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Abstract

Here, identification of processes and systems in the sense of the least sum of absolute
values is taken into consideration. The respective absolute value estimators are recognised
as exceptionally insensitive to large measurement faults or other defects in the processed
data, whereas the classical least squares procedure appears to be completely impractical
for processing the data contaminated with such parasitic distortions. Since the absolute
value quality index cannot be minimised analytically, an iterative solution is used to find
optimal estimates of the parameters of the underlying regression model. In addition, an
approximate recursive estimator is proposed and implemented for on-line evaluation of
system parameters. The convergence (basic property) of the iterative estimator is show
to be proven and some aspects related to the absolute value criterion are explained. This
allows for the formulation of practical conclusions and indication of directions for fur-
ther research. In addition, the effectiveness of the described iterative-recursive estimation
procedures is practically verified by appropriate numerical experiments.

1 INTRODUCTION

A substantial progress in technical science, being observed
continuously within the recent decades and, in particular, the
associated development of digital technologies, resulted in a
manifold of spheres of human activity supported by computer-
aided systems. The evolution of these technologies has strongly
influenced modernisation in many common areas, such as
telecommunication, radio and television, Internet, banking and,
last but not least, automation and robotics.

Considering the field of automation, significant progress
can be observed in such detailed areas as process supervision,
prediction and implementation of advanced control algorithms
[1, 2], digital data processing, prediction and filtration [3, 4], and
system identification discussed here [5, 6].

Parametric identification, understood as matching the param-
eters of the adopted mathematical description to the dynamics
of the supervised process expressed in pairs of input-output
trajectories, seems to be an important issue in many practical
applications, such as description of physical phenomena, super-
vision of hazardous chemical processes, prediction of trends or
determination of various econometric indicators.
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Since processes are continuous in the real world, continuous-
time models are most suitable for reliably describing the
behaviour of such objects, among which we distinguish dif-
ferential equations, state-space descriptions or Laplace transfer
functions, and (‘non-parametric’) convolutional representations
or spectral characteristics in frequency domain.

In most practical applications, estimation algorithms are
mainly based on objective functions involving sums of
(weighted) squared prediction errors. Such a square index may
express energy losses, provided that the error signal has a suit-
able physical meaning. Such criteria are convenient for analytical
minimisation and lead to known least squares (LS) estimation
procedures [7].

However, there are situations in which the above energy inter-
pretation is inadequate. In the case of trading and economy, the
classic least squares estimator can of course be used to track
the evolution of certain stock indicators or market trends. But
then using the quadratic criterion leads to the interpretation of
market gains or losses in terms of ‘square dollars’. This exam-
ple clearly shows that in practical applications, it may be more
useful to stick to simple units and use absolute-valued index
minimisation.
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It is obvious that the analytical ease of minimising quadratic
functions predestines the least squares method to solve many
tasks, and the resulting estimation algorithm can be presented
in a transparent recursive form that is convenient for numerical
implementation.

All methods derived from square measures, however, are
highly sensitive to large measurement errors called outliers. The
appearance of such harmful phenomena can deteriorate the
quality of measurement data processing by the LS method. The
observed disadvantage can be attributed to the fact that the out-
lier is squared here, that is, it has a greater impact on the quality
indicator than normal data.

In view of the above, it is worth considering a more
balanced approach, which can be based, for example, on min-
imising the aforementioned absolute value criterion [8, 9].
The resulting estimator, which penalises prediction error less
severely, is less sensitive to outlier data. However, this desir-
able property comes with the increased cost of numerical
overhead associated with minimising the non-differentiable
index [10, 11].

Basically, we can distinguish two approaches to outlier-
insensitive identification:

- the use of specific detection algorithms to isolate and elim-
inate outliers in the processed data, which then allows for
reliable identification using the classic least squares procedure,

- the use of identification methods (such as the non-quadratic
quality criteria minimisation algorithms discussed) that are
inherently insensitive to outliers.

In our opinion, the first methodology (a) is less convenient
because the isolation of outliers in the dataset requires addi-
tional processing in the form of implementing a hypothesis
verification method (e.g. a solution based on the Grubbs test
for prior elimination of outliers). As a result, this approach is
more suitable for off-line implementation. Furthermore, outlier
detection tests are great for isolating single errors, but in the case
of sequences of outliers, these tests may fail (there is no guar-
antee of success). On the other hand, applying a least squares
algorithm to unreliable data (with retained errors) may lead to
failure.

Accepting such arguments, in this study we consider the lat-
ter approach (b) based on the implementation of inherently
data error-tolerant methods such as LA procedures. Developing
the concept of robust identification [12, 13], in this paper we
present new results related to outlier-insensitive identification
of regression models. We discuss and derive iterative-recursive
least absolute value (LA) estimators and verify them numerically
in non-trivial simulation experiments (i.e. with outliers or other
destructive errors that distort the measurements).

The proposed proprietary procedures along with improve-
ments to avoid problems with small divisors are our contribu-
tion to the field of system identification. An equally important
theoretical contribution is the proof of convergence of the
iterative weighted absolute value algorithm. Importantly, there
are also grounds for stating that our solutions are better than
other numerical optimisation methods (e.g. linear program-

ming/simplex or gradient descent based on the Huber loss
function).

The paper is organised as follows. In Section 2, we discuss
linear regression in terms of the smallest sum of absolute val-
ues using a simple one-parameter model. In addition, on the
attached numerical example, we verify the declared insensitivity
to occasional measurement errors of large magnitudes (outliers).

In Section 3, we recall the well-known method of least
squares. An outline of the rearrangements leading to the recur-
sive LS procedure is helpful here to illustrate the reasoning
presented in the following section.

The basic iterative-recursive smallest-absolute-error estima-
tors are derived and discussed in Section 4.

Section 5 shows the results of practical applications of these
‘non-square’ estimators, which confirm the basic properties of
LA procedures and their insensitivity to harmful outliers.

Finally, in Section 6, we highlight the original contribution
and indicate directions for further research.

In addition, Appendix A proves the convergence theorem of
the iterative weighted absolute value algorithm, and Appendix B
explicitly comments on the problems of the non-differentiable
LA criterion.

2 LINEAR REGRESSION

As a gentle introduction to further considerations, let us recall
the classic concept of linear regression based on the following
static model

y(l ) = 𝜙(l ) 𝜃 + e(l ) (1)

where 𝜃 is the unknown proportionality factor, 𝜙(l) means
the scalar input (excitation), y(l) stands for the process
output (response), and e(l) represents the equation or
prediction error (also called the residual). The optimal
value of 𝜃 can be estimated based on available data
{𝜙(1), … , 𝜙(k)} and {y(1), … , y(k)}.

Note that this seemingly simple model (1) has many physical
applications (e.g. in the case of Hooke’s law, 𝜃 stands for elas-
ticity modulus, while the essence of piezoelectricity is the linear
relationship between mechanical stress and the electric charge
accumulating in crystalline materials).

The LS estimate of 𝜃 follows directly from the minimisation
of the penalty function (quadratic index)

I (𝜃) =
1
2

k∑
l=1

e2(l ) =
1
2

k∑
l=1

[y(l ) − 𝜙(l ) 𝜃]2 (2)

By zeroing the derivative of (2)

dI
d𝜃

=
dI
de

de
d𝜃

= −

k∑
l=1

𝜙(l ) e(l )

= −

k∑
l=1

𝜙(l ) [y(l ) − 𝜙(l ) 𝜃] = 0 (3)
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FIGURE 1 The course of the penalty function for the LS and LA rules,
where the LA index may, depending on the measurement data, take the form
with (a) a unique minimum or with (b) a flat minimum zone.

we get the LS estimate given by

�̂� =

[
k∑

l=1

𝜙2(l )

]−1 [ k∑
l=1

𝜙(l ) y(l )

]
(4)

Since the strictly convex LS criterion I(𝜃) is unimodal
(Figure 1) and the second derivative of (2) is positive

d 2I
d𝜃2

=

k∑
l=1

𝜙2(l ) > 0 (5)

solution (4) yields the global minimum of (2).
As mentioned, the estimators resulting from the minimi-

sation of the quadratic criteria can be ineffective in reliably
assessing the system parameters in the presence of large
measurement errors, called outliers.

