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Abstract—The most popular method for optimizing a cer-
tain strategy based on a reward is Reinforcement Learning
(RL). Lately, a big challenge for this technique are computer
games such as StarCraft II which is a real-time strategy game,
created by Blizzard. The main idea of this game is to fight
between agents and control objects on the battlefield in order to
defeat the enemy. This work concerns creating an autonomous
bot using reinforced learning, in particular, the Q-Learning
algorithm for playing StarCraft. JamesBot consists of three
parts. State Manager processes relevant information from the
environment. Decision Manager consists of a table implemen-
tation of the Q-Learning algorithm, which assigns actions to
states, and the epsilon-greedy strategy, which determines the
behavior of the bot. In turn, Action Manager is responsible for
executing commands. Testing bots involves fighting the default
(simple) agent built into the game. Although JamesBot played
better than the default (random) agent, it failed to gain the
ability to defeat the opponent. The obtained results, however,
are quite promising in terms of the possibilities of further
development.

Index Terms—machine learning, reinforcement learning, Q-
Learning, StarCraft II.

I. Introduction

„Reinforcement learning is learning what to do – how to
map situations to actions – so as to maximize a numerical
reward signal” [1]. The main goal of the reinforced learning
(RL) algorithms is to find the optimal strategy for a
certain environment. Algorithms of this type allow for
indirect programming of agents - teaching them on the
basis of actions and observations. Reinforcement learning
is successfully used in solving many practical problems,
such as: drone control, face evolution in the image, or
stock trading [2]–[4].

StarCraft II: Wings of Liberty, also briefly referred
to as SC2 (along with two additional extensions), is a
computer game released by Blizzard Entertainment in
2010, belonging to the genre called Real-Time Strategy
(RTS). In addition to strategic and tactical elements,
it also contains agility mechanisms. The game itself is
very popular all over the world, mainly due to the
interesting competition and a long history. There are even
international tournaments in Starcraft II, in which a
great number of players from all over the world take part
(although the winners are mostly Koreans).

Currently, the largest SC2 championships are held
during the Intel Extreme Masters 2019 in Katowice.

II. State of the art

Along with the progress of artificial intelligence, in
addition to human players, an important part of the
environment associated with StarCraft become virtual
intelligent agents (called bots). Every year there are
competitions in which several dozen bots take part in order
to choose the best ones [5].

Until now, the best results have been achieved by
scripting bots that implement the strategy planned by the
programmer. However, this method is less and less used
due to new developments in the context of learning with
reinforcement [6]. The examples listed below characterize
the development trends of intelligent bots playing SC2
based on reinforcement learning.

A. Baseline Reinforcement Learning Agents

In [7] the company DeepMind described its experience
in the study of intelligent agents. To this end, they
created their own environment StarCraft II Learning
Environment [8]. In their tests they used many available
bot architectures, e.g. Atari-net Agent – an agent who
played on the Atari 2600 console, among others [9].
The research led to the conclusion that „the current
best artificial StarCraft bots, based on the built-in AI
or research on previous environments, can be defeated by
even amateur players” [7]. However, since then, a new,
more breakthrough architecture of bots has been created.

B. TStarBots

One of the more successful implementations is the bot
called TStarBot1 [10], which also uses RL algorithms.
However, instead of providing an agent with a whole set of
states and actions (as in classic RL techniques), they are
stored in the form of properly prepared macros. Macros
representing actions usually consist of several commands.
Thanks to this, the action space is much smaller, although
each of the macros/actions still has its significant impact
on the game. The states in this space can be defined in a
vector or scalar way.
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TStarBot1 uses techniques called Dueling Double Deep
Q-Learning and Proximal Policy Optimization, which
implement reinforced learning. In tests, the bot reached
100% win with a weak opponent built into the game and
81% with the strongest.

C. AlphaStar

The most advanced example of a StarCraft bot is Al-
phaStar, also created by DeepMind. Alphastar is „the first
Artificial Intelligence to defeat a top professional player,
in a series of test matches held on 19 December. AlphaStar
decisively beat Team Liquid’s Grzegorz ‘MaNa’ Komincz,
one of the world’s strongest professional StarCraft players,
5-0” [11]. This bot is a milestone and a huge breakthrough
in the domain of artificial intelligence.

