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The Internet of Things (IoT) has numerous applications in healthcare, from smart
wearable or implantable sensors to remote monitoring of elderly, medical device net-
working, and in general creating a healthcare network infrastructure. IoT has the
potential to create a pervasive environment for monitoring patients health and safety
as well as improving how physicians deliver care. It can also boost patients engage-
ment and satisfaction by allowing them to spend more time in the comfort of their
residence and only interact with care centers and healthcare professionals whenever
needed. A significant driver for the IoT-Health market is the increasing penetration
of connected devices in healthcare. Wearable sensors have received a remarkable
growth in recent years; however, a pervasive IoT-Health infrastructure is still a long
way from commercialization. The end-to-end health data connectivity involves the
development of many technologies that should enable reliable and location-agnostic
communication between a patient and a healthcare provider.

This chapter summarizes IRACON contributions related to the application of IoT
in healthcare. It consists of the following three sections. Section 8.1 presents the
measurement campaigns and the related statistical analysis to obtain various chan-
nel models for wearable and implantable devices. In addition, the importance of
physical human-body phantoms used for channel, Specific Absorption Rate (SAR),
and Electromagnetic (EM) exposure measurements are examined. Methodologies to

b Chapter editors.

Inclusive Radio Communications for 5G and Beyond. https://doi.org/10.1016/B978-0-12-820581-5.00014-6
Copyright © 2021 Elsevier Ltd. All rights reserved.

221

https://doi.org/10.1016/B978-0-12-820581-5.00014-6


222 CHAPTER 8 IoT for healthcare applications

improve the accuracy of these phantoms for various frequency bands are also dis-
cussed. Section 8.2 outlines methodologies to improve the medium access control
(MAC) and networking layers of a body area networks along with possible architec-
tures for remote health monitoring. Several applications such as localization, activity
recognition, and crowdsensing and their corresponding technical challenges are also
presented in this section. Finally, Section 8.3 introduces the concept of nanocom-
munications which can be considered as the nano-scale limit of the IoT technology
spectrum. It provides an overview of the promising mechanisms that can establish
data communication at molecular levels inside the human body as well as various
interfacing techniques with macro-scale devices. It also highlights the revolutionary
healthcare applications that could be enabled by this technology.

Remark
Certain commercial equipment, instruments, or materials are identified in this chapter
in order to adequately specify the experimental procedure. Such identification is not
intended to imply recommendation or endorsement by the respective organizations
of the chapter editors.

8.1 Wearable and implantable IoT-health technology
For wearable and implantable sensors (or actuators), there could be several com-
munication scenarios depending on the locations of the Tx and Rx with respect to
the human body. These scenarios include wireless communication among devices
inside the human body (in-body-to-in-body), between an implant and a wearable
device (in-body-to-on-body), between two wearable devices (on-body-to-on-body),
between a wearable and an external device e.g. an off-body Access Point (AP) (on-
body-to-off-body), and finally between wearable devices located on different bodies
(body-to-body). The characterization and statistical modeling of these communica-
tion channels is the central topic of this section. A thorough understanding of these
channels is necessary and quite important for the design and optimization of the phys-
ical and medium access layers of any communication system that involves wearable
or implant devices. In the following subsections, the IRACON channel models are
presented for each communication scenario.

8.1.1 Channel measurement and modeling: On-body-to-off-body
In this communication scenario, either the transmitter (Tx) or the receiver (Rx) is a
wearable device, while the other communicating node is at a fixed location away from
the human body. Although this scenario may seem similar to use-cases including a
mobile personal device, the impact of the human body on the antenna operation as
well as the strong influence of the user dynamics on the communication link are
among the distinguishing features that necessitate a dedicated channel model.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


8.1 Wearable and implantable IoT-health technology 223

Analytical model
Turbic et al. have proposed a polarimetric geometry-based off-body channel model
[TCB19] based on Geometrical Optics (GO) and Uniform Theory of Diffraction
(UTD). The model also considers arbitrary antenna positions, orientations and ra-
diation characteristics, i.e. polarization and gain. The transmission coefficient (hch)
of a narrowband channel is represented as:

hch = λ

4π

Nm∑
n=1

1

rn
gH
r (φn

r ,ψn
r )[1×2] Hn

p [2×2] gt (φ
n
t ,ψn

t )[2×1] e−j 2π
λ

rn (8.1)

where λ is the wavelength, Nm is the number of MPCs, rn is the n-th path length,
gt/r is the polarimetric gain vector of the Tx/Rx antenna, φn

t/r and ψn
t/r are the az-

imuth and elevation angles at the Tx/Rx respectively, and Hn is the path polarization
matrix.

The polarization matrices differ for the LOS component (H0) and the reflected
MPCs (Hn) as follows:

H0 [2×2] = Q(θLOS)[2×2] (8.2)

Hn [2×2] = Q(θn
r )[2×2] �r (θ

n
i )[2×2] Q(θn

t )[2×2] (8.3)

where Q represents rotation matrix, �r is the reflection matrix, θLOS is the polariza-
tion reference mismatch angle in the LOS direction, θn

i incidence/reflection angle,
and θn

t/r is the mismatch angle between the polarization references associated with
the Tx/Rx antenna and with the reflection/incidence plane. The angles θLOS , θn

t/r and
θn
i are obtained from the scenario geometry as detailed in [TCB19, App. A].

To consider the human body dynamics, an analytical mobility model for the wear-
able antenna has been developed in [TCB18]. The model represents antenna motion
as a composition of a linear forward motion at constant velocity, and a periodic com-
ponent. This is illustrated in Fig. 8.1a. The antenna position over time (r) is therefore
represented by:

r[m](t) = r0 [m] + vu [m/s]t[s] uv + �r[m](t) (8.4)

where vu is the user’s velocity, r0 is the starting point, uv is the unit direction vector,
and �r represents the periodic displacement due to the changing posture. The corre-
sponding orientation is represented by Euler angles, i.e. γ1, γ2, and γ3, which specify
a sequence of elementary rotations around the local coordinate axes Z-Y-Z, respec-
tively. This will establish the orientation of the associated local coordinate system
[TCB18, Eqn. 10-12]. The relation between the global and local coordinate systems
is illustrated in Fig. 8.1b, where the rotation axes and the corresponding angles have
also been indicated.

Due to the periodic changes in the human posture during walking or running, the
periodic position component in (8.4) and the Euler angles are modeled by a Fourier
series with up to two harmonics [TCB18, Eqn. 9,13]. The corresponding parameters
are calculated from Motion Capture (MoCap) data [TCB18, Tab. 1].
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224 CHAPTER 8 IoT for healthcare applications

FIGURE 8.1

Wearable antenna mobility model.

The scattering environment surrounding the human body is represented by a sim-
plified geometry i.e. scattering is assumed to occur on a circular cylinder centered
around the body. This simplification is adopted to allow simultaneous consideration
of multiple wearable antennas on the body. In other words, the scatterers are assumed
to be fixed with respect to the human body; however, their impacts on different on-
body antennas will depend on the relative positions of the antennas with respect to
the scatterers.

The channel model was used to investigate the effects of different aspects of an-
tenna motion in [TC20a]. A significant impact of user’s motion on the polarization
characteristics was observed, and the error in average cross-polarization ratio ex-
ceeded 23 dB when the antenna dynamics were neglected.

The antenna rotation has a dominant effect on the polarization matrix. However,
the corresponding periodic displacement due to changing posture can be neglected.
This allows for further simplification of the model. On the other hand, the antenna
displacement has a significant impact on the small-scale fading characteristics. The
fading dynamics are observed to vary over the motion period with distinct slow and
fast phases [TC20b]. The latter is observed to result in 4 times higher Level-Crossing
Rate (LCR) than the former when the antenna is located on the lower leg.