As a remedy to this problem, it is worth thinking about a
method that penalises less severely for large prediction errors.
Thus, let us consider linear regression in the sense of the least
sum of absolute values.

The LA index corresponding to the regression model (1)
takes the form

J (𝜃) =
k∑

l=1

|| e(l ) || = k∑
l=1

|| y(l ) − 𝜙(l ) 𝜃 || (6)

An explanation of the origin of the shape of the LA func-
tional used as a minimisation criterion, including the location
of its kink points, is provided in Appendix B, where the quality
index J(𝜃) need not be a unimodal function (Figure 1), especially
in numerical representation. Other effects of minimising LA are
discussed below.

Due to the piecewise-linear course of function (6) with kinks
(points of discontinuity of its derivative as shown in Figures B1a
and B2a in Appendix B), it is impossible to carry out its
analytical differentiation (in order to minimise).

The desired derivative of the absolute value function |e|,
however, can be described as

d |e|
de

= sign(e) =
e|e| (7)

where the residual error e = e(l) shown in (1) is actually
a function of both the discrete-time moment (l) and the
proportionality factor (𝜃): e(l ) = e(l , 𝜃) = y(l ) − 𝜙(l )𝜃.

Of course, this derivative does not exist for e = 0 (at the
minimum of this function). On the other hand, an approximate
minimisation of the functional (6) may be used here, provided
that an estimate ê(l ) of the prediction error e(l) is available (for
example, from another estimation procedure).

Taking into account the approximation (7) and the obvious
relation d e(l , 𝜃)∕d𝜃 = −𝜙(l ), the derivative of the functional
(6) can be represented as

dJ

d𝜃
=

dJ
de

de
d𝜃

= −

k∑
l=1

𝜙(l ) sign(e)

= −

k∑
l=1

𝜙(l )
e(l )|e(l )| ≈ −

k∑
l=1

𝜙(l ) e(l )|ê(l )|
= −

k∑
l=1

𝜙(l ) [y(l ) − 𝜙(l ) 𝜃]|ê(l )| = 0 (8)

where in the denominator of (8) we propose to use the afore-
mentioned auxiliary estimate ê(l ) of the prediction error e(l ) =
y(l ) − 𝜙(l )𝜃.

Thus, the estimation of parameter 𝜃 in the approximate sense
of LA can be given as

�̂� =

[
k∑

l=1

𝜙2(l )|ê(l )|
]−1 [ k∑

l=1

𝜙(l ) y(l )|ê(l )|
]

(9)

An additional way to improve the accuracy of the estimate (9)
is the mechanism of iteratively reaching the optimal value of the
criterion J(𝜃) during a finite number of steps: �̂�[r ] (r = 0, 1, …).

To start the iteration, we can, for example, use the easy-to-
calculate LS estimate (4) as the initial value �̂�[0] (for r= 0). Next,
with such a current estimate of 𝜃, we can recalculate all predic-
tion error samples (for the entire measurement record: l = 1 …
k) and substitute them, i.e. the updated values of ê(l ), into (9).

In this way we come directly to the following procedure of
successive approximations �̂�[r ] of the estimated parameter 𝜃

ê[r ] (l ) = y(l ) − 𝜙(l ) �̂�[r ] (10)

�̂�[r+1] =

[
k∑

l=1

𝜙2(l )|ê[r ] (l )|
]−1 [ k∑

l=1

𝜙(l ) y(l )|ê[r ] (l )|
]

(11)
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TABLE 1 Iterative LA estimates of the scalar parameter 𝜃 of the model
(1).

r 𝜽[r] J(𝜽[r] ) e(̂l ) | l=9

1 6.5369 176.4065 12.1666

2 7.1427 166.1072 6.7140

3 7.5010 160.1058 3.4891

4 7.6527 157.8305 2.1239

5 7.7772 155.9632 1.0035

6 7.8473 154.9119 0.3727

7 7.8798 154.4241 0.0801

8 7.8898 154.2940 0.0101

Note that by solving (10) for y(l ) = 𝜙(l ) �̂�[r ] + ê[r ] (l ) and
then substituting this it into (11), we acquire its equivalent
innovation form

�̂�[r+1] = �̂�[r ] + R−1(k) 𝜓(k) (12)

R(k) =
k∑

l=1

𝜙2(l )|ê[r ] (l )| (13)

𝜓(k) =
k∑

l=1

𝜙(l ) ê[r ] (l )|ê[r ] (l )| (14)

where R(k) is the Hessian and ‘–ψ(k)’ is the gradient of the
function J(𝜃) (both factors are scalar in this case).

Processing in both cases (10)–(11) or (12)–(14) should be
stopped when the observed decrease in the minimised criterion
(6) in the next iteration turns out to be negligibly small, that is,
it falls below a certain positive numerical threshold Δmin

||| J (�̂�[r ] ) − J (�̂�[r+1] ) ||| < Δmin (15)

The idea of iterative processing described above, which is also
applied in [14, 15], was originally presented in [8], where it was
called “re-weighted least squares”. It is of fundamental impor-
tance here that the sequence of values of the quality indicator (6)
calculated in successive iterations of the estimate �̂� is generally
decreasing: J (�̂�[r+1] ) < J (�̂�[r ] ). This property, which is relevant
to the fitness and effectiveness of the given end condition (15),
is analysed and proven in Appendix A.

The properties of the LS and LA methods considered above
were exercised on a simple numerical example of linear regres-
sion. In this experiment, the model (1) was fitted to a set of ten
pairs of numerical data (k = 10). The corresponding sequence
of output values y(l), for l = 1 … k, was calculated for 𝜃 = 8
and in the presence of zero-mean uniformly distributed white
noise e(l) with variance σe

2 = 0.64. Additionally, occasional zero
outliers, y(l) = 0, were simulated for randomly selected calcu-
lation moments l = 2, 3, 6 and 8. The results obtained for
linear regression using the LS and LA schemes are presented in
Table 1. In Figure 2, the bullets indicate the measurements y(l),

FIGURE 2 Linear regression for numerical data (bullets on the dotted
line), obtained by the LS and LA methods: the theoretical tangent is 8 (the line
is invisible covered by the solid LA line; the dashed line is used to better show
the faults).

and the resulting tangents 𝜃 obtained in the LS and LA sense,
respectively, are shown with solid lines.

As shown in Appendix B, the minimum of the LA index (6),
which is a non-differentiable J(𝜃), is usually found at one of the
kink points given by y(l)/𝜙(l). Figure 2 shows how the optimal
LA regression line passes through the point [𝜙(9), y(9)], addi-
tionally indicated by an arrow. Thus, the optimal estimate of 𝜃 is
equal to �̂� =y(9)/𝜙(9) = 7.8898. Also, the smallest prediction
error ê(l ) = y(l ) − 𝜙(l )�̂� is assigned to the 9th measurement
point (l= 9). The iterative convergence of its assessment to zero
(for increasing index r) is presented in Table 1 together with the
corresponding sequence of the estimates of 𝜃, and the related
decreasing index (6).

In this study, the iterative estimate of 𝜃 was obtained in 8
iterations with the threshold Δmin = 0.15 used in the end condi-
tion (15). It is obvious that with a smaller threshold, the number
of iterations (12)–(14) will be greater (e.g. for Δmin = 10–4, the
number of runs is 15).

