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Abstract: We present a software package JMATRIX1, consisting of two computer codes written
in FORTRAN 95 and parallelized with OpenMP, implementing the so-called J-matrix method,
applied to elastic scattering of electrons on the radial potential, vanishing faster than the
Coulomb potential. In the J-matrix method, the physical scattering problem is replaced by
using a well-defined model which is solved analytically. The presented software implements both
non-relativistic and relativistic versions of the method, and allows calculations of scattering
phase shifts as well as cross sections, in cases when the scattering potential is given through an
analytical formula.

We performed test calculations for the scattering potential modeled as a truncated
Coulomb potential. We show that the numerical phase shifts to converge as we increase the
size of the basis used to truncate the scattering potential, and that the method is suitable for
calculating the total differential momentum transfer and spin polarization cross sections, using
the partial-wave analysis.
Keywords: J-matrix method, relativistic, electron elastic scattering, phase shifts, Dirac par-
tial-waves analysis, differential, total, momentum transfer, spin polarization cross sections
DOI: https://doi.org/10.17466/tq2017/21.1/c

1. Introduction
The J-matrix method is an algebraic method in the quantum scattering

theory. A non-relativistic version of the method was introduced in 1974 by Heller
and Yamani [1, 2] and developed by Yamani and Fishman [3] a year after. The
relativistic version was introduced by Horodecki [4] and the extended version by

1. Available from: http://jmatrix.sylas.info/
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Alhaidari et al. [5]. The method is based on the fact that the radial kinetic energy
operator is tridiagonal in some suitable basis (such as the Gaussian, Laguerre or
oscillator basis set). The scattering potential (vanishing faster than the Coulomb
potential) is truncated in 𝑁 elements of the selected basis. Then, using some
algebraic methods, one can find a formula for the tangent of the approximated
phase shift (tan𝛿𝑁). We expect that for 𝑁 → ∞, this approximate value converges
to the exact value, tan𝛿.

The main goal of the present work was to implement and illustrate the
application of the relativistic version of the J-matrix method, but the non-rela-
tivistic version was implemented, as well. The very first calculations using the
early version of the program were presented in [6], but since that time the code
has been significantly improved. In the current version, scattering potentials can
be easily modeled as the square-well potential, the truncated Coulomb potential,
the Yukawa potential, or may be given by any analytical formula. At the present
time, the program calculates phase shifts for different angular quantum numbers
and a range of energies. Then, a standard partial-wave analysis is used to obtain
cross sections.

The package JMATRIX is split into two separate codes, sharing some
numerical libraries. The first code, called JMATRIX-CONV, allows tracking the
convergence of numerical phase shifts, while increasing the basis size. It may
be useful to find the optimal basis size for a specific system, as a compromise
between accuracy and computational time. The maximum basis size, 𝑁, is limited
to 5000.

The second code, JMATRIX-CS, calculates the total differential momentum
transfer and spin-polarization cross-sections using the partial waves analysis.
Specific properties of the J-matrix method allow calculating phase shifts for many
projectile energies with relatively small computational time. This feature was
utilized in both codes. As the computational complexity is proportional to 𝑁4,
the calculations for 𝑁 = 1000 and higher may take several hours, especially in the
relativistic case.

The package is distributed as open source and is freely available at
http://jmatrix.sylas.info as a gzipped tar or 7-zip file.

2. Theoretical method
Our task is to find an approximate solution of the scattering problem on the

radial potential 𝑉 = 𝑉 (𝑟) vanishing in infinity faster than the Coulomb potential.
In this section we give a rather short review of the J-matrix theory of scattering
only, nevertheless it should be sufficient for understanding the main idea of the
method. A detailed description of the method can be found in [1–7]. We use
atomic units in all equations.
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2.1. Relativistic J-matrix method
Let us start with the Dirac equation:

(𝐻0 − 𝐸
𝑐ℏ

+ 𝑉
𝑐ℏ

)Ψ(𝑟) ≡ (
𝑚𝑐2−𝐸+𝑉

𝑐ℏ − 𝑑
𝑑𝑟 + 𝜅

𝑟
𝑑
𝑑𝑟 + 𝜅

𝑟
−𝑚𝑐2−𝐸+𝑉

𝑐ℏ

)Ψ(𝑟) = (0
0) (1)

where 𝑉 = 𝑉 (𝑟) is the scattering potential mentioned before, 𝐸 is the total energy
of the projectile. Here, Ψ = Ψ(𝑟) is the relativistic wave function, satisfying the
following asymptotic condition:

Ψ(𝑟)
𝑟→∞
→→→→→→ sin(𝑘𝑟− 𝜋𝑙

2
)+tan𝛿cos(𝑘𝑟− 𝜋𝑙

2
) (2)

where 𝛿 is the relativistic phase shift, 𝑙 is the angular momentum of the projectile,
𝜅 = −𝑙−1 or 𝜅 = 𝑙, and 𝑘 ≡ √(𝐸 −𝑚𝑐2)(𝐸 +𝑚𝑐2)/𝑐ℏ.