The channel model was validated against measurements, and a good agreement
with the experimental data was observed. Using narrowband measurements data
at 2.45 GHz [TAC17,ACK+16], the model’s capability to reproduce polarization
characteristics and temporal dynamics of the signal was demonstrated in [TCB19].
A good agreement with wideband measurements at 5.8 GHz [TACB18,TACB19] was
also reported in [ATC19], and simulation error in the received power was shown to be
within 3 dB. Fig. 8.2 shows the comparison between simulation (sim.) and measure-
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8.1 Wearable and implantable IoT-health technology 225

FIGURE 8.2

Comparison between the simulated and measured Rx power, for vertical off-body antenna
polarization.

ments (meas.) for a scenario where the user is walking toward a vertically polarized
AP antenna, while wearing antennas on the chest (To), wrist (AL), and lower leg (LL).

The wearable antenna rotation during motion was observed to strongly affect the
antenna gain and polarization characteristics relative to the fixed off-body antenna,
resulting in time-variant polarization losses [TCB17]. Therefore, the on-body antenna
placement plays an important role on the off-body channel characteristics. Antennas
on the arms and legs result in more severe Rx signal variations compared to locations
such as the chest and head [TCB19].

Empirical models
The most common statistical path loss model based on narrowband measurements is1

Lpl(d, t)[dB] = Lpl(d)[dB] + �Lls(t)[dB] + �Lss(t)[dB] (8.5)

where t denotes time, d is the Tx-Rx distance, Lpl is Mean Path Loss (MPL), �Lls

and �Lss are the large- and small-scales fading components. A standard log-distance
model is also typically adopted for the MPL component, i.e.

Lpl(d)[dB] = Lpl(d0)[dB] + 10npl log

(
d

d0

)
(8.6)

where npl is the path loss exponent, and d0 denotes the reference distance (e.g. 1 m).
The fading components are modeled by random variables with distributions that are
derived from statistical analysis of the measurements.

1 By adopting the common practice in literature, the term path loss is used loosely herein. Due to the
inability to de-embed the antennas from signal measurements, the measured loss actually corresponds to
attenuation between antennas’ terminals, i.e. system loss by definition [ITU16].
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226 CHAPTER 8 IoT for healthcare applications

The data processing procedure used for the path loss component extraction and
the estimation of model parameters is typically as follows. The small-scale fading
variations are first eliminated from the instantaneous path loss by a moving average
filter with an averaging distance of 10λ, the latter being a typical choice for indoor
measurements [VLJ97]. After extracting small-scale fading, the log-distance model
(8.6) is fitted to the remaining signal which includes a combination of MPL and
large-scale fading.

With the path loss decomposed according to (8.6), a statistical analysis of large-
and small-scales fading is performed for parameter selection. Commonly considered
Goodness of Fit (GoF) tests for evaluation of different candidates are Akaike Infor-
mation Criterion (AIC) [BA02], χ2 and correlation tests [PP02]. One should note that
the model parameters are usually provided separately for LOS, Quasi-LoS (QLOS),
and NLOS conditions.

The large-scale fading is commonly reported to have a Lognormal distribution,
while Rice, Nakagami-m, Rayleigh, and Lognormal distributions are the typical
models used for small-scale fading. The latter is found to primarily depend on body-
shadowing conditions and antennas’ polarization. Moreover, the model parameters
could vary with frequency, environment, antennas’ radiation characteristics, and their
on-body placement. The path loss model parameters reported to IRACON are sum-
marized in Tables 8.1 and 8.2, and the corresponding experimental studies are briefly
described in the following.

Table 8.1 Summary of MPL and Lognormal large-scale fading parameters in
off-body channels.

npl Lpl(d0)[dB] μL [dB] σL [dB] f[Hz] Env. Ref.

1.71 [32, 50] 0 [1.2, 3.0] 2.45 G Office [TAC17]
- - 0 [1.4, 2.0] 2.45 G Office [WA19]

1.69 [25.2, 64.7] 0 [1.7, 6.5] 2.45 G Ferry* [KAS+18]
- - 0 [1.2, 2.9] 2.45 G Ferry† [KACS19]

[0.16, 3.80] [64.7, 76.2] [-0.2, -0.4] [2.0, 2.6] 868 M Ferry‡ [CAR18a]
[0.13, 3.46] [23.4, 30.7] -0.3 [2.2, 2.8] 6.5 G Ferry‡ [CAR18a]
*Dome-shaped discotheque; †straight corridor; ‡L-shaped corridor

Narrowband measurements
The parameters in Tables 8.1 and 8.2 were obtained through several measure-
ment campaigns, performed in different environments. Ambroziak and Turbic et al.
[ACK+16,TAC17,ATC17] reported measurements results at 2.45 GHz, in a typical
indoor office environment, while considering static, quasi-dynamic, and dynamic
user scenarios. In static and quasi-dynamic scenario (i.e. with the user moving in
place) different orientations of the user (leading to LOS, QLOS, and NLOS condi-
tions) were considered. The dynamic scenario had the user walking towards and away
from the off-body antenna, over a straight path.
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8.1 Wearable and implantable IoT-health technology 227

Table 8.2 Summary of small-scale fading parameters in off-body channels.

Dist. Parameters f[Hz] Env. Ref.

Nakagami1 mNk ∈ [0.9, 19.5] 
Nk ∈ [1.0, 2.0] 2.45 G Office [TAC17]

Rice2 sRi ∈ [0.8, 1.0] σRi ∈ [0.5, 0.7] 2.45 G Office [WA19]

Nakagami1 mNk ∈ [0.8, 1.5] 
Nk ∈ [1.5, 2.1] 2.45 G Ferry* [KAS+18]

Nakagami1 mNk ∈ [0.8, 0.9] 
Nk ∈ [1.9, 2.2] 2.45 G Ferry† [KACS19]

Lognorm.3 μLn [dB] = -0.4 σLn [dB] ∈ [2.1, 2.2] 868 M Ferry‡ [CAR18a]

Lognorm.3 μLn [dB] = -0.3 σLn [dB] ∈ [1.5, 1.7] 6.5 G Ferry‡ [CAR18a]
*Dome-shaped discotheque; †straight corridor; ‡L-shaped corridor
1mNk (shape) and 
Nk (scale); 2sRi (noncentrality) and σRi (scale); 3μLn (log-mean) and σLn (log-
standard deviation)

The measurements were repeated with co-polarized [ACK+16] and cross-
polarized antennas [TAC17]; therefore, providing a data set for channel characteriza-
tion and estimation of model parameters in orthogonal polarizations. An alternative
approach to estimate the MPL model parameters was proposed in [TAC17,ATC17].
The authors calculated the path loss exponent for the LOS case in the co-polarized
channel, and estimated the intercept term Lpl(d0) in (8.6) for each scenario.

The large-scale fading was reported to follow a lognormal distribution, while
Nakagami-m was the best overall statistical model for small-scale fading. Parame-
ters of the Nakagami distribution were found to be considerably different in the co-
and cross-polarized channels. The distribution was closer to Rice and Rayleigh, re-
spectively in the former and latter case.

Another set of measurements in the same environment and at the same frequency
were performed by Wiszniewski and Ambroziak [WA19]. However, the scenario in-
volved the user passing by an off-body antenna that was placed at a fixed distance
from the user’s walking path. Various on-body antenna placements such as chest,
back, wrist, and head were considered in this measurement. Lognormal and Rice
distributions were reported as the best model for large- and small- scale fading com-
ponents respectively.

In order to avoid MPL model parametrization for each user orientation, Tur-
bic et al. [TAC18a] have introduced an additional term to (8.5) to account for the
orientation-dependent body-shadowing loss, i.e. shadowing pattern (Ssh), given by:

Ssh(d,φ)[dB] = Sm(d)[dB]
1

2

{
1 + cos

[
2π

�φ
(φ − φ0)

]}
(8.7)

where φ is the azimuth angle of arrival/departure at the wearable antenna, Sm is the
distance-dependent maximum body-shadowing loss, φ0 is the azimuth angle of max-
imum loss, and �φ is the shadowing pattern angular width. The model parameters
were obtained from the indoor measurements at 2.45 GHz [TAC18a, Table I], with
the user rotating at different distances from the off-body antenna. Fig. 8.3 shows
the shadowing pattern (8.7) that is fitted to the measurement data. While the general
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228 CHAPTER 8 IoT for healthcare applications

FIGURE 8.3

Body-shadowing loss as a function of user orientation.

model is applicable for on-body-to-off-body and body-to-body channels, additional
measurements are required to estimate the parameters for the latter case.