Figure 2 shows that in the presence of outliers, the LS esti-
mate deteriorated significantly, giving the parameter �̂� =5.6282.
In contrast to LS, the iterative result of the LA evaluation is
7.8898 (with threshold Δmin = 0.15 and 8 iterations), which
confirms the advantage of absolute value estimators in terms
of insensitivity to outliers.

The insensitivity to big errors shown above is a fundamental
advantage of the discussed LA approach. Yet, this advantage
comes at the cost of some numerical peculiarities associated
with this iterative processing.

First, since the minimum of the piecewise-linear LA crite-
rion (6) is usually located in its non-differentiable kink point
(Figures 1a and B1a), you can rely on that the corresponding
value of the prediction error in recursive calculations tends to
zero (Table 1). The problem of inconvenient divisors close to
zero in (11) (or in (13), (14)) can be solved here by regularisation
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techniques. In the simplest approach, we replace very small
values |ê[r ] (l )| with a fixed positive numerical threshold emin
(|ê[r ] (l )| ← emin for |ê[r ] (l )| < emin).

Second, because the basic absolute value criterion can reveal
a flat minimum range of optimal solutions for 𝜃 (as in Figure 1b
and Figure B2a). Meanwhile, the sequence of iteratively deter-
mined values of the LA criterion (for r = 0, 1, …) is decreasing
J (�̂�[r+1] ) < J (�̂�[r ] ), as long as the gradient present in (12) was
non-zero (ψ(k) ≠ 0). This is a requirement for most regression
methods (see also Appendix A).

However, for the ‘flat’ case with ψ(k) = 0, the innovative
Equation (12) ‘gets stuck’ in the state �̂�[r+1] = �̂�[r ]. Thus, the
criterion J(𝜃) will not be further minimised because, due to the
equality J (�̂�[r+1] ) = J (�̂�[r ] ), condition (15) immediately breaks
the iteration loop with �̂� = �̂�[r ].

Later, in Section 4, the LA method is generalised for arbitrary
regression models.

3 LS ESTIMATORS

Let us now consider a general regression model of a multi-
parameter SISO system subjected to identification

y(l ) = 𝝋T(l ) 𝜽 + e(l ) (16)

𝝋(l ) = [ 𝜙1(l ) … 𝜙m (l ) ]T (17)

𝜽 = [ 𝜃1 … 𝜃m ]T (18)

The regression vector 𝝋(l) contains the scalar components
𝜙i(l) (signal measurements or deterministic terms, see Sec-
tion 5), while 𝜽 stands for the vector of estimated scalar
parameters. The stochastic term e(l), referred to as the predic-
tion or residual error, includes disturbances and other under-
modelling.

There are many systems identification procedures for esti-
mating such an unknown parameter vector 𝜽. One of the
simplest methods of such evaluation is the least squares routine.
To get a concrete foundation for our analysis, we will recall here
the necessary information and formulae related to the batch and
recursive versions of the LS method.

The classic weighted least squares estimation algorithm
comes from minimising the following, strictly convex, quadratic
criterion

I (𝜽 ) =
1
2

k∑
l=1

𝛾(l ) e2(l ) =
1
2

k∑
l=1

𝜆k−l [y(l ) − 𝝋T(l ) 𝜽]
2

(19)

where the weighting function γ(l) > 0 can be practically rep-
resented by a parameterised exponential window 𝛾(l ) = 𝜆k−l .
The weighting factor 𝜆 from the practical range [0.9, 1] intro-
duced here determines the rate of exponential forgetting, which
is useful when tracking the parameters of a non-stationary
process.

The concept of the effective number of observations, also
called the length of the estimator’s memory, is useful here,
expressed by the formula M = 1/(1 − 𝜆).

The LS index can be directly minimised by zeroing the
gradient of (19)

∇𝜽I = −

k∑
l=1

𝜆k−l 𝝋(l ) [y(l ) − 𝝋T(l ) 𝜽] = 0 (20)

Hence, the LS estimation of the parameter 𝜽 takes its
algebraic form, which we will also call the batch form

�̂�(k) =

[
k∑

l=1

𝜆k−l𝝋(l )𝝋T(l )

] −1 [ k∑
l=1

𝜆k−l𝝋(l )y(l )

]
(21)

It is easy to check that the Hessian of the criterion function
(19) is positive definite

∇2
𝜽

I =

[
k∑

l=1

𝜆k−l𝝋(l )𝝋T(l )

]
> 0 (22)

Summing up, the obtained solution (21) gives the global
minimum of the convex/unimodal LS index (19).

The batch estimator (21) can be converted into its conve-
nient recursive form by separating the current data (k) in the
expressions of the estimator (21) as follows

k∑
l=1

𝜆k−l𝝋(l )𝝋T(l ) = 𝜆

k−1∑
l=1

𝜆k−1−l𝝋(l )𝝋T(l ) + 𝝋(k)𝝋T(k)

(23)
k∑

l=1

𝜆k−l𝝋(l )y(l ) = 𝜆

k−1∑
l=1

𝜆k−1−l𝝋(l )y(l ) + 𝝋(k)y(k) (24)

To avoid the numerically problematic inversion present in
expression (21), the matrix inversion lemma is commonly used
[7]. As a consequence, we can easily compute the inverse of
the Hessian present in (21)–(23), hereinafter referred to as the
covariance matrix P(k), and show the estimate (21) in the form
of innovation.

The obtained recursive form of the weighted LS algorithm,
containing the ‘a priori’ evaluation of the prediction error ε(k),
the update of the covariance matrix P(k) and the resulting
innovation of the estimation vector, can be presented as [7]

𝜀(k) = y(k) − 𝝋T(k)�̂�(k − 1) (25)

P(k) =
1
𝜆

[
P(k − 1) −

P(k − 1)𝝋(k)𝝋T(k)P(k − 1)

𝜆 + 𝝋T(k)P(k − 1)𝝋(k)

]
(26)

�̂�(k) = �̂�(k − 1) + P(k)𝝋(k) 𝜀(k) (27)

where the starting value of the initially-diagonal covariance
matrix P(0) is chosen quite arbitrarily, as long as the elements
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on the main diagonal are reasonably large. For example, it can
be P(0) = diag [105 … 105], which means a high uncertainty of
the initial assessment of 𝜽.

It is easy to show that the simplest LS procedure (no weight-
ing, 𝜆 = 1) generates unbiased estimates of 𝜽, provided that the
regression data 𝝋(l) and the prediction error e(l) are mutually
uncorrelated: E{𝝋(l)e(l)} = 0.

Very often, unfortunately, the above condition is violated,
because the prediction error does not always take the form of
white noise (i.e. a sequence of zero-mean independent random
variables). When this happens, that is, e(l) takes the form of a
correlated process, it is better to use the instrumental variable
technique, which can significantly improve the accuracy of the
estimation [16, 17].

As shown, algorithms derived from quadratic criteria are usu-
ally ineffective in processing measurement data contaminated
with large errors. Therefore, in the following we will focus
on estimation schemes that are insensitive to large outliers,
in particular procedures resulting from the minimisation of a
non-quadratic quality measure.

4 LA ESTIMATORS

Given model (16)–(18), the estimator of weighted least absolute
values results from minimising the following non-square index

J (𝜽 ) =
k∑

l=1

𝛾(l ) ||e(l )|| = k∑
l=1

𝜆k−l ||y(l ) − 𝝋T(l )𝜽|| (28)

where γ(l) represents the weighting mechanism introduced
earlier in Section 3.

