual cases to be quantitatively deter-
mined, the intensity of the illumination on the road ahead of the vehicle was measured. 
The measurements were carried out at a height of about 80 cm above ground, with keep-
ing the measuring head aligned with vehicle’s longitudinal centreline. The measurement 
results have been given in Table 1.

Table 1. Comparison of the intensity of illumination ahead of the vehicle

Distance from the 
vehicle [m]

Dipped beam 
[lx]

Main beam 
[lx]

Sports headlamps 
[lx]

10 50 660 1 750

25 25 115 421

50 4 35 108

100 – 2 37

3. Analysis of the test results

When analysing the measurement results given in Table 1, one can notice that the values 
of the intensity of the light emitted by headlamps of individual types fundamentally dif-
fer from each other. The main-beam (also referred to as “driving-beam” or “upper-beam”) 
headlamps provide road illumination to a distance about twice as long as that comparably 
illuminated by the dipped-beam (also referred to as “passing-beam”, “meeting-beam”, or 
“lower-beam”) headlamps. The sports headlamps additionally make it possible to double 
the length of the illuminated road section as against the main-beam headlamps. The visual 
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Fig. 4. Comparison between the road illumination by dipped-beam and main-beam headlamps  
(by: Krzysztof Stryjek)

Fig. 5. Comparison between the ranges of road illumination. From the top: sports headlamps, main-beam 
headlamps, dipped-beam headlamps (by: Krzysztof Stryjek)

differences in the road illumination have been presented in Fig. 4. Fig. 5 shows a  com-
parison between the ranges of road illumination by lights of individual types, from sports 
through main-beam to dipped-beam headlamps, with the illuminated road section having 
been shown as viewed from the side.

During the test drives, the vehicle speed and acceleration were measured. Example meas-
urement results, obtained for the test drives with standard main-beam and sports head-
lamps being on, have been presented in Fig. 6.
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Fig. 6. Curves representing the vehicle speed vs. distance travelled, recorded during test drives: blue curve  
– test drive with sports headlamps on; red curve – test drive with main-beam headlamps on  

(by: Krzysztof Stryjek)

It can be noticed that the additional illumination of the road enables the driver to make bet-
ter assessment of the driving safety and to utilize wider ranges of vehicle speed. In Fig. 6, 
characteristic areas can be seen, e.g. between 480 m and 640 m of the test road section, 
where the driver was capable to move with higher speeds. In the worse road illumination 
conditions, the driver markedly reduced the vehicle speed and had problems with choos-
ing the optimum points to apply brakes: in most cases, he/she applied brakes too early and 
with varying brake pedal effort.

 

Fig. 7. Statistics of vehicle decelerations recorded during test drives: blue curve – test drive with sports 
headlamps on; red curve – test drive with main-beam headlamps on (by: Krzysztof Stryjek)
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According to the principles the sports vehicle drivers are taught when being trained, the 
driver, when applying brakes, should attain a full and uniform deceleration of about 8-11 m/s2  
for dry asphalt road surfaces. When analysing the statistics shown in Fig. 7 as pertaining 
to the test drives at limited lighting, an observation can be made that for a significant part 
of the braking time, the driver used brakes in an unrepeatable way. This was caused by 
reduced visibility, due to which the driver could not properly identify the optimum points 
where the brakes should be applied. Hence, the vehicle moved with lower dynamics and 
the driver reduced vehicle speed, waiting for the instant of noticing a change in the course 
of the road (e.g. a bend). The graph also shows that when the vehicle was driven with 
merely the main-beam headlamps on, not only the driver applied brakes too early before 
the approached bends but also the vehicle deceleration was too low in comparison with 
that attainable at the actual tyre-road adhesion and in the actual traffic situation if realisti-
cally assessed, e.g. in normal (daylight) conditions.

The statistics of applying vehicle brakes with specific intensities, as presented in Fig. 7, 
are used at the assessment of individual sports driver’s way of driving. A properly react-
ing driver should always brake in a way that would make it possible to generate a uniform 
maximum deceleration. The bigger the proportion of intermediate deceleration values in 
the deceleration graph, the lower degree of driver’s confidence in his/her way of vehicle 
driving. The measurements carried out may also be considered in relation to the driving of 
emergency service vehicles in nighttime conditions. The lack of adequate road illumination 
will result not only in lower dynamics of driving but also in a growing hazard to the crew 
due to imprecise and unrepeatable driver’s behaviours.

4. Nighttime driving assistance systems 

A nighttime driving assistance system was first presented in 2000 in the Cadillac DeVille 
model. At present, night vision systems to assist vehicle driving in difficult conditions are 
provided as standard in premium-class passenger cars. Such vehicles are equipped with 
additional thermal imaging cameras and additional software to analyse the image ob-
tained. The system of this type not only offers the driver a possibility of viewing the image 
produced by a night vision camera but also recognizes potentially dangerous situations, 
e.g. having noticed a human silhouette it warns the driver by displaying additional graphic 
warning symbols (Fig. 9).