Earlier, despite the successes of AI against other bots,
human opponents were beyond their reach. The bot’s
architecture is based on deep neural networks and rein-
forcement learning. AlphaStar has extensive experience in
playing SC2 obtained by repeating human games and self-
struggle, which can be estimated at 200 years in terms of
duration of conducted test games.

III. Q-Learning Algorithm

The agent environment can be described in the form
of the Markov Decision Process (MDP), containing sets
of states, actions, transitions between states and their
expected rewards [12]. Such a description fulfills the
requirements of the Markov process, which says that the
future state depends only on the current state [13]. In
this case, the main purpose of RL is to find the optimal
strategy for a given MDP.

An important element of this process is the reward
function Qπ(S,A) = Q(S,A) which tells us about the
expected reward value. This function depends on the
current state S and the action A selected by the agent
that relies on the specified strategy π.

The Q-Learning algorithm is one way to specify the
reward function Q(S,A).

After initializing the state (S0) and the action (A0), an
example of a single iteration of such an algorithm may
look like this:

1) at the time t, the agent in the state St executes the
selected action At based on the adopted strategy π,

2) at the next moment t+ 1, the agent receives a new
environment state St+1 and reward Rt+1 for the
previously performed action,

3) then the reward function Q(S,A) is updated accord-
ing to the following rules:

Q(St, At)← Q(St, At) + α(Rt+1 + ∆Q), (1)

where α is a learning rate, ∆Q describes the increase
in the function Q by the specified discount factor,
or prediction rate, γ [1]:

∆Q = γmax
A

(Q(St+1, A))−Q(St, At), (2)

4) return to step 1 to implement the updated strategy
expressed by the new value of Q(S,A).

With the play of episodes that are a finite sequence in
the MDP, the value of Q(S,A) should coincide with the
desired value, i.e. the agent’s strategy should approach the
optimal one.

IV. JamesBot architecture

The computer environment in which the bot was imple-
mented consists of the Python programming language with
the PySC2 library, i.e. the previously mentioned StarCraft
II Learning Environment.

The bot was designed in form of isolated ele-
ments/subsystems that fulfill separate functions:

1) State Manager (SM) processes input data,
2) Decision Manager (DM) selects the action based on

the state S and the function Q(S,A), which evolves
during learning,

3) Action Manager (AM) processes the decisions taken
in DM for environmentally understandable actions
PySC2.

This hierarchy clearly indicates the separate stages of
the operation of the entire system. In the beginning, the
environment (SC2) performs its algorithm (the default
operation of the game) and then transfers control to
the agent. In addition, two conditions are checked. First,
whether the environment has reached its final state, i.e. all
bot operations have already been completed. The second
condition: checking whether the bot performs the selected
action – meaning the need to pass the control to AM, and
if not – transferring control to the MS.

In the situation where the bot does not perform any
action, the observation obtained from the environment
goes to the SM module. Then the information processed
by this subsystem goes to the DM, which implements the
RL algorithm, i.e. it updates the function Q(S,A) and
selects a new action.

The optimally selected action is further carried out by
AM, and the orders (in the form intelligible to the API) are
sent to the environment. Connections between subsystems
and the flow of control logic are illustrated in Fig. 1.

A. State Manager (SM)

The task of SM is to retrieve information from the
environment and its further processing. It is a subsystem
intended for the analysis of observations sent by PySC2.
To reduce the analyzed data space, the number of envi-
ronmental variables was limited. The following variables
affect the bot’s status:

• number of barracks, supply depots, command centers,
workers (SCV),

• the value of supplies consumed by combat units,
• positions of own and enemy objects.
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Fig. 1: Block diagram describing the flow of control logic between the agent subsystems: the red blocks indicate the
beginning and end of the activity, the green blocks – the bot subsystems, and the orange diamonds are predictors
(conditional blocks).