According to the reasoning presented in Section 2, the LA
index can be approximately minimised as long as an estimate of
the prediction error e(l) is available (from the LS procedure, for
instance). Again, based on relation (7), the gradient of J(𝜽) can
be shown as

∇𝜽J = −

k∑
l=1

𝜆k−l𝝋(l ) sign(e)

= −

k∑
l=1

𝜆k−l𝝋(l )
e(l )|e(l )| ≈ −

k∑
l=1

𝜆k−l 𝝋(l ) e(l )|ê(l )|
= −

k∑
l=1

𝜆k−l 𝝋(l ) [y(l ) − 𝝋T(l ) 𝜽]|ê(l )| = 0 (29)

where, as in (8), some estimate of the prediction error e(l) can
be used in the denominator. Then, the algorithm to evaluate the
vector 𝜽 takes the following batch form

�̂� =

[
k∑

l=1

𝜆k−l 𝝋(l )𝝋T(l )|ê(l )|
]−1 [ k∑

l=1

𝜆k−l 𝝋(l )y(l )|ê(l )|
]

(30)

As before, the accuracy of the estimator (30) can be improved

by the iterative approach (r = 0, 1, …) to �̂�
[r ]

, initialising this

process with �̂�
[0]

resulting from the LS estimate (21). All this
allows for the following formulation of the procedure of suc-
cessive approximations of 𝜽, which is a vector generalisation of
the system of scalar equations (10), (11)

ê[r ] (l ) = y(l ) − 𝝋T(l ) �̂�
[r ]

(31)

�̂�
[r+1]

=

[
k∑

l=1

𝜆k−l 𝝋(l )𝝋T(l )|ê[r ] (l )|
]−1 [ k∑

l=1

𝜆k−l 𝝋(l )y(l )|ê[r ] (l )|
]

(32)

Note that in the above iterative batch estimator, at each step,
the most recent 𝜽 estimate is used to update all errors (31), for
the entire data segment (l = 1 … k).

Defining the output as y(l ) = 𝝋T(l ) �̂�
[r ]
+ ê[r ] (l ) according to

(31) and substituting it into (32), we can describe the iterative
estimator in the innovation form

�̂�
[r+1]

= �̂�
[r ]
+ R−1(k)𝝍(k) (33)

R(k) =
k∑

l=1

𝜆k−l 𝝋(l )𝝋T(l )|ê[r ] (l )| (34)

𝝍(k) =
k∑

l=1

𝜆k−l 𝝋(l ) ê[r ] (l )|ê[r ] (l )| (35)

where R(k) is the Hessian and ‘–ψ(k)’ is the gradient of the cost
functional J(𝜽).

As in Section 2, the computational processes of both esti-
mators (31)–(32) and (33)–(35) terminate on the basis of the
observed stagnation in the minimisation criterion (28), exactly

when |J (�̂�
[r ]

) − J (�̂�
[r+1]

)| drops below the assumed threshold
Δmin, as in (15). And we solve the problem of divisors |ê[r ] (l )|
which are close to zero by replacing them with a certain value
equal to a small positive constant called the threshold emin.

Appendix A states that the sequence of calculated values of
the quality functional J(𝜽) as a convex function (with a lower

bound and infimum) is decreasing during iterations: J (�̂�
[r+1]

) ≤

J (�̂�
[r ]

) (for r = 0, 1, …). Such a sequence, bounded from below
by a number not less than zero, must converge. Hence, we con-
clude that the iterative method (33)–(35) allows minimisation
of the considered quality indicator in all cases, for sharp or
flat minima. Note also that in the considered multi-parameter
case with noisy measurement, the probability of some hyper-flat
minimum is negligibly small.

From an implementation point of view, this can happen
when the modulus of the gradient (35) accidentally approaches

zero (||ψ(k)|| ≅ 0). Then we also have ||�̂�[r+1]|| ≅ ||�̂�[r ]||. In
this case, we can conclude that the criterion has reached its
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KOZŁOWSKI and KOWALCZUK 1105

minimum, because J (�̂�
[r+1]

) ≅ J (�̂�
[r ]

) means that the final con-
dition (15), as in the case of one-parameter regression, based
on the modulus of the difference between the latest functionals|J (�̂�

[r ]
) − J (�̂�

[r+1]
)| < Δmin, can stop the iteration.

An approximate recursive implementation of the iterative LA
estimator can be obtained in a similar way as before, starting
from the recursive notation of the summation formulae in (32)

k∑
l=1

𝜆k−l 𝝋(l )𝝋T(l )|ê(l )| = 𝜆

k−1∑
l=1

𝜆k−1−l 𝝋(l )𝝋T(l )|ê(l )| +
𝝋(k)𝝋T(k)|ê(k)|

(36)
k∑

l=1

𝜆k−l 𝝋(l )y(l )|ê(l )| = 𝜆

k−1∑
l=1

𝜆k−1−l 𝝋(l )y(l )|ê(l )| +
𝝋(k)y(k)|ê(k)| (37)

Then, applying the matrix inversion lemma to (33), we obtain
a recursive form of the LA algorithm, similar to (25)–(27). This
means that our LA procedure takes the typical form where the
regression (column) vector 𝝋(k) is replaced by 𝝋(k)∕|ê(k)|.

In this calculation we have the ‘a priori’ prediction error ε(k),
which is the best measure of the current on-line ê(k) and can
approximately replace it in the LA algorithm (leaving the prob-
lem of small divisors). Finally, the LA scheme including the
update of the covariance matrix P(k) and the correction of the
estimation vector can be presented as

𝜀(k) = y(k) − 𝝋T(k)�̂�(k − 1) (38)

P(k) =
1
𝜆

⎡⎢⎢⎢⎣P(k − 1) −
P(k − 1)

𝝋(k)|𝜀(k)|𝝋T(k)P(k − 1)

𝜆 + 𝝋T(k)P(k − 1)
𝝋(k)|𝜀(k)|

⎤⎥⎥⎥⎦
=

1
𝜆

[
P(k − 1) −

P(k − 1)𝝋(k)𝝋T(k)P(k − 1)

𝜆|𝜀(k)| + 𝝋T(k)P(k − 1)𝝋(k)

] (39)

�̂�(k) = �̂�(k − 1) + P(k)
𝝋(k)|𝜀(k)| 𝜀(k)

= �̂�(k − 1) + P(k)𝝋(k) sign(𝜀(k))
(40)

As before, to initialise the estimator (38)–(40) we need a high-
value matrix P(0) = diag [105 … 105], which means a high
uncertainty of the initial evaluation of the parameter 𝜽. This
solution is not harmful, because thanks to the weighting mech-
anism (𝜆 < 1) implemented in the LA algorithm, such starting
data will be gradually eliminated from the estimator’s memory.

To sum up, we have indicated above ways of solving prob-
lems with differentiability of the criterion and small divisors
occurring in the iterative procedure LA.

5 RESISTANCE TO OUTLIERS WITH
EXAMPLES

In the numerical simulations presented below, we will demon-
strate the announced phenomenal property of the LA method
consisting in insensitivity to large outliers in the measurement
data. Of practical importance is the fact that iterative and

recursive LA procedures are used to solve non-trivial technical
problems, such as dynamic vehicle weighing or voltage quality
diagnostics in the power grid. In the summary of this section, we
consider the linear programming (simplex) and gradient descent
methods, which can be considered as alternative procedures for
minimising the non-quadratic criterion. We will point out that
taking into account the theoretical background and numerical
complexity of these (competitive) methods, the advantage of the
LA approach must be recognised.

5.1 Dynamic vehicle weighing

Due to the principles used in automation, the recorded signals
often resemble the step response of a damped second-order lin-
ear system. Such modelling has many applications. An example
is the automatic weigh-in-motion systems installed at border
crossings. The concept of dynamic weighing is designed to
quickly verify whether a passing truck meets the provisions of
the road traffic law in terms of the permissible axle load of the
vehicle. Since the weighing process is dynamic, we must eval-
uate the weight based on the recorded step response of the
mechanical sensor system.