Let us choose the basis set [4]:

Φ+
𝑛 (𝑟) ≡ (𝜙𝑙

𝑛 (𝜆𝑟)
0 ) (3)

Φ−
𝑛 (𝑟) ≡ ( 0

𝜓𝑙
𝑛 (𝜆𝑟)), 𝜓𝑙

𝑛 (𝜆𝑟) = (𝜅
𝑟

+ 𝑑
𝑑𝑟

)𝜙𝑙
𝑛 (𝜆𝑟) (4)

The most popular choice of basis functions {𝜙𝑙
𝑛} is the complete oscillatory

basis set. The other popular basis sets are the Laguerre and Gaussian ba-
ses. For the latter cases, functions 𝜙𝑙

𝑛 are biorthonormal, so that ⟨𝜙𝑙
𝑚 ∣ 𝜙𝑙

𝑛⟩ ≡
∞
∫
0

𝜙𝑙
𝑚 (𝜆𝑟)𝜙𝑙

𝑛 (𝜆𝑟)𝑑𝑟 = 𝛿𝑚𝑛. Elements of oscillatory, Laguerre and Gaussian basis

sets are collected in Table 1.
In such defined bases, the term

𝐽𝑠𝑠′

𝑚𝑛 ≡ ⟨Φ𝑠
𝑚 ∣ (𝐻0 − 𝐸

𝑐ℏ
)Φ𝑠

𝑛⟩, 𝑠, 𝑠′ = ±, 𝑚, 𝑛 = 0,1,… (5)

gives the tridiagonal form (Jacobi matrix). These so called J-matrix elements 𝐽𝑠𝑠′

𝑚𝑛
can be written as

𝐽𝑚𝑛 = ⎛⎜
⎝

−𝑘𝜖⟨𝜙𝑙
𝑚 ∣ 𝜙𝑙

𝑛⟩ ⟨𝜓𝑙
𝑚 ∣ 𝜓𝑙

𝑛⟩

⟨𝜓𝑙
𝑚 ∣ 𝜓𝑙

𝑛⟩ − 𝑘
𝜖 ⟨𝜓𝑙

𝑚 ∣ 𝜓𝑙
𝑛⟩

⎞⎟
⎠𝑠𝑠′

(6)

where 𝜖 ≡ √ 𝐸−𝑚𝑐2

𝐸+𝑚𝑐2 . Now, the J-matrix elements can be easily calculated (see [4]
for details).

To ensure proper asymptotic behavior, we introduce sine- and cosine-like
solutions of equation:

(𝐻0 − 𝐸
𝑐ℏ

)Ψ𝑈 = (Ω𝑈𝜙𝑙
0

0
), Ω𝑆 = 0, Ω𝐶 = − 𝜖

𝑠𝑙
0

(7)
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Table 1. Elements of Laguerre, Gaussian (biorthonormal) and oscillator (complete) basis set
and elements of expansion of sine-like and cosine-like solutions; 𝐿(𝛼)

𝑛 and 𝐶(𝛼)
𝑛 are

Laguerre and Gegenbauer polynomials, respectively; 2𝐹1 and 1𝐹1 are
hypergeometric functions, 𝜆 > 0 is a scaling parameter (𝜆 ≠ 0.5)

Laguerre basis

𝜙𝑙
𝑛 (𝜆𝑟)𝑙+1 exp(− 𝜆𝑟

2 )𝐿(2𝑙+1)
𝑛 (𝜆𝑟)

̄𝜙𝑙
𝑛

𝑛!
𝜆2Γ(𝑛+2𝑙+2)

1
𝑟 𝜙𝑙

𝑛(𝜆𝑟)

𝑠𝑙
𝑛

2𝑙Γ(𝑙+1)𝑛!(sin𝜃)𝑙+1

Γ(𝑛+2𝑙+2) 𝐶(𝑙+1)
𝑛 (cos𝜃)