In addition to typical indoor environments, measurements were also conducted
in a passenger ferryboat [KAS+18,CAR18a,KAC17], where various metal structures
could result into strong signal reflections. Authors in [KAS+18] have performed nar-
rowband measurements at 2.45 GHz inside a dome-shaped discotheque within the
ferryboat. They considered a scenario where the user walks towards and away from
an AP at a fixed position. The measurements were obtained in two orthogonal polar-
izations, and repeated for wearable antennas located on the arm, chest, and head.

While the authors adopted the same MPL model (8.6), an additional term (Lpa)
was introduced in (8.5), in order to take the effects of the wearable antenna height
and orientation into account, i.e.

Lpa [dB] = 10a log |�h[m]| + b[dB/◦]μφ [◦] + c[dB/◦]σφ [◦] (8.8)

where �h is the difference in Tx and Rx antennas’ heights, a, b, and c are the model
parameters, μφ is the mean angle in between the walking direction and the max-
imum on-body antenna radiation, and σφ is the corresponding standard deviation
(Table 8.3). The statistical analysis performed by the authors shows that the best
models for large- and small-scales fading in this environment are Lognormal and
Nakagami-m distributions, respectively,

Table 8.3 Model parameters for Lpa [KAS+18].

a b c �h μφ σφ

[-1.06, 0.79] [0.0, 0.1] [-3.3, -1.4] [0.05, 0.45] [-97.0, 69.9] [2.6, 5.2]

Considering the same scenario and settings, the authors also performed additional
measurements at 2.45 GHz in a straight corridor within the same ferry [KACS19].
The same statistical models (with different values of parameters) were reported to fit
this environment as well (Table 8.2).
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8.1 Wearable and implantable IoT-health technology 229

Authors in [CARC17,CAR18a] have performed measurements in an L-shaped
corridor with the user walking toward and away from an AP placed in one leg of
the corridor. LOS and NLOS conditions were distinguished depending on whether
the user and the AP are in the same leg of the corridor. Using a custom-developed
dual-band measurement stand, the data were simultaneously recorded at 868 MHz
(narrowband) and in the 6489 MHz UWB channel. The embedded UWB radio mod-
ule was additionally used to associate each sample with the corresponding Tx-Rx
distance. The measurements were repeated for the same wearable antenna placements
as in [KAS+18], i.e. the head, chest, and wrist. An example of the measured path loss
for this scenario is shown in Fig. 8.4, which also illustrates LOS/NLOS classification
and shows the MPL model fitted to the data.

The authors have reported the Lognormal distribution as the best fitting model for
large-scale fading. This also agrees with other studies presented here. On the other
hand, in contrast to the other reports, the authors found that the small-scale fading
also follows a Lognormal distribution.

FIGURE 8.4

MPL model fitted to measurements in a ferry (L-shaped corridor).

In [KAC17], Kosz et al. have performed measurements with the user sleeping
in a passenger cabin. In their study, narrowband measurements at 2.45 GHz were
performed simultaneously with two wearable antennas. The wearable antennas were
placed on the chest and back side of the user in one configuration, and the chest
and wrist in the other. The data was obtained with two types of wearable antennas,
namely FlexPIFA and FlexNotch. The authors reported the Rx mean power and stan-
dard deviation. The mean power was found to vary between 56 dB and 70 dB over
the considered scenarios, while the variation of the standard deviation was between
3.7 dB and 8.0 dB. A strong dependence of these parameters on the user’s orientation,
type of the wearable antenna and its placement was observed; however, the height at
which the user slept inside a bulk bed showed little impact on the results.

Wideband measurements
While most of the empirical contributions to IRACON considered narrowband fading
channels, authors in [TACB18,TACB19] reported the results of dual-polarized CIR
measurements at 5.8 GHz, with 500 MHz bandwidth, conducted in an indoor environ-
ment The measurement campaign included a number of different scenarios designed
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230 CHAPTER 8 IoT for healthcare applications

to investigate the influence of depolarization, user dynamics, body-shadowing from
the user or another person, as well as the scattering impact of people in the environ-
ment around the user [TACB18]. The measurements were obtained simultaneously
with orthogonally polarized antennas, and repeated for antenna placement on the
chest, wrist, and lower leg. Results show strong influence of the user dynamics and
body-shadowing on the CIR parameters, i.e. number of paths, Rx power, and delay
spread; therefore, leading to an effectively non-stationary channel [TACB19]. The
ratio of the received powers in the orthogonal polarization was found to vary up to
21.3 dB when the user walks toward or away from the antenna.

Another set of CIR measurements over the UWB frequency range 3.8-10.2 GHz
was reported by Wilding et al. [WMW19], and provided an insightful analysis of the
body-shadowing effect and off-body channel characteristics under obstructed LOS
conditions. A significant pulse distortion and widening due to attenuation and body-
diffracted waves was observed. The attenuation of the LOS component due to the
body-shadowing is characterized by introducing the effective energy pattern of a
wearable antenna, i.e. Rx power distribution over azimuth angles relative to the max-
imum radiation direction. Fig. 8.5 shows this pattern for different antenna placements
indicated in the figure, with the free-space antenna scenario being also provided for
reference.

FIGURE 8.5

Wearable antenna effective energy pattern.

Millimeter-wave measurements
While all of the empirical studies discussed so far consider frequencies be-
low 6.5 GHz, two off-body channel measurement campaigns at centimeter- and
millimeter-waves were also reported to IRACON [SPCN18,ZGL+17]. Sana et al.
[SPCN18] reported wideband off-body channel measurements at 60 GHz, obtained
by using a channel sounder developed at Durham University (UK). While only the
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8.1 Wearable and implantable IoT-health technology 231

initial results based on visual inspection of the measured CIR were presented, the
authors also investigated the achievable diversity gains by employing a 2 × 2 MIMO
antenna, and considering three different combining techniques.

Zhao et al. considered outdoor mobile off-body channel at 15 GHz and 28 GHz
[ZGL+17]. The impact of the human body on the radiation characteristics of mo-
bile terminals was investigated by evaluating the radiation efficiency reduction and
gain pattern distortion due to blockage. The study was carried out for three types of
antennas: notch, slot, and edge-patch antenna. According to the reported results, the
radiation efficiency reduction due to body proximity is up to 4 dB lower at 15 GHz
and 28 GHz, than at frequencies below 6 GHz. By using the measured mobile an-
tenna radiation patterns in ray-tracing simulations, the coverage areas at 15 GHz and
28 GHz were compared for an urban pedestrian scenario. The latter frequency was
reported as lass favorable due to higher path loss and body-blockage losses.

Finally, the empirical studies reported to IRACON also addressed the body-to-
body communication scenario as a special case of the off-body communication.
A narrowband measurement campaign at 2.45 GHz performed in indoor and out-
door environments was reported in [ACT16a]. The experiment considered scenarios
where the users walking toward and away from each other, as well as walking in
parallel. The large- and small-scales fading were found to follow Lognormal and
Nakagami-m distributions, respectively, similar to the off-body channels with fixed
APs [TAC18b]. Body-shadowing was observed to strongly affect the small-scale fad-
ing characteristics. The average amount of fading (fading merit) was up to 2.56 times
higher when LOS is obstructed. The environment was also found to have a significant
impact as well. The small-scale fading was observed to be more severe in the indoor
environment i.e. 1.88 times higher average fading and 3.81 dB lower K-factor.

8.1.2 Channel measurement and modeling: On-body-to-on-body
For body surface communication, antenna orientation and polarization with respect
to the environment is an important issue that is sometimes ignored in path loss cal-
culation. This issue could be particularly significant in dynamic scenarios where the
person wearing the antenna is in motion.