The decaying oscillations of the weighing platform due to the
step impact (when the car axle activates the sensor system) can
be described as follows

y(t ) = 𝛺

{
1 − e−𝜁𝜔t

[
cos(𝛽𝜔t ) +

𝜁

𝛽
sin(𝛽𝜔t )

]}
(41)

where Ω represents the input stroke amplitude (weight carried
by the axle), ω stands for the angular frequency of free oscilla-
tion (without damping), ζ is the damping constant (0 < ζ < 1)
and 𝛽 =

√
1 − 𝜁2.

The process (41) can be modelled using the classical discrete-
time equation [18]

y(l ) = 𝝋T(l ) 𝜽 + e(l ) (42)

𝝋(l ) = [−y(l − 1) − y(l − 2) 1]T (43)

𝜽 = [a1 a2 b1]T (44)

where 𝝋(l) and 𝜽 are the regression and parameter vectors,
respectively. The prediction error e(l) is treated as an addi-
tive noise process that contaminates the measurements y(l)
(obtained for l = 1 … k). Such a regression model is easily iden-
tified by the LS or LA algorithms. Based on the 𝜽 estimate, a
settled output can be found that corresponds to the estimated
mass

�̂� = ŷ(∞) =
b̂1

1 + â1 + â2
(45)

In the performed tests, the oscillating platform was sim-
ulated as (41) with the following parameters: Ω = 800 kg,
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1106 KOZŁOWSKI and KOWALCZUK

TABLE 2 Estimates of parameters (44) and weight (45) obtained using the
batch LS and iterative LA methods

LS LA

a1 −1.9609 −1.9795

a2 0.9683 0.9856

b1 5.6729 4.9089

Ω 764.58 803.25

FIGURE 3 Signal (41) with destructive saturation (thick line) and its two
reconstructions: LS and iterative LA (solid lines), with the actual weight
setpoint equal to 800 (dashed line).

ω = 15.7737 rad/s, and ζ = 9.1191 × 10−2. The measurement
data y(l) = y(t)|t = lT, recorded for l = 1 … k (k = 200), were
obtained with the sampling time T set to 5 × 10−3 s.

The effect of quantisation occurring in the AD converter was
expressed in the form of measurements falsified with additive
white noise with a uniform distribution and variance σ2 = 10−4.
In addition, the effect of saturation (caused, for example, by
incorrect calibration of the sensor) was simulated in order to
express large measurement errors. Incorrectly selected linearity
range of the sensor causes serious distortion of the recorded
data. In this case, the sampled values y(l) were limited to 1023
(i.e. 210 − 1).

The off-line estimate of 𝜽 was obtained using the LS scheme
(21) and the iterative LA procedure (33)–(35) using the thresh-
old Δmin = 10−4. For the considered stationary dynamics, the
weighting mechanism was turned off (𝜆 = 1). The obtained esti-
mates of parameters a1, a2 and b1 together with the assessment
of the weight Ω are presented in Table 2.

In addition, the analysed signal y(t) was reconstructed on the
basis of the vector 𝜽 estimated by the LS and LA methods,
as shown in Figure 3. The LA estimate was obtained after 24
iterative loops.

This simple example very convincingly shows the impact of
large measurement errors on the quality of identification. As
announced, outlier errors have a large impact on LS, while the
LA procedure shows its main advantage of being highly insen-

sitive to such parasitic phenomena. Also, the LA method seems
to be more reliable in the case of identification of processes bur-
dened with non-linear distortion of measurement data (due to
typical sensor saturation, for instance).

5.2 Evaluation of harmonics in periodic
signals

Among the many important issues in the diagnosis of power
grids, it is extremely important to assess the quality of the gen-
erated AC voltage. A suitable periodic voltage must maintain the
required angular frequencyω= 2π × 50 rad/s and an amplitude
of 325 V, which gives an effective voltage of 230 V. Unfortu-
nately, with non-linear loads connected to the mains, AC voltage
degradation due to other harmonics becomes real. To face this,
we can implement estimation procedures to effectively assess
the ‘purity’ of the voltage [19].

The multi-harmonic mains voltage can be shown as

y(t ) =
n∑

i=1

𝛺i sin(𝜔i t + 𝜂i )

=

n∑
i=1

[ai sin(𝜔i t ) + bi cos(𝜔i t )] (46)

where we have successive frequencies ωi, i = 1 … n: ω1 = ω,
ω2 = 2ω, …, ωn = nω, while the amplitudes Ωi of individual
harmonics and the arguments ηi of their phase shift are defined
as

𝛺i =

√
a2

i + b2
i (47)

𝜂i = atan2(bi , ai ) (48)

Assuming that the frequency ω remains constant, the process
(46)–(48) can be described by a trigonometric series in discrete-
time

y(l ) = 𝝋T(l ) 𝜽 + e(l ) (49)

𝝋(l ) = [sin(𝜛l ) … sin(n𝜛l ) cos(𝜛l ) … cos(n𝜛l )]T (50)

𝜽 = [a1 … an b1 … bn]T (51)

where 𝝋(l ) and 𝜽 stand for the regression and parameter vec-
tors, respectively,𝜛 = 𝜔T is the normalised frequency, and T is
the sampling time. Again, the prediction error e(l ) comes from
additive noise that interferes with the measurements y(l ), for l
= 1 … k.

Note that using the LS algebraic procedure (21) to identify
the parameters of the model (49)–(51) the classical Fourier for-
mulae can be obtained, provided that the period (2π/ω) of the
considered signal (46) is a multiple of the sampling time (T )
used.
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TABLE 3 On-line estimates of harmonics (47) using the recursive LS and
LA methods.

LS LA

Ω1 64.1088 ± 1.0837 268.6253 ± 0.0258

Ω2 89.9357± 0.6867 39.3352 ± 0.0106

Ω3 111.4615 ± 0.8019 15.7391 ± 0.0151

There are many specific situations in which large measure-
ment errors can unexpectedly distort the correctness of the
processed data. For example, in optical rotary measurements
based on simple binary encoders, the reading of two con-
secutive values (i.e. 2NoB − 1 and 2NoB) can be affected by
a large outlier resulting from the transient and simultaneous
switching of 100/NoB bits. Similarly, random errors corrupt-
ing the transmitted data may arise due to the interference
of unsecured transmission. Such distortions may also result
from software errors—an example may be data conversion not
thought through by the programmer (e.g. falsifying the sign bit).

These problems have been known for a long time. Various
measures are used to overcome them. For example, Gray code
encoders contribute to reliable optical readings when multiple
bits are switched simultaneously. A good solution may be a
parity bit or a checksum, which reduce the risk of undetected
bit errors in the transmission. Programming errors can be par-
tially eliminated by using more advanced compilers that can
accurately identify all suspicious data conversions.

In the conducted numerical studies, the signal in the form of
(46)–(48) with the parameters n = 3, Ω1 = 270 V, Ω2 = 40 V,
Ω3 = 15 V, was simulated. Samples y(l)= y(t)|t = lT, recorded for
l = 1 … k (k = 105), were obtained with a sampling time of T
= 10−4 s and a simulation time of 10 s. The falsifying effect of
quantisation induced in the AD converter was simulated as an
additive uniformly distributed white noise with variance σ2 =
2.5 × 10−1. This time, the measurement errors resulted from
the incorrectly selected resolution of the ADC. Namely, for
the assumed 9-bit conversion, which represents integers in the
two’s complement format in the range [−256, 255], an incau-
tious attempt to read a number outside this range may wrongly
interpret the overflow as a sign bit change, and thus strongly
falsify the measurement. Consequently, for example, measure-
ments 256, 257 and 258 will be machine interpreted as −256,
−254 and −253, respectively.