The principle of operation of the night vision system is based on the use of a thermal imag-
ing camera for the monitoring of the space ahead of the vehicle and displaying the silhou-
ettes of pedestrians or animals on the display of the instrument cluster or directly on the 
windscreen. Depending on the mode of operation, the night vision system may be either:
– active, or
– passive. 

The active system employs an infrared radiation source placed on the vehicle front (usually 
in the bumper or the radiator grille) to illuminate the road ahead of the vehicle and to cap-
ture the reflected radiation. Actually, separate infrared projectors are used for this purpose, 
which illuminate the road ahead of the vehicle to a distance of 150 m. The emitted radiation 
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is reflected from the objects detected, thanks to which thermal contrast is generated be-
tween the objects and the background radiation registered by the infrared camera.

Fig. 8. Schematic presentation of the functioning of the active system (night view / night vision system; 
source: Mercedes Benz)
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In the passive system, a thermal imaging (infrared) camera detects the thermal radiation 
emitted by physical objects (a human, animal) in the range of the temperatures that can 
be encountered in the vehicle driving conditions. 

Fig. 9. Example of signalling the recognition of animals and humans by night vision systems in BMW vehicles 
(source: www.bmw.pl)

Each of the systems presented has both good and bad points.

The active system

Good points:  higher resolution of the image; better image of inanimate objects; better 
functioning in warmer weather conditions; smaller sensor capable of being 
incorporated in the rear-view mirror unit.

Bad points:  the system does not work in rainy and foggy conditions; lower contrast of the 
image in the case of animals; shorter visibility range (150-200 m).

The passive system

Good points:  longer visibility range (about 300 m); higher contrast of the image in the case 
of animate objects.

Bad points:  lower resolution of the image; worse functioning in warmer weather condi-
tions; bigger dimensions of the sensor.
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The related tests were carried out with the use of a BMW X5 vehicle provided with the Night 
Vision system [7]. In the BMW Night Vision system, the thermal imaging camera detects 
humans and animals present ahead of the vehicle much before they become visible for the 
human eye in the light of vehicle headlamps. The image detected is sent by the system 
to the central monitor in the vehicle. The image registered by the thermal imaging camera 
covers a belt extending to a width of several ten meters to the vehicle sides and to a dis-
tance of several hundred meters ahead of the vehicle. The BMW Night Vision system offers 
the driver special advantages during drives on dark and insufficiently illuminated roads.

Fig. 10. Arrangement of the infrared camera in the vehicle (by: Grzegorz Motrycz)

The system is automatically activated at every engine start after the nightfall; it may also 
be activated manually on the central monitor. The warning area of the humans recognition 
system consists of two zones:

– central zone (covering the area just in front of the vehicle);

– extended zone (covering the area on the right and left side of the vehicle).

In the case of animal recognition, the system does not differentiate one of these two zones 
from the other. The range and dimensions of the zones are fitted to the vehicle driving style. 
Thanks to the cameras placed in the front vehicle part, the system makes it possible to detect 
and indicate the presence of a pedestrian or animal close to the road. The system operates 
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in two stages. Initially, a mark representing the silhouette of the object detected appears 
on the monitor screen. This takes place as early as at a distance of several hundred meters 
from the possible pedestrian. Although the lack of clear-cut contours makes it impossible for 
the driver to identify the silhouette as a pedestrian or animal, but the driver is preliminarily 
warned about a possible hazard. At the second stage, the system automatically recognizes 
the silhouette and a message with a warning sign is displayed on the monitor (Fig. 11).

Fig. 11. View of recognized pedestrians displayed by the BMW Night Vision system (source: BMW Poland)

5. Tests in nighttime conditions

The system functioning was verified on a non-trafficked road in the conditions of full dark-
ening (Figs. 12 and 13). The test road section was so selected that adequate safety was 
ensured for the test crew and possible outsiders.

Fig. 12. Preparation of the vehicle for testing the night vision system; illustration of the test conditions  
(test vehicle lent by BMW Poland)
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Fig. 13. Situation of the experiment site (source: https://www.google.pl/maps)

The vehicle was provided with a GPS system, which recorded the parameters related to the 
vehicle dynamics (vehicle speed, acceleration, location on the road). When a pedestrian 
was noticed by the driver, the latter recorded this fact by depressing a marker. For this 
task to be more difficult for the driver, the pedestrian wore dark clothes with no reflective 
elements, as presented in Fig. 14. The tests were carried out within the territory of Poland, 
during one of autumn nights, at a moonlight illumination of about 1-5 lx.