Authors in [Aoy16] took antenna directivity into consideration for Body Area
Networks (BANs) using millimeter or terahertz frequencies. In their research, vari-
ation in the direction of on-body antennas and the frequent occurrence of body-
shadowing in dynamic scenarios have been highlighted. The temporal variation of
the azimuth and zenith angles of the on-body antennas and shadowing rate is in-
vestigated using simulation. Antenna placements considered in their study included
possible wearable applications such as abdomen, chest, head, upper arm, ankle,
thigh, and hand. Results show that in some scenarios, azimuth and zenith angles of
the antenna exhibit a large variation during a person’s walk. Therefore, high speed
beamforming mechanisms should be considered if the on-body antenna has high di-
rectivity.
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8.1.3 Channel measurement and modeling: In-body-to-on-body and
in-body-to-off-body

As mentioned earlier communication with an implant device could include three sce-
narios i.e. communication between two implants (in-body-to-in-body), between an
implant and an on-body device (in-body-to-on-body), and between an implant and
an off-body device (in-body-to-off-body). Radio wave propagation from an implant
device is highly affected by the dielectric properties of the human body tissues on
its path. These properties impact both the antenna characteristics (e.g. matching, ra-
diation pattern) and the propagation channel. In the following subsection, implant
communication channels in the human body or an animal are discussed.

Human body implants
Two different MPL models are proposed for these channels: a log-linear model sim-
ilar to Eq. (8.5) but with reference distance d0 of 1 cm, and a linear model as the
following:

Lpl(d)[dB] = Lpl(d0)[dB] + αpl [dB/cm] d[cm] (8.9)

where αpl is the slope, and Lpl(d0) is the MPL at zero distance.2

The path loss variations around the MPL are found to exhibit Lognormal distri-
bution similar to the off-body channel.

The parameters of the models are summarized in Tables 8.4 and 8.5 for all three
channel scenarios. The parameters values were derived from numerical full-wave
simulations, wideband measurements using physical phantoms and in vivo exper-
iments. For the liquid phantom experiment [AGF+16], one antenna was fixed at
a specific location and the other was moved over a spatial grid in order to col-
lect sample measurements. The in-body-to-off-body channel was investigated based
on in vivo and phantom-based measurements reported in [GFA+16]. There are
several studies contributing to the in-body-to-on-body channel model parametriza-
tion [AGF+16,GFA+16,AGC+18,PSAGP+19]. The phantom-based measurements
were reported in all studies, and the in vivo measurements have been reported in
[GFA+16,PSAGP+19].

The measurements obtained with the liquid phantoms are observed to gener-
ally overestimate the path loss, specially when the distance between the anten-
nas increases. Therefore, a correction model can be applied to the set of available
phantom-based measurements for more realistic path loss estimates [GFA+16]. The
distance-dependent correction factors (Cpl) for the linear (8.5) and log-linear (8.9)
MPL models are given by (8.10) and (8.11) respectively:

Cpl(d)[dB] = 1.1 + 7.4 log(d[cm]) (8.10)

Cpl(d)[dB] = 5.8 + 2.2d[cm] (8.11)

2 This is a control point of the model without a meaningful physical interpretation, as the model is not
applicable for co-located antennas.
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8.1 Wearable and implantable IoT-health technology 233

Table 8.4 Log-linear MPL model parameters and standard deviations in chan-
nels with implants.

Ch. Lpl(d0)[dB] npl σLn [dB] d[cm] f[GHz] Ref.

in2off [70.4, 71.5] [0.7, 1.4] - 4 - 50 3.1 - 8.5 [GFA+16]

in2on
47.8 1.98 1.2 5.5 - 20 3.1 - 8.5 [AGF+16]

[-12.2, 35.8] [5.8, 9.3] [5.0, 5.7] 2.8 - 8 3.1 - 5.1 [AGC+18]
[-29.7, 26.2] [5.4, 10.3] [2.0, 4.6] 2.8 - 8 3.1 - 5.1 [PSAGP+19]

Table 8.5 Linear MPL model parameters and standard deviations in channels
with implants.

Ch. Lpl(d0)[dB] αpl [dB/cm] σLn [dB] d[cm] f[GHz] Ref.

in2in 45 4.6 4.3 3 - 8 3.1 - 8.5 [AGF+16]

in2on
[30.8, 36.6] [5.2, 7.4] - 3 - 11 3.1 - 5.0 [GFA+16]
[14.8, 53.4] [4.5, 7.4] [5.0, 5.7] 2.8 - 8 3.1 - 5.1 [AGC+18]
[13.8, 41.6] [4.3, 6.8] [2.0, 4.6] 2.8 - 8 3.1 - 5.1 [PSAGP+19]

Animal implants
In addition to health monitoring applications in humans, implants can also be used
in animals, for example tracking the health conditions of dairy cows and facilitating
herd management. Benaissa et al. in [BPN+19] presented the in-body-to-off-body
path loss between an implanted device inside a cow and an external node. The pro-
posed model was obtained based on measurements conducted with several cows in
a 6 m × 18 m barn, housing seven fistulated dairy cows. The authors adopted the
statistical path loss model (8.5) and fitted the MPL model (8.6) to the measurement
data. The large- and small-scales fading components (�Lls and �Lss) were consid-
ered jointly and assumed to have a zero-mean Gaussian distribution with standard
deviation σ[dB]. The reported MPL model parameters are summarized in Table 8.6.

Table 8.6 MPL model parameters for in-body-to-off-body channels with animal
implants.

Lpl(d0)[dB] npl σ[dB] d[m] f[MHz] Ref.

[48.3, 98.5] [1.9, 2.1] [1.8, 4.9] 1 - 20 433 [BPN+19]

Using the proposed channel model, the authors also calculated the expected trans-
mission range for LoRa technology. Depending on the Tx power and the desired data
rate, it was shown that a transmission range of up to 100 m could be achieved.

8.1.4 Human body phantoms and SAR measurement
Analysis of the exposure of the human body to electromagnetic waves is an important
field of research for IoT applications in healthcare. The goal in this research is to
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evaluate the impact of the electromagnetic fields on the human health. RF exposure
tests focus on confirming that the maximum allowable absorption rate is not exceeded
by the regulatory limits. To carry out such tests, it is also important to know the
electromagnetic properties of the human body tissues.

The electromagnetic properties of the body tissues are expressed in terms of their
permittivity and permeability. Since the human body is a non-magnetic medium, the
permeability of its tissues is equivalent to that of the air. In contrast, the permit-
tivity varies considerably for different body tissues. This is especially the case at
Gigahertz frequencies and above. The relative permittivity which is the absolute per-
mittivity normalized to that of the air, ε∗

r , is a complex frequency-dependent property.
The real part of the relative permittivity (ε′

r ) is the dielectric constant, and its imag-
inary part (ε′′

r ) is the loss factor. Therefore, relative permittivity can be expressed
as: ε∗

r (f ) = ε′
r (f ) − jε′′

r (f ). In some cases, the imaginary part of the permittivity
is given as the dielectric conductivity that can be deduced from the loss factor i.e.
σ(f ) = 2πf ε′′

r (f )ε0, where ε0 is the relative permittivity of the vacuum.
Both dielectric constant and loss factor (or conductivity) define the behavior of the

electromagnetic waves traveling through different human body tissues. Therefore,
it is important to consider the values of the complex permittivity in the study of
implant propagation channels. The most widely used repository of such values was
given by C. Gabriel in [Gab96] more than 20 years ago. It provides the values of the
dielectric constant and loss factor as a function of frequency (from several kHz to
GHz). However, researchers should take into account that Gabriel’s repository was
produced from experiments in different animal species using various measurement
techniques.

In all IoT use-cases involving implants, laboratory measurements and/or software
simulations are necessary in order to evaluate the performance of the wireless link in
the human body environment. Researchers should use hardware or software models
that replicate the complex permittivity of the tissues involved in the study. These
kinds of models are referred to as phantoms. They are intended to accurately emulate
electrical properties of different body tissues.