The on-line estimate of 𝜽 was obtained using the recur-
sive LS algorithm (25)–(27) and the (approximate) recursive
LA procedure (38)–(40). Based on the estimated parameters
(51), the sought-after amplitudes in (46) were determined by
means of (47). The weighting parameter was set at 𝜆 = 0.9995.
This increased the efficiency of the algorithms, thanks to the
gradual removal of errors from the memory of the estimators.
The estimates and their standard deviations (averaged for 50
realisations) are shown in Table 3.

Moreover, based on a single period 2π/ω = 2 × 10−2 s (k =
200) of the sampled process (46), off-line 𝜽 was estimated using
the LS algorithm (21) and the iterative LA procedure (33)–(35),

TABLE 4 Off-line estimates of harmonics (47) using the batch LS and
iterative LA methods.

LS LA

Ω1 71.3807 268.7928

Ω2 87.3943 39.3025

Ω3 107.4741 15.6674

FIGURE 4 Signal (46) with numerical jumps (thick line) and its off-line
reconstructions: LS and iterative LA (solid lines).

assuming 𝜆 = 1 and Δmin = 10−4. The LA result was obtained
after 62 loops of the iterative processing (Table 4).

Reconstructions of the periodic signal (46), based on esti-
mates obtained by the off-line LS and LA methods, are
compared in Figure 4.

The conducted numerical research confirms that the LS
method in its algebraic and recursive implementations is highly
sensitive to obviously falsified measurement data. Meanwhile,
the iterative-recursive implementations of the LA method show
very high insensitivity to simulated giant outliers. It is also
worth noting that the proposed recursive (on-line) LA estima-
tion is completely reliable even though its algorithm is only
approximate.

5.3 Comparison with other numerical
methods

Among other non-quadratic criteria optimisation methods, the
most famous are linear programming and gradient descent
algorithms. Therefore, in order to compare the developed LA
procedure with such approaches, a simplex scheme and Gauss–
Newton algorithm were implemented to solve the identification
problems discussed above.

To adapt the simplex method to handle minimisation of the
LA index (28), it is necessary to use auxiliary variables v(l) such
that |y(l ) − 𝝋T(l )𝜽| ≤ v(l ). Then, the following linear function
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1108 KOZŁOWSKI and KOWALCZUK

should be minimised

k∑
l=1

𝛾(l )v(l ) =
k∑

l=1

𝜆k−l v(l ) (52)

under the following algebraic constraints (l = 1 … k)

−v(l ) + 𝝋T(l )𝜽 ≤ y(l ) (53)

−v(l ) − 𝝋T(l )𝜽 ≤ −y(l ) (54)

It should be noted that it is rather impractical to use the
simplex method here. This is due to the large number of mea-
surements (e.g. k = 200) implying the creation of the same (k)
number of new variables and twice more (2k) limitations (53),
(54) when we consider the evaluation of only a few parame-
ters (3 or 6, as is the case in the examples). Moreover, with
the exponential complexity of the simplex procedure, its execu-
tion time increases enormously (and is approximately 30 times
longer than in the case of the LA method).

On the other hand, since the Gauss-Newton procedure can-
not be directly applied to the non-differentiable LA indicator,
the idea of “smoothing” breakpoints (28) on a user-defined
interval [−δ, δ] can be applied by implementing the Huber loss
function

f (e) =

{
0.5e2 for |e| ≤ 𝛿

𝛿 ( |e| − 0.5𝛿 ) for |e| > 𝛿
(55)

Based on (55), the LA quality indicator was modified to

ℑ(𝜽 ) =
k∑

l=1

𝛾(l ) f (e(l )) =
k∑

l=1

𝜆k−l f (y(l ) − 𝝋T(l )𝜽 ) (56)

for minimisation using the Gauss–Newton scheme

�̂�
[r+1]

= �̂�
[r ]
−

{
[∇2

𝜽
ℑ(𝜽 )]

−1
[∇𝜽ℑ(𝜽 )]

} |||| 𝜽=�̂�[r ]
(57)

where ∇𝜽ℑ(𝜽 ) and ∇2
𝜽
ℑ(𝜽 ) denote the gradient and Hessian

for (56), respectively.
The appearance of the Huber loss function in (56) is conve-

nient because this modified criterion becomes locally quadratic
(in the vicinity of the kink points in the LA index). In fact, the
complexity O(n3) of the Gauss-Newton method is the same as
that of the LA procedure, but in terms of execution time the
iterative LA algorithm is slightly better (since we do not evaluate
the function f(e) for all errors e(1) … e(k) in each iteration).

The results obtained using the discussed alternative meth-
ods were compared with those obtained with the LA algorithm.
For example, in the case of dynamic vehicle weight assessment
(Section 5.1), the estimates of Ω (Ω = 800) were as follows:

LA: 803.25, Simplex: 811.11, Gradient: 810.08.
In the assessment of harmonics in the power grid (Sec-

tion 5.2), all results were also very similar.

There are obvious reasons for obtaining comparable results
by all the considered procedures: (1) The simplex method is
inherently suitable for minimising such piecewise-linear criteria
(albeit at the cost of huge computational overhead associated
with the generation of many auxiliary variables). (2) The gradi-
ent minimisation of the artfully smoothed LA index (56) is also
effective in obtaining acceptable results.

In summary, we believe that there are solid reasons to con-
sider our LA methodology superior to the other optimisation
programs discussed here.

First, we found that the iterative LA procedure converges,
while there is no such guarantee for gradient search. Second,
the numerical difficulty of the Gauss–Newton method with
the Huber-smoothed criterion (56) is still incommensurate with
the numerical simplicity of our approach to the existence of
breakpoints of the LA criterion using regularisation (in our
LA procedure, divisors e(l) close to zero are replaced by a
small positive threshold emin). Third, we propose this approx-
imate recursive version of the LA method with complexity
O(n2), while neither the simplex method nor the Gauss-Newton
scheme can take such a practical form on-line (without matrix
inversion).

This section has presented the results of numerical tests indi-
cating the unique properties of the LA method. We believe
that our examples are practical, illustrative and intriguing. Other
interesting aspects regarding robust identification can be found
in the literature [20].

6 CONCLUSIONS

The article develops and implements the idea of identifying
parameters of processes and systems in the sense of the least
sum of absolute values. The main motivation to address non-
square estimation methods was the demonstrated insensitivity
of LA procedures to significant disruptive phenomena, such as
large measurement errors (outliers).

Unlike the classic LS algorithm, which by definition is very
sensitive to this type of errors, the results of LA identification
turn out to be reliable regardless of occasional outliers or other
distortions in the processed data. Also when identifying physical
continuous-time models, the LA index retains the proper physi-
cal meaning, while with the squared quantities that make up the
LS index, the induced physical interpretation can sometimes be
confusing (or incomprehensible, e.g. losses expressed in ‘square
dollars’).

The numerical verification of the reported properties of the
LA strategy was based on imaginative examples, such as weigh-
ing of vehicles in motion and diagnosis of mains voltage. The
comparison of the LS and LA estimation results undoubt-
edly showed that the LA procedure is exceptionally well suited
to processing measurements heavily contaminated with large
errors.

It is important that the iterative LA is apparently more
effective compared to the simplex scheme, which is charac-
terised by burdensome exponential complexity. The numerical
complexity of the gradient method is essentially equal to that of
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the LA procedure, but LA is convergent, while there is no such
guarantee for the Gauss-Newton algorithm. However, neither
the simplex nor the gradient method can be implemented
on-line.