It should be remembered that the driver’s eye receives 
the light signal reflected from the obstacle rather than 
that incident on it. According to the literature, the nec-
essary minimum height of the illuminated area of a non-
contrast obstacle may be said to be about 0.25 m. This is 
determined by the distribution of the intensity of illumi-
nation depending on the height above the road surface 
(Fig. 15 and 16).

Fig. 14. The type of pedestrian’s 
clothes used during the tests
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Fig. 15. Intensity of the road surface illumination by autonomic headlamps of the vehicle [5]

Thus, the obstacle in the nighttime driving conditions will become noticeable when it 
comes within the reach of the dipped beam, which would illuminate it to a height of not 
less than about 0.25 m above the road surface.

Fig. 16. Intensity of the illumination of an obstacle at different heights above the road surface

For the dipped beam to illuminate an obstacle part with a height of hp [m], the obstacle 
should be within a distance of swr from the vehicle front. At the average height of the head-
lamp axis above the road surface level [1], this distance is

 swr = swt · 
hr - hp

hr
 [m] (1)

where:
hr – height of the headlamp axis above the road surface level;
hp – minimum height of the illuminated area of the obstacle;
swt –  distance between the vehicle front and the obstacle at the instant when the obsta-

cle is reached by the 10 lx illumination field boundary line.
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The distance ahead of the vehicle, available to the driver for the carrying out of a defensive 
manoeuvre, is

 ss = swr · 
vs

vs±vpr
 [m] (2)

where vs is the vehicle speed and vpr is the obstacle speed component parallel to the ve-
hicle speed; for the obstacle moving towards the vehicle, there should be “plus” in the 
denominator of equation (2). If the obstacle moves away from the vehicle, the sign “plus” 
should be replaced with “minus”.

When the obstacle moves in a direction perpendicular to the direction of vehicle motion, 
vpr = 0; hence

 ss = swr (3)

The measurements were carried out when the pedestrian moved along the road shoulder, 
both towards the oncoming vehicle and in the opposite direction. During the tests, the 
vehicle moved with a speed of 80 km/h. The test results have been presented in Table 2.

Table 2. Detection of the pedestrian by the vehicle system

Item
Distance between the vehicle and 
the pedestrian when detected [m]

Direction of pedestrian’s motion 
relative to that of vehicle’s motion

1 254 Opposite (towards the vehicle)

2 302 The same (away from the vehicle)

3 321 Opposite (towards the vehicle)

4 220 The same (away from the vehicle)

5 280 Opposite (towards the vehicle)

6 315 The same (away from the vehicle)

7 269 Opposite (towards the vehicle)

8 310 The same (away from the vehicle)

9 277 Opposite (towards the vehicle)

10 287 The same (away from the vehicle)

The results of the tests carried out in real conditions confirmed the technical data claimed 
by the manufacturers. The detection of a pedestrian by the thermal imaging system took 
place when the distance to the pedestrian was as long as about 300 m. An additional good 
point of the system was the fact that the system effectiveness was not affected by the 
type of pedestrian’s clothes (e.g. absence of reflective elements). The system capability of 
effectively detecting a pedestrian appearing at a distance of several hundred meters of-
fers the driver adequate time for a reaction, even if the vehicle is driven with high speeds. 
For a comparable pedestrian recognition to be obtained with the use of conventional light-
ing systems, very high power capacity of the light sources would be required, which would 
result in a risk of frequent dazzling of other road users as well.
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6. Conclusions

The impact of the road illumination conditions on the safety of vehicle driving is extensive-
ly described in the literature. The authors of this article looked at this issue in a somewhat 
different way and carried out pilot investigations on the impact of road illumination on the 
dynamics of vehicle driving in nighttime conditions. According to the findings from the in-
vestigations, the road illumination has a critical impact not only on the dynamics but also 
on the accuracy and precision of vehicle driving, which directly translates into the driving 
safety. The pilot tests and their results may be helpful in particular for the drivers of civilian 
emergency service vehicles, such as ambulances or fire-fighting vehicles, who very often 
fulfil their tasks in nighttime conditions as well.

The preliminary results of testing the passenger cars’ thermal imaging systems in real 
conditions confirmed the technical data claimed by the manufacturers. The detection of 
a pedestrian by the thermal imaging system took place when the distance to the pedestri-
an was as long as several hundred meters, regardless of the type of pedestrian’s clothes. 
Thus, the system offers the driver adequate time for a reaction, even if the vehicle is driven 
with high speeds, which means a real significant improvement in the safety of driving 
in nighttime conditions.

The full text of the article is available in Polish online on the website  
http://archiwummotoryzacji.pl

Tekst artykułu w polskiej wersji językowej dostępny jest na stronie  
http://archiwummotoryzacji.pl
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