𝑐𝑙
𝑛

−2𝑙Γ(𝑙+ 1
2 )𝑛!√

𝜋Γ(𝑛+2𝑙+2)(sin𝜃)𝑙 2𝐹1 (−𝑛−2𝑙−1,𝑛+1, 1
2 −𝑙; sin2( 𝜃

2 )), sin𝜃 ≡ 𝑘𝜆−1

𝑘2𝜆−2+ 1
4

Gaussian basis

𝜙𝑙
𝑛 (𝜆𝑟)𝑙+1 exp(− 𝜆2𝑟2

2 )𝐿(𝑙+ 1
2 )

𝑛 (𝜆2𝑟2)

̄𝜙𝑙
𝑛

2𝑛!
𝜆2Γ(𝑛+𝑙+ 3

2 ) 𝜙𝑙
𝑛(𝜆𝑟)

𝑠𝑙
𝑛

√
2𝜋𝑛!(−1)𝑛

Γ(𝑛+𝑙+ 3
2 ) exp(− 𝜂2

2 )𝜂𝑙+1𝐿(𝑙+ 1
2 )

𝑛 (𝜂2)

𝑐𝑙
𝑛

√ 2
𝜋 Γ(𝑙+ 1

2 )(−1)𝑛𝑛!
Γ(𝑛+𝑙+ 3

2 ) exp(− 𝜂2

2 )𝜂−𝑙
1𝐹1 (−𝑛−𝑙− 1

2 , 1
2 −𝑙; 𝜂2), 𝜂 ≡ 𝑘

𝜆

Oscillator basis

𝜙𝑙
𝑛 𝑟(−1)𝑛 √ 2𝑛!𝜆3

Γ(𝑛+𝑙+3/2) (𝜆𝑟)𝑙 exp(− 𝜆2𝑟2

2 )𝐿(𝑙+1/2)
𝑛 (𝜆2𝑟2)

𝑠𝑙
𝑛 √ 𝜋𝑛!

𝜆𝑘Γ(𝑛+𝑙+ 3
2 ) ( 𝑘

𝜆 )
𝑙+1

exp(− 𝑘2

2𝜆2 )𝐿(𝑙+ 1
2 )

𝑛 ( 𝑘2

𝜆2 )

𝑐𝑙
𝑛

−1𝑙

Γ(−𝑙+ 1
2 ) √ 𝜋𝑛!

𝜆𝑘Γ(𝑛+𝑙+ 3
2 ) ( 𝑘

𝜆 )
−𝑙

exp(− 𝑘2

2𝜆2 ) 1𝐻1 (−𝑛−𝑙− 1
2 , 1

2 −𝑙, 𝑘2

𝜆2 )

In the above, the indices 𝑈,𝐶 correspond to sine- and cosine-like solutions. The
solutions, expanded in the selected basis, are as follows:

𝑈(𝑘,𝑟) =
∞

∑
𝑛=0

𝑢𝑙
𝑛 (𝑘)(

𝜙𝑙
𝑛

𝜖
𝜅 𝜓𝑙

𝑛
), 𝑈 = 𝑆,𝐶, 𝑢 = 𝑠,𝑐 (8)

Now, the following recursive relations are fulfilled:
∞

∑
𝑛=0

𝐽𝑚𝑛𝑠𝑙
𝑛 = 0 (9)

∞
∑
𝑛=0

𝐽𝑚𝑛𝑐𝑙
𝑛 = − 𝑘

2𝑠𝑙
0

�̄�𝑙
0 (10)

𝐽00𝑠𝑙
0 +𝐽01𝑠𝑙

1 = 0, 𝐽00𝑐𝑙
0 +𝐽01𝑐𝑙

1 = − 𝑘
2𝑠𝑙

0
(11)

𝐽𝑛,𝑛−1𝑢𝑙
𝑛−1 +𝐽𝑛,𝑛𝑢𝑙

𝑛 +𝐽𝑛,𝑛+1𝑢𝑙
𝑛+1 = 0; 𝑢 = 𝑠,𝑐; 𝑛 > 1 (12)

The elements 𝑠𝑙
𝑛 and 𝑐𝑙

𝑛 can be found using the above recursive relations. The
explicit forms of these coefficients are collected in Table 1.
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Let us now replace this scattering potential by a truncated potential
operator:

𝑉 𝑁
𝑚𝑛 = (

⟨𝜙𝑙
𝑚 ∣ 𝑉 /𝑐ℏ𝜙𝑙

𝑛⟩ 0
0 ⟨𝜓𝑙

𝑚 ∣ 𝑉 /𝑐ℏ𝜓𝑙
𝑛⟩

), 𝑚,𝑛 = 0,1,…,𝑁 −1 (13)