(1) Main contribution

The convergence of the weighted iterative LA method (33)–
(35), presented in Appendix A, is an important theoretical
contribution to the field of process identification analysed in
this paper. Other problems related to the non-differentiable
LA criterion are also discussed in Appendix B. In addition,
an approximate recursive implementation of the weighted LA
method (38)–(40) has been presented in the form of a prac-
tical estimation scheme that can be conveniently implemented
on-line.

The accuracy of the promoted LA approach was supported
by numerical studies, which showed its insensitivity to harmful
outliers in measurement data (including non-linear distortions
of recorded signals). It is worth noting that the useful weighting
mechanism, which allows tracking the time-varying parame-
ters of the observed system, can be applied to all considered
iterative-recursive forms of the LA estimator.

It may be important for industrial engineers that iterative
(precise) and recursive (approximate) LA procedures can actu-
ally be combined. Namely, this can be achieved by iteratively
processing LA (33)–(35), respectively, between sampling times.

However, we must be aware that the cumbersome matrix
inversion underlying identification makes iterative calculations
time consuming. Thus, to ensure that the proposed LA proce-
dure ‘recursive with embedded iterations’ satisfies the real-time
constraints (i.e. it ended iterations before the upcoming sam-
pling time), we can relax the requirements imposed on the
accuracy of the estimation by increasing the threshold Δmin
accordingly.

(2) Further study

Taking into account the reported results, the further research
in this area is to focus on the following issues:

(a) Consistent identification in the LA sense: Both the LS and
LA methods have an asymptotic bias in the estimate 𝜽,
unless the prediction error e(l) represented in the regres-
sion model (16)–(18) is zero-mean white noise. In order to
make the estimation process immune to correlated noise,
and thus eliminate the systematic error of parameter esti-
mation, the idea of instrumental variables can be put into
practice. Useful hints in this direction can be found in the
literature [16, 21].

(b) Effective tracking of variable parameters of non-stationary
systems: Proper selection of the weighting factor 𝜆 is of key
importance for the correct identification of processes with
variable parameters. Unfortunately, the choice of 𝜆 is most
often intuitive or based on rough predictions of the type of
non-stationarity of the system (e.g. assumptions about fast
or gradual evolution of its parameters). To overcome this

problem, the well-known idea of parallel estimation can be
used [22].

(c) It can then be presumed that at least one of the estimators
working in a typical ‘battery’ of 3 competing filters with dif-
ferently tuned factors (𝜆1 < 𝜆2 < 𝜆3) will be (sub-)optimally
matched. The outlier-resistant LA schemes used in such
a configuration will make the system even more resistant,
allowing for effective change detection in the parameters of
the object.

(d) Error-proof identification of non-trivial industrial objects:
Due to the physical nature of industrial systems,
continuous-time differential equation models [23, 24] or
the more involved state-space representations [25, 26] seem
to be more adequate to describe the basic process dynam-
ics. Non-trivial means, for example, solving the problem of
identifying an unknown input lag, identifying models with
non-linear expressions, or handling infinite-dimensional
models (e.g. represented by partial differential equations). In
the literature there are solutions suitable for modelling and
identification of delay systems [27, 28], distributed parame-
ter systems [29], and specific non-linear stationary [30] and
non-stationary objects [31, 32].

Finally, it is worth noting that there are modern, non-classical
methods (based on neural networks or genetic algorithms) that
can also be successfully used to reliably identify processes [33,
34].
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APPENDIX A: Convergence of the LA method

Thesis: The sequence J [r ] = J (�̂�
[r ]

) of the index values (28)
determined in consecutive iterations (r = 0, 1, …) in accor-
dance with the standard iterative estimation scheme (33)–(35)
is decreasing: J [r+1] − J [r ] < 0.
Proof. The LA quality index (28) is given by

J (𝜽 ) =
k∑

l=1

𝛾(l ) || e(l ) || = k∑
l=1

𝛾(l ) || y(l ) − 𝝋T(l )𝜽 || (A1)

where the useful weighting factor γ(l) > 0 can be represented
by a classical exponential window 𝛾(l ) = 𝜆k−l . The iterative
(r = 0, 1, …) LA estimate minimising the index (A1) follows
from

�̂�
[r+1]

= �̂�
[r ]
+ R−1(k)𝝍(k) (A2)
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where the error ê[r ] (l ), Hessian R(k) (called ‘information
matrix’), and gradient ‘–ψ(k)’ are given by

ê[r ] (l ) = y(l ) − 𝝋T(l )�̂�
[r ]

(A3)

R(k) =
k∑

l=1

𝛾(l )
𝝋(l )𝝋T(l )|ê[r ] (l )| (A4)

𝝍(k) =
k∑

l=1

𝛾(l )
𝝋(l )ê[r ] (l )|ê[r ] (l )| (A5)

The matrix R(k) is positive definite, because for a consistent
vector (||v|| ≠ 0) the corresponding quadratic form is positive,
provided ê[r ] (l ) ≠ 0 (for l = 1, … k)

vTR(k)v =
k∑

l=1

𝛾(l )
[vT𝝋(l )]

2

|ê[r ] (l )| > 0 (A6)

By introducing P(k) = R−1(k), the iterative Equation (A2)
can be rearranged as

𝝋T(l )�̂�
[r+1]

= 𝝋T(l )[�̂�
[r ]
+ P(k)𝝍(k)] (A7)

y(l ) − 𝝋T(l )�̂�
[r+1]

= y(l ) − 𝝋T(l )[�̂�
[r ]
+ P(k)𝝍(k)] (A8)

ê[r+1](l ) = ê[r ] (l ) − 𝝋T(l )P(k)𝝍(k) (A9)

𝛾(l ) || ê[r+1](l ) || = 𝛾(l ) || ê[r ] (l ) − 𝝋T(l )P(k)𝝍(k) || (A10)

By summing over l on both sides of (A10), we get

k∑
l=1

𝛾(l ) || ê[r+1](l ) || = k∑
l=1

𝛾(l ) ||ê[r ] (l ) − 𝝋T(l )P(k)𝝍(k)||
(A11)

Let J [r ] = J (�̂�
[r ]

) be the value of the index (A1) computed in
the r-th iteration. Assuming that the values of ê[r ](l ) are always
non-zero (for l = 1 … k), we can rewrite Equation (A11) as
follows

J [r+1] =

k∑
l=1

𝛾(l ) || ê[r+1](l ) ||
=

k∑
l=1

√ |ê[r ] (l )|
𝛾−1(l )

||||||
ê[r ] (l ) − 𝝋T(l )P(k)𝝍(k)√

𝛾−1(l )|ê[r ] (l )|
|||||| (A12)

Let us now recall the Schwarz inequality, which for any
functions u(l) and w(l) gives

[
k∑

l=1

u(l )w(l )

]2

≤

[
k∑

l=1

u2(l )

] [
k∑

l=1

w2(l )

]
(A13)

Using (A12) and (A13), the square of J [r+1] takes the form

(J [r+1] )
2
=

⎡⎢⎢⎣
k∑

l=1

√|ê[r ] (l )|
𝛾−1(l )

||||||
ê[r ] (l ) − 𝝋T(l )P(k)𝝍(k)√

𝛾−1(l )|ê[r ] (l )|
||||||
⎤⎥⎥⎦

2

≤

⎧⎪⎨⎪⎩
k∑

l=1

⎡⎢⎢⎣
√|ê[r ](l )|

𝛾−1(l )

⎤⎥⎥⎦
2⎫⎪⎬⎪⎭

×

⎧⎪⎨⎪⎩
k∑

l=1

[
ê[r ] (l ) − 𝝋T(l )P(k)𝝍(k)√

𝛾−1(l )|ê[r ] (l )|
]2⎫⎪⎬⎪⎭

=

{
k∑

l=1

𝛾(l ) || ê[r ](l ) ||
}

×

{
k∑

l=1

𝛾(l )
[ê[r ] (l ) − 𝝋T(l )P(k)𝝍(k)]