On the basis of information received from the environment,
the SM module determines which activities are impossible
to perform (for example due to resource requirements).
In this way, the list of available actions is dynamically
modified during the operation of the bot. Note that in
a similar way (with gain controlled/programmed by a
scheduling variable) when modeling the brain, its resources
can be controlled by a suitably selected variable or state
that represents the concept of emotion [14]–[18].

B. Decision Manager (DM)

Decision Manager is based on the Q-Learning algorithm
and the ε-greedy strategy. Implemented here is a table
version of the Q-Learning algorithm, in which each action-
state pair is assigned the appropriate reward value in a
matrix representing the function Q(S,A).

This approach has two advantages: simplicity of imple-
mentation and speed of operation. On the other hand,
the representation used here is quite demanding in terms
of memory and has an obvious limitation when there are
continuous-time elements. The ε-greedy strategy is based
on the principle that a random action is selected with
a certain low probability ε, otherwise (that is with the
probalibity 1 − ε) – the best action is taken. Such a
mechanism ensures a higher level of stochastic exploration
of the environment.

C. Action Manager (AM)

Like SM, Action Manager aims to separate the decision
element from the game environment. The main task of
such a separator (interface) is to serve the implementation
of actions selected by the bot. The main function of AM
is sending the order directly to the game environment.

From the point of view of the decision-making sub-
system (DM), possible actions are abstract (at the meta

level), e.g. ‘build barracks’ or ‘train a unit’. In fact, such
activities are more complex and consist of many orders
and decisions. For example, questions arise: which worker
should build barracks, where to place the building, etc.

Therefore, the AM module, limiting the decision man-
ager’s workspace, processes the abstract actions provided
to him in order to obtain detailed instructions under-
standable for the SC2 game environment. Among the pre-
designed and implemented actions, the following can be
distinguished:

• building barracks and supply depots,
• training combat units (Marines) and workers (SCV),
• attacking the selected positions.

In addition, the possibility of skipping or resigning from
the action execution has also been implemented.

V. Tests

A number of tests were carried out for the analysis of
the JamesBot’s learning process and effectiveness. Each of
them consisted of a number of multiplayer games. It was
decided on the typical kind of game that is used in classic
e-games – „one on one”, i.e. the bot against its opponent.
In terms of concept and difficulty, this is the simplest form
of gameplay.

In this game the battlefield was a map, known as
Simple64. The simple bot built into SC2 representing a
random race was chosen as the agent’s opponent. On the
other hand, the JamesBot itself represented a previously
determined race, Terrans – meaning people using advanced
robotics achievements. Additionally, for comparative pur-
poses, a random bot was also implemented.
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A. Basic assumptions

To further simplify the computing concept of JamesBot,
limitations such as the number of buildings, warehouses,
barracks, SCVs and other parameters, like APM (Actions
Per Minute), were introduced. The limitation of APM
is primarily aimed at maintaining the reality of human
behavior. The applied types of constraints used and their
values can be found in tab. I. The last unknown, re-

TABLE I: JamesBot limitation parameters applied in the
tests.

Bot SCV buildings barracks supply APM
Random 20 6 2 4 62JamesBot 8 6

quiring determination are the parameters of reinforcement
learning. As the bot uses the Q-Learning algorithm along
with the ε-greedy strategy, the parameters such as: the
learning factor α, the discount coefficient γ, the coefficient
of randomness ε and the reward value R remain to be
specified. The values of the above-mentioned parameters
are summarized in tab. II.

TABLE II: The RL and DM parameters of JamesBot used
in tests.

α γ ε Rstep Rwin Rdraw Rloss

0.01 0.9 0.1 -1 50000 0 -50000

B. Results

The random bot’s gameplay consisted of choosing each
action with equal probability regardless of what was
happening on the battlefield (actions were the same like in
the case of JamesBot). The graphs are presented in Fig. 2.
The random bot was not able to achieve the winnings,
and due to the simplicity of its strategy, it managed to
get about 20% of draws to 80% of losers (losses). The
test games ended after about 200 episodes, when the
effectiveness of the bot stopped changing.