Dielectric properties of body tissues
There are several methods for measuring the dielectric properties of any material.
Open-ended coaxial probe, transmission lines, resonant cavities or parallel plates are
the most known methodologies reported in the literature. The requirements of the
measurement, the type of material and the frequency range determine which kind
of methodology is the most useful in each case. In particular, the open-ended coax-
ial probe is the most used technique for measuring the electromagnetic properties of
body tissues. It allows broadband measurement for liquids, gels or semisolids with
high accuracy. This approach is based on a rigid coaxial cable with a flat cut end
(open-ended coaxial) submerged into the liquid or posed over the surface of the gel
or semisolid. The probe is connected to a Vector Network Analyzer (VNA) which is
responsible for measuring the values of the reflection coefficient (scattering parame-
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ter S11(f )) for all frequencies under analysis. Next, the S11(f ) values are translated
into their corresponding dielectric constants i.e. ε′

r (f ), and loss factor, ε′′
r (f ).

Considering the open-ended coaxial technique, an adequate prior calibration of
the probe is the key in order to obtain accurate values of both dielectric constant and
loss factor. In the literature, several calibration procedures have been addressed so
far. The most common procedure consists of measuring the reflection coefficient of at
least three different elements (known as reference standards) with well-known com-
plex permittivity. The most used reference standards are open circuit, short circuit,
and water (hereinafter called “typical calibration”) since their dielectric properties
are well reported in the literature. However, in [FLGPC+17], authors demonstrate
that these standards are not the most appropriate when measuring high water-content
body tissues such as muscle, heart, stomach, and liver. For these cases, the lowest
uncertainty of the measurements was achieved by adding methanol to the three cal-
ibration standards used in the typical calibration, i.e. by using an open circuit, short
circuit, water, and methanol. This is due to the fact that the complex permittivity of
methanol is at the same order of magnitude as that of the high water-content tissues.
This effect can be observed in Fig. 8.6 where authors measure a liquid with permittiv-
ity similar to that of the high water-content tissues i.e. Dimethyl sulfoxide (DMSO).
Authors also considered the typical calibration as well as methanol, ethanol, and 2-
propanol as additional calibrators. The lowest values of the measurement uncertainty
for the complex permittivity values was achieved by adding methanol to the calibra-
tion standards. For low water-content body tissues, authors in [FLGPC+17] reported
that ethanol is also the best additional calibrator and provides the lowest uncertainty.

FIGURE 8.6

Systematic error (%) in the measurement of the DMSO (equivalent to high water-content
human tissues) with different calibration setups: a) dielectric constant, b) loss factor.

As mentioned before, the Gabriel’s database [Gab96] is the most widely used
reference for test and evaluation of wireless devices operating in the vicinity of
the human body tissues. However, one major issue with this database is that the
reported results are obtained from different experiments, animal specimens, and mea-
surement techniques. Therefore, direct comparison between different tissues is not
very suitable. Furthermore, this database only considers the average values of the
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measurements, and not the variability among different measurements. Authors in
[FLGPF+18] analyze this issue by reporting the mean and the standard deviation X2
(2SDM) of the complex permittivity values for several tissues at the gastrointestinal
area i.e. muscle, colon serosa, fat, and skin. It was shown that the higher heterogene-
ity of the tissue translates into wider variability of the complex permittivity. This can
be clearly observed in Fig. 8.7 where the fat tissue shows a higher variability than
skin or muscle tissues. This is because the fat tissue has different content of water
depending on the measurement point; thus, increasing the heterogeneity of the tissue.
Such variability of the complex permittivity can have a negative impact on the com-
munication link. For example, the antenna matching and its radiation pattern can be
affected since the real values of the permittivity of the surrounding tissues are quite
different than the values used during its design.

FIGURE 8.7

Mean (dashed line) and variability (shadowed area) of the dielectric properties of muscle,
skin, and fat tissue.

Electromagnetic phantoms for radioelectric measurements
As mentioned before, phantoms try to replicate the electromagnetic properties of
different human body tissues by using the values of the dielectric constant and loss
factor given in [Gab96] or other similar databases such as [FLGPF+18]. Software or
computational phantoms are computer-based models of various body tissues that can
be used for electromagnetic simulations. In contrast hardware phantoms are physical
materials used for experimental measurements.

Hardware phantoms (hereafter referred to as phantoms) can be solid, semi-solid,
or liquid depending on the requirements of the test. Furthermore, use of phantoms is
only valid for certain frequency range in which they accurately reproduce the com-
plex permittivity of the target tissue. In the literature, there are a number of formulas
for producing phantoms for many tissues and several frequency bands especially the
microwave. However, it is really hard to find a common formulation for systems op-
erating at ultra-wideband frequencies. This is due to the complexity of mimicking not
only a certain value of permittivity but also its trend versus frequency. The approach
reported in [CPGPFL+16] aims at overcoming this constraint by using acetonitrile-
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based liquid aqueous solutions. These solutions mainly use water, acetonitrile, and
salt in different proportions to replicate both the dielectric constant and the loss fac-
tor for a variety of body tissues within the 0.5 GHz to 26.5 GHz frequency band as
observed in Fig. 8.8 [CPGPFL+18]. These broadband phantoms are specially appro-
priate to carry out physical measurements for implant scenarios. The liquid nature of
the phantom allows flexibility in positioning the antenna at the desired location.

FIGURE 8.8

Relative permittivity of several phantoms (dashed lines) [CPGPFL+16] in comparison with
the target values [Gab96] of their corresponding tissues (solid lines). a) Dielectric constant,
b) Loss factor.

Testing radiation exposure as a result of using mobile devices is another impor-
tant application of phantoms. Most of the phantoms used for this purpose are liquids
applicable in a narrow frequency band. This makes testing mobile devices that use
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multi-frequency technology quite difficult as multiple phantoms will be required
to evaluate all frequencies under consideration. Even then, the real radiation effect
would not be accurately evaluated for novel technologies such as carrier aggregation
or simultaneous wireless connection. This limitation will become a real constraint for
future 5G mobile systems operating in the mmWave band. In [CPGPC+18], the au-
thors investigate a novel phantom formulation for 5G mobile communications. Due
to the low penetration depth of millimeter waves, the most important tissue for the
phantom is the skin. The authors analyzed propanol and methanol and concluded that
propanol aqueous solutions are the best for mimicking the skin tissue for both dielec-
tric constant and loss factor at mmWave. This level of matching can be observed in
Fig. 8.9, where the shaded area depicts the ±10% deviation with respect to the mean
value of the target skin tissue given in [Gab96]. The inherent heterogeneity of the
tissues and variation among specimens leads to a variability in the measured values
as explained before.

FIGURE 8.9

Relative permittivity of the k-carrageenan gels. a) real and b) imaginary part.

Human exposure to EM fields
It is known that long term exposure to EM sources could lead to several health prob-
lems [who]. Because of that there are restrictions on the maximum EM radiation
enforced by national and international regulatory bodies. The EM exposure is typi-
cally limited in terms of the maximum electric field strength/power density incident
on the human body or in terms of the SAR. The latter is a measure of the amount
of energy absorbed by the human body when it is exposed to an EM field. SAR
is expressed in watts per kilogram. The exposure limits and SAR also depends on
the dielectric properties of the human tissues; and therefore, on the frequency under
study.

The evaluation of the SAR resulting from a Personal Wireless Communication
Device (PWD) is a challenging task due to its operation in the close vicinity of the
human body. Accurate computational estimation of the SAR for such devices will
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8.1 Wearable and implantable IoT-health technology 239

be critical to ensure adherence to national or international safety limits. Therefore,
near-field validation of the numerical models used for SAR computation becomes
necessary. In [HBPH17], authors present a novel validation technique based on the
comparison of measured and simulated one-port characteristics of the PWD antenna
while the near field is systematically perturbed by a dielectric control object near
the PWD. In particular, the authors use the input impedance Z as a single-port pa-
rameter and propose a formula for the change of the antenna impedance in the near
field, as well as a formula that relates the error of such changes to the near field val-
ues. Using these formulas, authors numerically verify the equivalence of the two
near-field validation techniques by comparing measured and computed validation
data for a Planar-Inverted F Antenna (PIFA) as observed in Fig. 8.10. After apply-
ing a deconvolution directly to the values of the impedance changes and considering
Tikhonov regularization of the convolution kernel, the reconstruction of the 3D elec-
tric field with reduced error will be possible. Further technical details can be found
in [HBPH19].