Hence, the scattering equation has the following form:

(𝐻0 − 𝐸
𝑐ℏ

+𝑉 𝑁)Ψ𝑁 (𝑟) ≡ (0
0) (14)

with the expanded solution:

Ψ𝑁 =
𝑁−1
∑
𝑚=0

(
𝑑+

𝑚𝜙𝑙
𝑚

𝑑−
𝑚

𝜖
𝑘 𝜓𝑙

𝑚
)+

∞
∑

𝑚=𝑁
(

(𝑠+
𝑚 +𝑡𝑔𝛿𝑁𝑐+

𝑚)𝜙𝑙
𝑚

(𝑠−
𝑚 +𝑡𝑔𝛿𝑁𝑐−

𝑚)𝜓𝑙
𝑚

). (15)

Equations for 𝑚 > 𝑁 are automatically fulfilled. Solving the remaining equations,
one can find the tangent to the approximated phase shift:

tan𝛿𝑁,𝑙 = −
𝑠𝑙

𝑁−1 (𝑘)+ 2𝜖
𝑘 𝐺++

𝑁−1,𝑁−1 (𝐸)J𝑁,𝑁−1 (𝑘)𝑠𝑙
𝑁 (𝑘)

𝑐𝑙
𝑁−1 (𝑘)+ 2𝜖

𝑘 𝐺++
𝑁−1,𝑁−1 (𝐸)J𝑁,𝑁−1 (𝑘)𝑐𝑙

𝑁 (𝑘)
(16)

where 𝐺𝑠𝑠′

𝑚𝑛 (𝐸) = ∑
𝑝=±

𝑁−1
∑
𝑖=0

𝑐ℏ Γ𝑠𝑝
𝑚𝑖Γ𝑠′𝑝

𝑛𝑖
𝐸𝑝

𝑖 −𝐸 , and (Γ†𝑃 †
𝑁 (𝐻0 + 𝑉

𝑐ℏ − 𝐸
𝑐ℏ )𝑃𝑁Γ)

𝑠𝑠′

𝑚𝑛
= 1

𝑐ℏ (𝐸𝑠
𝑛 −

𝐸)𝛿𝑛𝑚𝛿𝑠𝑠′ . Matrix 𝐺 can be viewed as the matrix approximating the Green
function.

For 𝑁 → ∞, what is connected with a reduction in the inaccuracy in
approximating the scattering potential, tan𝛿𝑁,𝑙 should converge to the exact value
tan𝛿, and simultaneously, approximate 𝛿𝑁,𝑙 should approach the exact scattering
phase, 𝛿.

2.2. The non-relativistic J-matrix method
In the non-relativistic version of the J-matrix method we start from the

Schrodinger equation, by analogy to the relativistic case. Then, we replace the
scattering potential by a truncated potential operator:

𝑉 𝑁 = 𝑃 †
𝑁𝑉 𝑃𝑁, (17)

with the generalized projection operator

𝑃𝑁 =
𝑁−1
∑
𝑛=0

∣𝜙𝑙
𝑛⟩⟨𝜙𝑙

𝑛∣ (18)

Then, using expansion of the solution of the new problem in the basis {𝜙𝑙
𝑛},

one can find that the tangent of approximated phase shift is given by the following
formula, very similar to the relativistic case:

tan ̃𝛿𝑁,𝑙 = −
𝑠𝑙

𝑁−1(�̃�)+𝑔𝑁−1,𝑁−1(𝐸)𝐽𝑁,𝑁−1(�̃�)𝑠𝑙
𝑁(�̃�)

𝑐𝑙
𝑁−1(�̃�)+𝑔𝑁−1,𝑁−1(𝐸)𝐽𝑁,𝑁−1(�̃�)𝑐𝑙

𝑁(�̃�)
(19)
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where 𝑠𝑙
𝑛 and 𝑐𝑙

𝑛 are coefficients of sine-like and cosine-like solutions of the
following equation

(𝐻0 − �̃�2

2
)

∞
∑
𝑛=0

𝑢𝑙
𝑛𝜙𝑙

𝑛(𝜆𝑟) = Ω𝑢
̄𝜙𝑙
𝑛(𝜆𝑟); 𝑢 = 𝑠,𝑐; Ω𝑠 = 0; Ω𝑐 = − �̃�

2𝑠𝑙
0

(20)

Here, �̃� ≡ √ 2𝑀𝐸
ℏ2 is the wave number related to energy 𝐸 and mass 𝑀 of the

projectile.
We can choose the same basis functions {𝜙𝑙

𝑛} as in the relativistic case.
They, and the expansion coefficients 𝑠𝑙

𝑛 and 𝑐𝑙
𝑛, are collected in Table 1.