The performance quality indicators of the developed
autonomous agent JamesBot are shown in Fig. 3. Clearly,
they go above the level of effectiveness of the random bot.
The increasing rewards of JamesBot can be observed in
Fig. 3a. Between 1200 and 1400 episode it can be observed
that the bot kept its effectiveness at the level near 45%. For
the last 100 games JamesBot has achieved 33% winnings,
21% draws and 46% losses. Its learning process ended after
a period of 2000 episodes.
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Fig. 2: Statistics of random bot; winnings (blue), draws
(orange), losses (green).

In order to determine the overall assessment of the
effectiveness of the bot, the following winning indicator
(achievement of victory) was introduced:

J =
3 ∗W + 1 ∗D + 0 ∗ L

3
(3)

where W – wins [%], D - draws [%], a L - losses [%]. The
list of the measured partial parameters of the quality of
the JamesBot along with the winning indicator of bots
(J) is presented in tab. III.

TABLE III: List of performance parameters derived from
the last 100 games of the two bots.

Bot Wins [%] Draws [%] Losses [%] J [%]
Random 0 20 80 6.7
JamesBot 33 21 46 40

VI. Conclusions

Thanks to the use of the Q-learning technique, the
developed and implemented JamesBot was able to gain
an advantage over a fairly simple random bot and a
good absolute result in terms of achieved performance
representing winning skill (40%).

It should be noted that the presented solution of the
agent decision system is not too complicated, therefore its
actions can be easily interpreted by a human (in contrast
to applications based on deep neural networks).

With the current state of the art, the Q-learning
method is quite easy to implement in various programming
languages. It has a low demand for resources (it does
not require high computing power as opposed to neural
networks), with the exception of large memory usage.
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(a) The reward from the last 100 games.
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(b) Wins (blue), draws (orange), losses (green) from the last
100 games.

Fig. 3: JamesBot results.

What’s more, it’s easy to interpret the State-Action
Matrix from which the agent derives action. The elements
of this matrix contain values corresponding to state-action
pairs, where the higher the value, the more appropriate is
the given action for a given state (from the perspective of
the agent’s strategy). Thanks to this, you can, for example,
determine the trajectory of this value to see the evolution
of the decision making process by the agent. Such a result
can not be obtained using neural networks.

The presented method does not work very well (in terms
of repeatability, for example) due to the high degree of
randomness in the applied bot solution on the one hand
and the relatively high complexity of the considered game
problem on the other hand.

The main intention of this work was at least to beat a
completely random bot. This goal has been achieved. In
addition, it turned out that the use of Q-Learning to solve

even such a complex game problem seems promising.
Analyzing the possible sources of the agent’s imperfec-

tions, we can mention three elements that could affect
unsatisfactory results. The first source can be the imple-
mentation of the Q-Learning algorithm. The state-action
matrix method works well in simple environments where
the number of states and actions is small [1].

In the applied algorithm (in the context of the SC2
game), a better solution might be to use a neural network
estimating the Q(S,A) function values. This method is
called Deep Q-Network (DQN) [19]. We can also benefit
from a more sophisticated approach, such as described in
[20], which uses multiple networks DQN.

In addition, frequent updates of the function Q(S,A)
can cause a phenomenon when unnecessary/inappropriate
actions are also rewarded and the size of the reward does
not approach the optimal value. A possible solution to
this problem may be rarer updates of the reward function
– only in the most important moments of the game, such
as winning a battle or reaching the SCV limit.

The cause of the imperfections can also be attributed
to an insufficient set of actions, states and rewards. A
larger number of actions to choose from would help
improve the system’s functionality. You can also use well-
chosen information from the battlefield to build a better
strategy. The principle of sporadic rewarding (with small
values) may allow the bot to learn tactics more freely.
Obtaining significant rewards at the end of each episode
slows the bot’s learning. System rewards, depending on
the condition of the army, the size of resources and overall
success on the battlefield, should be more beneficial from
the point of view of the ultimate goal of the game.
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