FIGURE 8.10

Comparison of the measured (red solid line; mid gray in print version), numerical
impedance (green solid line with triangles; light gray in print version) from the electric field,
and numerical input impedance change (blue solid line with stars; dark gray in print
version).

Determination of the real exposure levels is a critical task when planning mobile
communication services. In [HLHI18], authors present a large set of exposure mea-
surements performed in different places of Kosovo. Measurements were taken for
Global System for Mobile Communications (GSM), Universal Mobile Telecommu-
nications System (UMTS), and LTE mobile technologies in DL using a commercial
and calibrated spectrum analyzer. The results show that even after the implementa-
tion of LTE 1800 system (Re-farming), the main contributor to the EM exposure is
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GSM 900 followed by UMTS and GSM 1800. The lowest levels of downlink base
station emissions are captured from LTE. All measured values in outdoor and indoor
areas (LOS and NLOS positions) are well below the International Commission on
Non-Ionizing Radiation Protection (ICNIRP) reference levels [icn]. Looking at dif-
ferent scenarios, the highest values of the total electric field exposure were obtained
in public transportation vehicles such buses, followed by coffee shops and outdoor
environments. The lowest values were captured in home and office environments.

FIGURE 8.11

Incident power densities measured during the walk for several Personal Exposure Meter
(PEM).

The measurement of the incident power density is conducted by the measuring
(i.e. meter) device. In [ATA+18], the authors design a Multi-Band Body-Worn Dis-
tributed (BWDM) Radio-Frequency Meter as a Personal Exposure Meter (PEM). The
BWDM consists of 22 textile antennas integrated in a garment covering the back
and torso of the human subject. It was calibrated on 6 different human subjects and
for 11 different telecommunication frequency bands. The BWDM meter has an im-
proved uncertainty of up to 9.6 dB in comparison to commercially available personal
exposure meters. Furthermore, as illustrated in Fig. 8.11, commercial PEM underes-
timate the exposure to EM fields when considering real measurements on a outdoor
route.

8.2 IoT-health networking and applications
Future communication networks involve a plethora of ‘smart’ wireless devices that
can exchange information in real time. These devices are expected to be part of our
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daily lives, interfacing not only with humans, but also with other devices; there-
fore, leading to the new paradigm known as “machine to machine” communica-
tions [RRKS14]. Connected medical devices (including wearables and implants) are
expected to form a smart environment capable of exchanging health information
i.e. IoT-Health. The communication links in this environment can be character-
ized by polymorphic requirements such as latency, throughput, reliability, security,
etc. [PB10]. Remote physiological monitoring is a critical application of IoT-Health
which requires connectivity of wearable or implantable sensors to local or wide area
networks. Remote monitoring of large numbers of patients requires sufficient band-
width, reliable communication links and high quality of service (QoS). As part of
the future 5G networks, smart medical or personal health devices operating within
such environment are expected to have the capability to observe and understand the
relevant physical and social parameters of their operating area. This section reports
on the IRACON research activities related to IoT-health networking and applica-
tions.

8.2.1 Networking and architectures
A Body Area Network (BAN) is formally defined by the IEEE 802.15.6 stan-
dard [IEE12] as a communication and networking protocol for wireless connectivity
of wearable and implantable sensors (or actuators) located inside or in close proxim-
ity of the human body. A BAN typically includes several sensor and actuator nodes
along with a controller also known as coordinator. Sensors are mainly used to mon-
itor a physiological signal while actuators apply a signal to the body or cause an
operation to take place inside or on the surface of the human body. A BAN can op-
erate as a stand-alone network or as part of a larger infrastructure. There are still
several technical challenges involving implementation and integration of BANs that
need to be addressed in order to achieve high reliability or Quality of Service. One
such challenge is mitigating radio interference from coexisting wireless networks or
other nearby BANs.

When several BANs are within close proximity of each other, inter-BAN interfer-
ence may occur since no coordination across multiple networks exists in general.
Authors in [BSA15] investigate the performance impact of the Energy Detection
(ED) threshold within the IEEE 802.15.6 CSMA MAC protocol when the system
is comprised of several co-located BANs. They have shown how the static value of
this threshold can lead to starvation or unfair treatment of a particular node(s) when
there are potential interferers in the vicinity. To demonstrate this, they implemented
a simplified CSMA/CA protocol as outlined by the IEEE 802.15.6 standard. Same
authors in [BSA16] have proposed adaptive schemes that can be used to adjust the
ED threshold in the transmitting nodes of a BAN. The objective is to fairly allow
channel access to all nodes regardless of the level of interference that they are experi-
encing. Simulation results indicate benefits of the proposed strategy and demonstrate
improvement in the overall performance.
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Another challenge in heterogeneous Body Area Networks is the development of
methodologies for the allocation of multiple data streams with simultaneously operat-
ing radio interfaces. In [CAR+18b], authors have proposed a novel bit-rate adaptation
method for data streams allocation in heterogeneous BANs. Block diagram of the
proposed adaptive method is shown in Fig. 8.12. A dedicated simulator has been
developed using the results of measurements in a realistic environment. Using this
simulator, the efficiency of the proposed algorithm was compared with other known
data stream allocation algorithms. It was shown that using transmission rate adapta-
tion based on radio channel parameters can increase the efficiency of resource usage
compared to fixed bit-rate transmissions and other algorithms.

FIGURE 8.12

Block diagram of the proposed novel adaptive method for data stream allocation
[CAR+18b].

Architectures for remote health monitoring
A Remote Health Monitoring (RHM) system aims to provide real-time or near
real-time monitoring of patient’s vital signs, thus enabling direct medical care or
treatment. This technology can be used to help patients with a number of medical
conditions; improving their quality of life and general well-being. It can also assist
with medical and drugs’ database administration. Technological advances in micro-
electronics, wireless communications and low-cost medical sensors are setting the
stage for a 24/7 connected healthcare environment. Current medical sensors can pro-
vide a variety of physiological signals such as heart-rate, electrocardiogram, blood
pressure, blood glucose levels, oxygen saturation, etc. If such sensors can be assigned
a unique IPv6 address, then health information (i.e. sensors’ readings) can be col-
lected and transferred to other IP end-devices or to the Cloud for further processing
and decision making.

Authors in [GFT+18] proposed the heterogeneous IoT-based architecture for re-
mote monitoring of physiological and environmental parameters using Bluetooth and
IEEE 802.15.4 standards (Fig. 8.13). The RHM system consists of a BAN with Shim-
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mer physiological sensors (communicating using Bluetooth radio), and OpenMote
environmental sensors communicating using IEEE 802.15.4 radio. This architecture
enables data collection from multiple wearable and environmental sensors in order to
process and extract useful information about the current state of the patient, as well
as the environment in which the patient resides. Measurements are collected in a re-
lational database on a local server (i.e. a Fog node for fast data analysis) as well as
on a remote server in the Cloud.

Processing of the data generated by various health monitoring sensors and ex-
tracting valuable information is a complex task which requires significant resources.
Authors in [TGR16] proposed a cloud-based solution to deal with this challenge.
Their solution includes personalized medical devices as the source of sensor data and
the cloud delivering various healthcare services over the Internet. The medical cloud
hosts specially developed applications that process the data from medical devices and
communicate the results to caregivers or medical institutions.

FIGURE 8.13

Heterogeneous IoT-based architecture for remote monitoring of physiological and
environmental parameters [GFT+18].