𝐽𝑁,𝑁−1 is an element of the following matrix

𝐽𝑚𝑛 ≡ ⟨𝜙𝑙
𝑚∣𝐻0 − �̃�2

2
∣𝜙𝑙

𝑛⟩ ≡ ⟨𝜙𝑙
𝑚∣− 1

2
d2

d𝑟2 + 𝑙(𝑙+1)
2𝑟2 − �̃�2

2
∣𝜙𝑙

𝑛⟩. (21)

In the above formulas, as in the relativistic case, 𝑁 is the quantity of base
functions 𝜙𝑙

𝑛 used to truncate the scattering potential. 𝑔𝑁−1,𝑁−1(𝐸) is a matrix
element of the inverse of the truncated operator 𝑃 †

𝑁 (𝐻0 +𝑉 𝑁 − �̃�2

2 )𝑃𝑁, restricted
to the 𝑁-dimensional space, where it does not vanish. Again, this matrix can be
viewed as a matrix approximating the Green function.

2.3. Relativistic cross sections
Once we have calculated the (relativistic) phase shifts for different angular

momenta 𝑙, we are ready to employ the partial-wave analysis, and calculate the
so called direct

𝑓(𝜗) = 1
2𝑖𝑘

∑
𝑙

{(𝑙+1)[exp(2𝑖𝛿+
𝑁,𝑙)−1]+𝑙[exp(2𝑖𝛿−

𝑁,𝑙)−1]}𝑃𝑙(cos𝜗) (22)

and spin-flip

𝑔(𝜗) = 1
2𝑖𝑘

∑
𝑙

[exp(2𝑖𝛿−
𝑁,𝑙)−exp(2𝑖𝛿+

𝑁,𝑙)]𝑃 1
𝑙 (cos𝜗) (23)

scattering amplitudes. Then, the differential 𝜎𝑑 and the spin polarization 𝜎𝑠𝑝 cross
sections may be written as

𝜎𝑑(𝜗) = |𝑓(𝜗)|2 +|𝑔(𝜗)|2, (24)

𝜎𝑠𝑝(𝜗) = 𝑖(𝑓(𝜗)𝑔∗(𝜗)−𝑓∗(𝜗)𝑔(𝜗))
𝜎𝑑(𝜗)

(25)

The momentum transfer 𝜎𝑚𝑡 and the total 𝜎𝑡 cross sections are defined as:

𝜎𝑚𝑡(𝐸) =4𝜋
𝑘2 ∑

𝑙
[(𝑙+1)(𝑙+2)

2𝑙+3
sin2(𝛿+

𝑁,𝑙 −𝛿+
𝑁,𝑙+1) 𝑙(𝑙+1)

2𝑙+1
sin2(𝛿−

𝑁,𝑙 −𝛿−
𝑁,𝑙+1)

+ (𝑙+1)(2𝑙+1)
2𝑙+3

sin2(𝛿+
𝑁,𝑙 −𝛿+

𝑁,𝑙+1)]
(26)

𝜎𝑡(𝐸) = 4𝜋
𝑘2 ∑

𝑙
[(𝑙+1)sin2 𝛿+

𝑁,𝑙 +𝑙sin2 𝛿−
𝑁,𝑙] (27)

In the above equations, 𝛿−
𝑁,𝑙 corresponds to the solution for 𝜅 = 𝑙, and 𝛿+

𝑁,𝑙 for
𝜅 = −𝑙−1.
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Non-relativistic formulas for the cross sections can be found elsewhere, e.g.
in [8].

3. Numerical computations with JMATRIX programs
3.1. A general view

We expect that for 𝑁 → ∞, the approximate relativistic phase shift 𝛿𝑁,𝑙

(16), or ̃𝛿𝑁,𝑙 in the non-relativistic case (19) converges to the exact value 𝛿 (or
̃𝛿). Hence, increasing the basis size 𝑁, we expect to obtain increasingly accurate

results. Having the numerical phase shifts calculated for the selected scattering
problem, we are able to use the partial-wave analysis to obtain differential, total,
momentum transfer and spin polarization cross sections.