2

|ê[r ] (l )|
}

= J [r ]
k∑

l=1

𝛾(l )
[ê[r ] (l )]

2

|ê[r ] (l )|
− 2J [r ]

[
k∑

l=1

𝛾(l )
ê[r ] (l )𝝋T(l )|ê[r ] (l )|

]
P(k)𝝍(k)

+ J [r ]
k∑

l=1

𝛾(l )
[𝝋T(l )P(k)𝝍(k)]

2

|ê[r ] (l )|
= J [r ]

k∑
l=1

𝛾(l ) || ê[r ] (l ) ||
− 2J [r ]

[
k∑

l=1

𝛾(l )
ê[r ] (l )𝝋(l )|ê[r ] (l )|

]T

P(k)𝝍(k)

+ J [r ]
k∑

l=1

𝛾(l )
[𝝍T(k)PT(k)𝝋(l )][𝝋T(l )P(k)𝝍(k)]|ê[r ] (l )|

= (J [r ] )
2
− 2J [r ]𝝍

T(k)P(k)𝝍(k)

+ J [r ]𝝍
T(k)PT(k)

[
k∑

l=1

𝛾(l )
𝝋(l )𝝋T(l )|ê[r ] (l )|

]
P(k)𝝍(k)

= (J [r ] )
2
− 2J [r ]𝝍

T(k)P(k)𝝍(k)

+ J [r ]𝝍
T(k)PT(k)P−1(k)P(k)𝝍(k)

= (J [r ] )
2
− 2J [r ]𝝍

T(k)P(k)𝝍(k)

+ J [r ]𝝍
T(k)P(k)𝝍(k)

= (J [r ] )
2
− J [r ]𝝍

T(k)P(k)𝝍(k) (A14)
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In the calculations above, the evident tautology and the
symmetry of the covariance matrix were used, that is,

𝝋T(l )P(k)𝝍(k) = 𝝍
T(k)PT(k)𝝋(l ) (A15)

PT(k) = P(k) = R−1(k) (A16)

As a result, we show that

(J [r+1] )
2
≤ (J [r ] )

2
− J [r ]𝝍

T(k)P(k)𝝍(k) (A17)

what is equivalent to

(J [r+1] )
2
− (J [r ] )

2
≤ −J [r ]𝝍

T(k)P(k)𝝍(k) (A18)

Finally, using (a2 − b2) = (a − b)(a + b), we get

J [r+1] − J [r ] ≤
−J [r ]

J [r+1] + J [r ]
𝝍

T(k)P(k)𝝍(k) (A19)

Conclusions: As shown in (A6), the information matrix
R(k) is positive definite, and therefore the matrix P(k) =
R−1(k) is also positive definite. Therefore, by definition,
𝝍

T(k)P(k)𝝍(k) > 0, provided the gradient ||ψ(k)|| ≠ 0. Of
course, since the index (A1) is positive (J [r ] > 0), inequality
(A19) is strict: J [r+1] − J [r ] < 0.

However, if the modulus of ψ(k) is zero (||ψ(k)|| = 0), the

iterative Equation (A2) leads to ||�̂�[r+1]|| = ||�̂�[r ]|| and there is
no further progress in iterative minimisation: J [r+1] = J [r ]. This
corresponds to the flat zone of (A1).

By definition, the convex LA criterion (A1) is lower bounded.
Since each decreasing and lower bounded sequence J [r ] (r= 0, 1,
…) is convergent, we conclude that the iterative method (A2)–
(A5) minimises (A1).

Importantly, the iterative LA method converges also in the
case of the weighing mechanism γ(l) used in the indicator (A1),
as long as the appropriate weighing sequence (not only in the
popular version with the exponential profile 𝜆k−l ) meets the
condition γ(l) > 0.

Remark: It should be noted that in the presented reasoning
all values of the prediction error ê[r ] (l ), for l = 1 … k, were
assumed as non-zero. This is necessary because the calculation
of R(k) and ψ(k) involves dividing by the absolute value of this
error.

Therefore, to avoid the numerical problem of small divisors,
the values of |ê[r ] (l )| close to zero should be replaced by a fixed
positive value emin, which functions also as a threshold in the
estimation algorithm.

APPENDIX B: LA quality criterion analysis

The quality index LA (6) can be a unimodal function (with a
unique minimum) or a multimodal function with a flat zone. To
illustrate these cases, we consider the data collected in Tables B1
and B2.

TABLE B1 1D linear regression measurement data leading to the LA
functional with a unique minimum.

l 1 2 3

𝜙(l) 1.0 1.5 2.0

y(l) 1.4 3.5 6.5

TABLE B2 1D linear regression measurement data leading to the LA
functional with a flat zone.

l 1 2 3

𝜙(l) 1.0 1.5 2.5

y(l) 1.2 3.5 7.5

FIGURE B1 Construction of the LA functional in 1D with a unique
minimum based on the data in Table B1.

FIGURE B2 Construction of the waveform of the LA indicator with a
1D flat zone based on data from Table B2.
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FIGURE B3 Creation of the LA indicator in 2D according to data from
Table B3: (a) the resulting shape of the criterion J and (b) a selected single
‘angle bar’ representing a partial J1.

The LA criterion (6) is given by the sum of the absolute value
terms |y(l ) − 𝜙(l )𝜃|, where l= 1, 2, 3. The final piecewise-linear
functional (Figure B1a) is formed as a composition of ingredi-
ents or members (Figure B1b), which are absolute values. This
gives us a unique minimum for 𝜃 as �̂� =y(2)/𝜙(2) ≈ 2.33.

In the second case, shown in Figure B2 and based on the
measurement data from Table B2, a flat zone has been shaped in
the range of the searched parameter �̂� ∈ [y(2)∕𝜙(2), y(3)∕𝜙(3)],
exactly �̂� ∈ [2.33, 3].

Note that in the case of the one-variable criterion (6), the
coordinates of the kink points are determined as y(k)/𝜙(k),
while the slopes of the single LA components |y(l ) − 𝜙(l )𝜃| are
±𝜙(k), as shown in Figures B1b and B2b.

TABLE B3 Measurement data used in the identification of a
two-parameter (2D) model (16)–(18).

l 1 2 3

𝝋T(l) [–0.1 1.1] [–1.2 0.2] [–0.4 –0.3]

y(l) 1.0 1.5 0.5

Thus, the slopes of the segments of the piecewise-linear
functions LA (Figures B1a and B2a) result from a simple accu-
mulation of all components ±𝜙(k). Taking into account the
data from Table B2, the inclinations of subsequent segments
are determined as follows:
−1−1.5−2.5 = −5, 1−1.5−2.5 = −3, 1+1.5−2.5 = 0,

1+1.5+2.5 = 5.
The third slope is equal to zero, which is still a realistic case

of a flat minimum (Figure B2a) of criterion (6). Such an event
can easily occur in finite precision calculations.

It is worth mentioning that the demonstrated compensa-
tion effect (zero slope) is typical for DACs using the first-order
interpolation.

Samples of selected effects of the LA criterion (28) are shown
in Figure B3. The regression vector (17) has two coordinates
(2D) and the measurement data are given in Table B3. The
individual components |y(l ) − 𝝋T(l )𝜽|, l = 1, 2, 3, are rep-
resented by ‘angle bars’ as shown in Figure B3b, considering
only the first column of data in Table B3. In this case (J1),
due to the dominance of the second coordinate of the regres-
sion vector, the partial criterion J1 depends mainly on the
second coordinate (with its optimum at 𝜃2 = 1/1.1 = 0.91).
Whereas the resulting LA criterion J of a ‘piecewise-planar’
form for the three observations (l = 1, 2, 3), is shown in
Figure B3a.
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