Furthermore, authors in [KJD17] have provided a review on how 5G can be used
as an underlying technology to provide remote health monitoring. They have also pre-
sented a novel architecture shown in Fig. 8.14. The proposed system employs White
Space Devices (WSD), along with IEEE 802.22 (WiFAR) standard to provide seam-
less connectivity for the end-user devices. Initial findings indicate that the proposed
communication system can facilitate broadband services over a large geographical
area taking advantage of the freely available TVWS.
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FIGURE 8.14

Proposed architecture connecting WMDs and IMDs to the internet using WiFAR (IEEE
802.22) [KJD17].

8.2.2 Applications
Localization
Localization has been mainly considered as a technology to locate objects or peo-
ple in outdoor or indoor environments. However, there are new applications of this
technology to locate and track indigestible electronics or capsules inside the human
gastrointestinal (GI) tract. Specifically, authors in [BPG+18] explain how using UWB
radio frequency transmission could be beneficial in applications such as capsule
endoscopy localization. Performance analysis of RF-based localization is typically
conducted through simulations using computational human body models or through
experimental measurements using homogeneous phantoms. One of the most common
methodologies in RF-based localization is using the received signal strength (RSS) to
estimate the position of the transmitting node. Laboratory measurements using a cus-
tomized multi-layer phantom test-bed [BPG+18] as well as in-vivo experiments were
conducted [BGN+18] to evaluate the performance of RSS-based localization. The
experimental laboratory measurements were conducted in the 3.1 GHz to 8.5 GHz
UWB frequency band, and the results were used to perform two-dimensional (2D)
localization. Fig. 8.15 illustrates how authors envisaged real scenarios into the phan-
tom model that was used to conduct a number of experiments [BPG+18].

A magnetic sensor was attached to the in-body and on-body antenna so that the
tracker could precisely evaluate the distance between antennas as well as their re-
spective coordinates. Five on-body antenna positions with a separation of 2 cm along
the y and z axes were considered on the outer edge of the fat phantom layer. The
in-vivo measurements were conducted in a living porcine at the Hospital Universitari
i Politècnic la Fe in Valencia, Spain [BGN+18] and the results were used to perform
three-dimensional (3D) localization. Same antennas and equipment (Vector Network
Analyzer (VNA) and magnetic tracker) were used for both in-vivo and laboratory
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FIGURE 8.15

A multi-layer phantom-based model.

experiments. The in-body antenna was placed in three different positions inside the
small bowel through laparoscopy procedure. For each in-body location, the on-body
antenna was placed on the abdomen of a porcine model, and in direct contact with
the skin. Measurements were taken in the 3 GHz to 6 GHz UWB frequency band,
considering a resolution of 1601 points in frequency. Preliminary results on the es-
timation of the in-body antenna coordinates showed that RSS-based localization can
achieve an average accuracy of (0.5-1) cm (assuming a limited range of distances
between the in-body and on-body antennas).

Localization techniques can also be employed to locate dairy cows in a farm.
In preparation for that objective, authors in [PTB+17] studied the cow’s on-body and
the off-body channels in both outdoor and barn environments. Bluetooth Low Energy
(BLE) and UWB wireless technologies were used in that study. On-body measure-
ments were performed in a large area of about 6 m × 12 m, so that reflections from the
walls could be ignored. Path-loss measurements were performed using two ZigBee
(XB24-Z7WIT-004) motes. On-body, off-body and location tracking measurement
results have been presented in [BPT+16a], [BPT+16b], and [TPMJ17] respectively.
The propagation path-loss for different on-body communication links on a dairy cow
(ear to neck, hind leg to neck, front leg to neck, and udder to neck) has been char-
acterized by both measurements and simulations. Measurements on a dairy cow in
a multipath environment (i.e. barn) have also been performed to validate the simu-
lations conducted using a cow body phantom. The path-loss results obtained from
the simulations showed good agreement with the values derived from the measure-
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ments. A log-normal path-loss model has been constructed from the measurement
and simulation data for the whole cow’s body.

Remote monitoring and crowdsensing
The concept of mobile crowdsensing (MCS) can be described by volunteers,
equipped with sensors, who extract and share information for personal or common
benefit. This concept aligns with the four pillars of the internet of everything (IoE):
people, data, process, and things [SJKB19]. Initial crowdsensing typology included
environmental, infrastructural, and social applications only [CCLG16], but health
applications followed immediately [JS17], [PRLS15], [PRH+15], [MMA+18]. The
large number of health related information, captured on a daily basis, constitutes a
valuable source of diagnostic and prognostic information waiting to be explored. The
hypertension is a good crowdsensing application example [JJS+18]: it exhibits no
obvious symptoms and the patients tend to behave as if they were healthy. Crowd-
sensing can collect the location, weather condition and the cardiovascular features in
order to form a large database of cardiovascular parameters in different environmen-
tal circumstances for further analysis. Patients are motivated to participate in MCS
through feedback, advising them to continue or pause their current activity. The feed-
back is generated using the Random forest [Bre01] machine - learning algorithm, and
the mean decrease impurity method for the feature importance assessment [Bre01].
The confusion matrix and the feature importance are shown in Figs. 8.16 a and b re-
spectively. An official recommendation for MCS [GYL11] to transmit the processed
features and not the complete signal initiated the development of alternative process-
ing tools that are insensitive to artifacts in raw data. An example is Binarized entropy
that estimates the approximate entropy from binary differentially coded time series
[SMM+17].

FIGURE 8.16

a) Confusion matrix; an arrow points the new patient; b) Feature importance; features are
typical for cardiology; [JJS+18].

Activity recognition and motion analysis
Traditional approaches to measure a person’s activity include attaching special
measurement devices on predefined locations like hip and ankle. Data from those
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devices are typically recorded in an internal memory for analysis at a later stage
[RT12]. Many of the epidemiological and clinical studies still use this method
in their research [MPGRS18]. With the advances in wearable technology, sen-
sor measurements can be directly sent to the users’ smartphone for real-time
analysis. In [OR16], a system architecture for activity recognition using smart-
phones and smartwatches as sensor devices has been proposed. The system also
includes a remote cloud which is in charge of the training and improving the neu-
ral network models used for activity recognition. Accuracy of the algorithm(s)
has been evaluated to identify which sensor combination gives the best results
for activity recognition. Results are shown in Fig. 8.17. The bars represent the
sensors combination that have been used as input to the models. It can be seen
that in general the accuracy is higher when the smartphone sensors’ data is
used.

FIGURE 8.17

Accuracy for each sensor combination.

In [BPMS17], a system for remote monitoring of patients with movement dis-
orders is presented. In addition to the system architecture, the authors describe
an Android application aimed for recording of the patient’s neck movements i.e.
TremorSense. Initial results demonstrating the effect of botulinum toxin therapy on
patients with neck tremor are shown in Fig. 8.18. The modulus of angular veloc-
ity for patient P1 before (top figure) and after (bottom figure) receiving Botulinum
toxin therapy is presented in the Figure. As observed, the Botulinum toxin therapy
has significantly decreased the neck tremor. This also supports the patient statement
regarding an improvement on the order of 30%.

In [CAN18], authors present a low-cost portable system to capture gait sig-
nals and propose a novel method for automatically obtaining gait phases (swing
and stance) using wavelets and Microsoft’s Kinect RGB-D sensor. Human gait
patterns are characterized by a basic gait cycle that is composed of two phases:
stance and swing. Stance phase represents the state where the heel remains in
contact with the ground and the swing phase represents the state where the
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FIGURE 8.18

Angular velocity over time for patient with neck tremor.

heel moves without any ground contact. Using human gait analysis, authors de-
rived values of spatiotemporal variables such as the walking speed, cadence,
and stride length from these two phases. Table 8.7 shows how these variables
clearly and quantitatively distinguish patients with Parkinson’s Disease (PD). Au-
thors explain how this approach can be used to provide an objective metric
for evaluating PD progression. Furthermore, they recommend PD clinical diag-
nosis should include complementary gait analysis using the proposed technol-
ogy.