The first program from the JMATRIX package, JMATRIX-CONV, is designed
to study the convergence, by systematic calculations of phase shifts for the
progressively increased basis size 𝑁 (e.g. 𝑁𝑠𝑡𝑎𝑟𝑡 = 1 ≤ 𝑁 ≤ 𝑁𝑒𝑛𝑑 = 1000), and the
chosen angular momentum (i.e. 𝑙 = 0, 𝜅 = −𝑙−1 = −1). Optionally, after the basis
size 𝑁 = 𝑁𝑒𝑛𝑑 is achieved (which is the most time-consuming part of calculations),
phase shifts are calculated for a series of projectile energies.

The second program, JMATRIX-CS, is able to calculate the cross sections
for a fixed basis size 𝑁, series of angular momenta (e.g. 𝑙 = 0,1,2 and equivalent
numbers 𝜅), and range of energies. The basis size should be chosen to be large
enough to keep the accuracy. A sufficient value of 𝑁 may be chosen by tracing
the convergence using the JMATRIX-CONV program.

In fact, both programs are rather similar to each other – they use similar
numerical methods and techniques described below, and share most of the code,
so they could be merged into one general tool, nonetheless, we have decided to
keep them separate. The main reason for that is the fact that the code has been
optimized in many ways for performance, and these optimizations are different
for both codes as they are designed for other purposes.

To find the phase shifts, the programs compute all the required mathema-
tical functions (such as the Gegenbauer and Laguerre polynomials, the hyperge-
ometric functions, the Bessel, spherical Bessel, Neumann and spherical Neumann
functions and their derivatives, the gamma function and more) to evaluate the
basis functions 𝜙𝑙

𝑛 and coefficients 𝑠𝑙
𝑛 and 𝑐𝑙

𝑛 (see Table 1). Then, the programs
truncate the scattering potential in the selected basis by numerical integration,
and form the matrix approximating the Green function. This matrix is construc-
ted as a sum of the matrix of elements of the truncated potential and elements of
the J-matrix. Then, programs inverse this matrix by diagonalization (using some
orthogonal matrix; in the present code this orthogonal matrix is chosen to be
a matrix of eigenvectors of the Green matrix), and finally, compute an approxi-
mate phase shift for a given number 𝑁.

Also, for testing purposes, an additional procedure has been written, to
calculate phase shifts using an analytical formula for potentials with a shape
of a square-well potential. Hence, in the case of the square-well potential, the
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numerical results obtained in J-matrix calculations can be directly compared to
results obtained using analytical formulas.

Most of the mathematical procedures and functions used in the program
have been written by the authors using the useful formulas and relations included
in [9] and [10]. Some procedures (for Bessel, Neumann and Gamma2 functions,
for numerical integration and for searching eigenvalues and eigenvectors of real,
symmetric matrix) have been taken from public Fortran 77 libraries.

In the relativistic case, most of the formulas are written as function of the
total energy of the projectile, 𝐸. For user convenience and for unification with the
non-relativistic case, we used a rescaled kinetic energy 𝐸 in our code, instead of
the total energy 𝐸. Due to this rescaling, the implemented formulas are slightly
different than written in section 2. In the non-relativistic case such rescaling is not
necessary, because in this case all formulas are written as function of the kinetic
energy from the beginning.

Three basis sets, Laguerre, Gaussian and oscillator, are implemented, but
in the current version of the codes the latter is available in the non-relativistic
calculations only.

Coefficients 𝑠𝑙
𝑛 and 𝑐𝑙

𝑛 for 𝑁 = 1 and 𝑁 = 2 were calculated using explicit
formulas (see Table 1), but for 𝑁 > 2, using three-term recursion relation (see [2])
to avoid numerical instabilities.

In the J-matrix method there are many integrals to be calculated, especially
in the relativistic case. As they are used to truncate the scattering potential (17),
their quantity is 𝑁 ×𝑁 in the non-relativistic case, and 2𝑁 ×2𝑁 in the relativistic
one. The calculation of these integrals is a major contribution to the computational
time. To minimize their quantity (and therefore the overall time of computations),
we apply several techniques, such as utilization of the J-matrix symmetry and
the scattering potential properties. Moreover, the integrals calculated during
the execution of the program are dumped to files, to be used in next runs
of the programs, when possible. The current integration method is the Double
Exponential (DE) transformation method [11].

Additionally, the JMATRIX-CS code implements formulas (22)–(27) (and
their non-relativistic analogues) to obtain cross sections.