Table 8.7 Average spatiotemporal variables and standard deviation obtained for
PD and non-PD volunteers.
Variables PD patients non-PD patients

Left Right Left Right
Stance Time (s) 2.24 (0.31) 2.17 (0.23) 0.91 (0.10) 1.06 (0.10)
Swing Time (s) 1.33 (0.14) 1.33 (0.18) 0.76 (0.09) 0.76 (0.06)
Step Number 10 (0.55) 9.67 (0.19) 6.83 (0.36) 6.17 (0.29)
Test Duration (s) 3.7 (0.41) 3.65 (0.32) 1.72 (0.07) 1.89 (0.09)
Speed (m/s) 0.63 (0.06) 0.65 (0.05) 1.20 (0.05) 1.04 (0.07)
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8.3 Nanocommunications
The next revolutionary phase in the Internet-of-Things in healthcare is the develop-
ment of nanomachines for use inside the human body. Nanomachines will enable
new mechanisms for gathering information about the human health, and will open
the door to innovative medical diagnosis and treatments dealing with serious infec-
tions and heart attacks [KWAC+19], vascular system diseases [KWTC19], remote
surgery on an extremely small scale, drug delivery, tissues regeneration, etc. Due
to their very small dimensions, nanomachines have very limited capabilities when
working as a single device. This necessitates efficient cooperation of a large group
of nanomachines which in turn requires exchange of information or communication
among them. This is referred to as nanocommunications.

8.3.1 Nanocommunication mechanisms
In recent years, research on nanocommunications is making considerable progress
along the following main three approaches: (a) EM-based, (b) molecular, and
(c) FRET-based.

The first approach is based on the idea of continued miniaturization of the ex-
isting microelectronic devices. These miniaturized devices, which are expected to
operate in the THz band (0.1 THz to 10 THz), are made of new materials such as
carbon nanotubes or graphene. The wavelength of the EM waves in the THz band is
in the micro-meters range. This allows for the development of antennas with proper
dimensions. To power EM-based nanomachines, solutions based on nanowires made
of zinc oxide have already been proposed. The nanowires are able to generate electric
voltage if bent or reshaped, e.g. in an environment with fluid flow. The dimensions
of graphene-based devices are generally in the micro-meter range. Since their opera-
tion is still based on EM communication, they can be easily integrated with existing
wireless networks in the macro scale. Consequently, they could perform as a gateway
between the macro and nano devices.

The second approach to nanocommunications is based on the communication
mechanisms in biology. Here, the information is not carried through the transmis-
sion of an EM wave, instead a group of molecules convey the message. These
mechanisms are commonly described as molecular communication (Fig. 8.19). One
example of molecular communication is calcium wave propagation using diffusion
(Brownian motion) [NSM+05]. This is the mechanism commonly used for signal-
ing between living cells. Another example is using diffusion for broadcasting larger
particles (such as polymers) that carry information coded in their properly modified
structure [UPA13]. In contrast to passive diffusion, some molecular communication
mechanisms are based on active transportation of encoded information i.e. data can
be encoded in the DNA chain of a plasmid located inside a bacterium or attached to
a catalytic nanomotor [GA10]. Finally, molecular motor is another mechanism that
allows carrying information encoded in the RNA (or a sequence of peptides in a vesi-
cle), and traveling along protein tracks called microtubules [EMSO11].
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FIGURE 8.19

Examples of nanocommunication mechanisms.

The third approach to nanocommunications is based on a phenomenon called
Förster Resonance Energy Transfer (FRET). This mechanism allows for non-
radiative energy passing between two molecules. The first molecule, excited by
an external radiation or a chemical reaction, operates as a nanotransmitter. The
nanotransmitter that is in a high energy state may pass its energy to a neighbor
molecule, operating as a nanoreceiver (Fig. 8.19). The phenomenon of FRET oc-
curs only between spectrally matched molecules, i.e. the nanotransmitter emission
spectrum should overlap the nanoreceiver absorption spectrum. ON-OFF modulation
is achieved through this energy transfer between the two molecules. This means that
sending an information bit ‘1’ is realized by a FRET transfer while sending an infor-
mation bit ‘0’ does not involve any transfer of energy. FRET operates in nano scale
as its communication range is usually limited to (5-15) nanometers. However, the
communication efficiency is strongly dependent on the distance between the trans-
mitter and the receiver [KKWJ17]. Similar to traditional wireless communications,
FRET efficiency and communication reliability might be increased by using diver-
sity techniques where multiple molecules operate at both sides of the communication
channel i.e. MIMO-FRET. Designing routing techniques suitable for FRET-based
nanonetworks is a major challenge. In [KSW17], new routing mechanisms have been
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proposed based on biological properties of specific molecules like photoswitchable
fluorophores, quenchers, proteins with changeable shape, and ATP synthases. FRET
nanonetworks can be possibly constructed from fluorescent molecules like dyes or
fluorophores, as well as, quantum dots and photosynthetic molecules of plant ori-
gin like carotenes and chlorophylls [OFK18]. Nanomaterials based on carotenes and
chlorophylls might also be considered as parts of nanostructures for intelligent fabrics
and materials.

8.3.2 Interface with micro- and macro-scale networks
As the communication mechanisms discussed in the previous section do not share the
same physical medium, it will be really challenging to transfer data between nanoma-
chines and other traditional wireless networks. Several solutions to this problem were
investigated in [KTC19]. One such solution involves the use of channelrhodopsins
molecules as nanoreceivers. Channelrhodopsins are able to create naturally occurring
ion channels. After an excitation, i.e. absorption of a photon or FRET, a channel-
rhodopsin opens itself for at least 10 ms, creating a pore where cations (positive
ions, like Ca2+, K+, Na+) flow through. Consequently, the electrical potential behind
the channelrhodopsin changes and can be measured with an electrode [KWKJ18].
This property means that such a channelrhodopsin can serve as an energy-to-voltage
nano-converter. This is extremely useful for the purpose of reading FRET signals
by electrical devices. Channelrhodopsin molecules might also be embedded into a
nerve cell membrane replacing the neuroreceptors [KKWJ18]. When a FRET signal
is received at a channelrhodopsin, cations which are flowing through the channel-
rhodopsin, open the pore and cause an action potential to propagate in the nerve cell.
Since a single nerve cell can be over one meter long, this technique enables con-
version of the FRET to electrical signals and its transmission over relatively large
distances to other macro scale electronic devices (Fig. 8.20).

Transmission in FRET nanonetworks may also be initiated by devices outside
the body, e.g. wearable devices in a BAN (Fig. 8.20). It can also be triggered by
optically-enabled micro-size devices built from graphene. FRET nanonodes such as
fluorophores can be bio-engineered molecules with distinct absorption spectra rang-
ing from ultraviolet (380-400) nm up to infrared (700-750) nm. These molecules
could be used for selective reception of optical signals coming from other mi-
cro/macro devices.

Communication between different types of nanonetworks (namely FRET and
molecular), although challenging, is possible as well. Molecular motors such as ki-
nesins or dyneins may not only carry information encoded in the RNA, but also
fluorophores (Fig. 8.20). Depending on the actual location of the carried fluorophore,
such mobile fluorophores could forward a signal to different remote FRET networks.
The signaling mechanism in FRET typically starts with a nanotransmitter excited
by a photon. However, a chemical reaction can also initiate the delivery of the re-
quired energy. This process is referred to as Bioluminescence Resonance Energy
Transfer (BRET). For this chemical reaction to occur, luciferin (substrate), luciferase
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FIGURE 8.20

Communication mechanisms between the molecular/FRET networks and external devices.

(enzyme), oxygen, and ATP (energy source) are required. The process of energy de-
livery may also be controlled by molecular mechanisms. For example, the oxygen
flow could be regulated or ATP could be transported in vesicles or molecular motors.

Finally, micro-size mobile nodes using THz communication can be used to
interface with mm-scale static gateways using classical wireless communications
[KWAC+19]. However, this connection is limited to distances of several millimeters
due to large signal attenuation by the human tissues as well as possible regulatory
limitation on the transmit power.

Methodologies discussed in this subsection show alternative mechanisms that
can be used to create efficient interfaces between nano-, micro-, and macro-
communication networks. These interfaces are clearly essential to realize the full
potential of such integrated networks and support future technological advances in
various IoT-Health applications.
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