3.2. Program structure and compilation
After unpacking the provided gzipped tar file, the following directory

structure will be created:
jmatrix
|
|--bin
| |--jmatrix-conv
| |--jmatrix-cs

2. Although gamma functions and its logarithm are included in many Fortran 95 compilers
as intrinsic functions, we decided to use an external library to retain the greatest compatibility.
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|
|--examples
| |--jmatrix-conv
| |--jmatrix-cs
|
|--src
|--jmatrix-conv
|--jmatrix-cs
|--lib

The subdirectories jmatrix/src/jmatrix-conv and jmatrix/src/jma-
trix-cs contain source files and Makefiles for the JMATRIX-CONV and JMA-
TRIX-CS programs, respectively, while common libraries are stored in the jma-
trix/src/lib. By analogy, the executables created during the compilation pro-
cess are placed, together with input and output files in the subdirectories jma-
trix/bin/jmatrix-*, and example input and test run output files are stored in
the jmatrix/examples/jmatrix-* subdirectories.

For clarity, source codes have been split into several files. Every file contains
a code responsible for a specific task, e.g. the procedures included in the file
jm specfun.f95 calculate the required special functions, jm v.f95 truncates the
scattering potential, jm analytic.f95 calculates the analytical value of the phase
shift in case of the square-well potential, etc. Although most of the filenames in
both the codes are the same, they usually differ in implementation, as they have
been designed for separate tasks.

The main segments of the programs are placed in the files jmatrix-conv.
f95 and jmatrix-cs.f95. There are two special modules: jm constants.f95
and jm globals.f95. The former defines some constants and user types used in
program, the latter defines global variables.

This program is written in ANSI/ISO Fortran 95, hence, it is expected
to be compiled with any Fortran 95 or Fortran 2003/2008 compilers without
any problem. Additionally, the program uses some numerical libraries written in
Fortran 77, they also can be successfully compiled with the use of the same Fortran
95 versions or a newer compiler.

To make the compilation as easy as possible, Makefiles are supplied,
separately for both codes. They are placed together with the sources. Before
compilation, the user should edit Makefile, specifying the compiler type/name,
the operating system, the target platform, the parallelization and optimization
options and the linking method. Makefiles are well-commented, so the user can
easily adapt them to a specific environment.

After editing Makefiles, the compilation can be started as usual, by typing
the command make inside the selected directory jmatrix/source/jmatrix-*. In
case of successful compilation, the executable file jmatrix-conv or jmatrix-cs
(with suffix .exe when compiling under Windows) will be created and moved3 to
the directory jmatrix/bin/jmatrix-*.

3. The GNU Make tool for Windows has a bug, preventing calling the shell commands from
within Makefile. As a result, the compiled executable cannot be automatically moved. Please
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To remove all files created during the compilation process, use the command
make clean. Please note that the executables, previously moved to the bin/*
subdirectories, will not be deleted.

See the provided README file for additional information about the compila-
tion process.

3.3. Input and output files
In both programs, all calculations are controlled through the parameters

read from the external text file. The name of the input file is arbitrary, since
the program asks for it at the start of execution. The default names are jma-
trix-conv.inp and jmatrix-cs.inp. The input file should be composed of a set
of lines in the following form:

; comment keyword = value ; comment

Blank lines, lines beginning with „;” and lines without proper keywords are
ignored. Both keywords and values are case sensitive, and their order in the file is
arbitrary. Not all keywords are required in all cases, this will be discussed later.
Please note that there must be at least one space around the „=” sign and before
the „;” sign (except the case when whole line is a comment).

Full example input files and output files created during the execution of the
codes are included in the provided archive in the subdirectories jmatrix/exam-
ple/jmatrix-*.

3.3.1. JMATRIX-CONV – example input file and description of output files
First, we describe the input file for the JMATRIX-CONV program. In Table 2

we present an example input file, containing all keywords recognized by the
program. The meanings of individual parameters are discussed later, but they
can be easily presumed from their names and included comments.

First, the orbital angular momentum quantum number 𝑙 and the quantum
number 𝜅, which describe the projectile, have to be specified, under the condition
that 𝜅 = 𝑙 or 𝜅 = −𝑙−1. To specify these numbers, the keywords l and kappa,
respectively, should be used. If proper dependency between 𝜅 and 𝑙 is not
satisfied, the program stops with an error message. This restriction matters only
in relativistic calculations as 𝜅 is not used in the non-relativistic scheme – the
keyword kappa is ignored in that case.

Next, the user should provide the (positive) kinetic energy of the projectile,
𝐸 (in atomic units), by specifying the parameter e. Additionally, the program
can calculate phase shifts for projectile energies in the range 𝐸 ∈ [estart,eend]
(estart ≤ eend) with the step size estep in a single run of the program. These
calculations are performed only if flag energies is set to .true.. This energy
range may be completely different than the energy specified before. When no
estep is specified, the program takes estep = (eend−estart)/10.

move the created executable manually to the proper jmatrix/bin/jmatrix-* subdirectory, or
use the provided compile-win.bat script, which bypasses the bug.
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Table 2. Example input file for the JMATRIX-CONV program; descriptions and comments are
shortened, to save space

; PROPERTIES OF THE PROJECTILE
l = 0 ; Orbital angular momentum quantum number
kappa = -1 ; Relativistic quantum number
e = 0.4 ; Energy of the projectile
energies = .true. ; Calculate phase shifts for many energies at once?
estart = 0.2 ; If above flag is set to true, additional calculations
eend = 1.0 ; are performed for a~set of energies within the range
estep = 0.2 ; [estart, eend] (in a. u.), with step size estep.

; TYPE OF CALCULATIONS
lambda = 1.0 ; Scaling parameter.
basis = laguerre ; Basis set (gauss, laguerre, oscillator).
scheme = relativistic ; Scheme (relativistic, non-relativistic)
v light = finite ; Velocity of light (finite, infinite)

; in relativistic calculations.
nstart = 1 ; Initial value of basis size N.
nend = 800 ; Final value of basis size N.
napprox = 0 ; Basis size, from what the approximations start.

; SCATTERING POTENTIAL
pot type = coulomb ; Potential type (well, coulomb, yukawa, user).
r0 = 1.0 ; Truncating parameter, so that v(r > r0) = 0.

; PARAMETERS OF POTENTIAL SQUARE-WELL
v0 = -1.0 ; Depth.
a = 0.8 ; Left bound.
b = 1.0 ; Right bound.

; PARAMETERS OF COULOMB-LIKE POTENTIAL V(r) = - z / (r^alpha)
z = 30.0 ; The charge parameter.
alpha = 1.0 ; The power parameter.

; PARAMETERS OF YUKAWA POTENTIAL V(r) = - g^2 * Exp(-m*r) / r
g = 1.0 ; Coupling constant.
m = 0.5 ; Mass parameter.

; OTHER PARAMETERS
screen = .true. ; Display (or not) results and other information on screen.
shift = .false. ; Shift (or not) calculated phase shifts to range [0, pi].

One can specify the scaling parameter 𝜆 (keyword lambda). If omitted, the
default value 𝜆 = 1.0 will be taken. Changing this parameter may improve the
convergence in the oscillator basis. In this case, the quantity 1/𝜆 is equivalent
to the oscillator length. It is recommended to leave this parameter untouched in
case of the Laguerre and Gaussian bases as these bases are biorthonormal, and
its influence has not been investigated in details yet. Moreover, due to numerical
reasons (see the formula for 𝑐𝑙

𝑛 in Table 1), it is not allowed to put the value 0.5
for lambda when using the Laguerre basis.

The J-matrix (6) and the truncated potential (13) elements can be calcu-
lated in three different basis sets, Laguerre, Gauss or oscillator. This is determi-
ned through the keyword basis. It can assume three values, laguerre, gauss
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or oscillator. Also, the scheme of computations (relativistic or non-rela-
tivistic) should be specified. If no keyword scheme is found in the input file,
calculations will be performed using the non-relativistic scheme.

We introduced an additional keyword, v light to verify that the relativistic
results converge to the non-relativistic limit as the speed of light approaches
infinity. The standard value is finite, it is responsible for the constant and
finite speed of light (137.036 in atomic units). By specifying v light = infinite,
one can get a non-relativistic limit in relativistic computations and compare it
with pure non-relativistic calculations. This setting should not be used in real
calculations, it has been added only for testing purposes. The keyword v light
is ignored in the non-relativistic scheme of calculations.

The initial (nstart) and final (nend) values of the basis size 𝑁 should be
specified, so that the calculations should be performed for nstart ≤ 𝑁 ≤ nend,
with step 1. It is useful to study the convergence of the phase shifts, while
increasing the basis size. If nstart is omitted, it is taken as 1. When nstart =
nend, calculations are performed for only one value of 𝑁 = nstart = nend. The
latter case does not allow studying the convergence, but it may be useful in case
when one needs only to calculate the phase shifts for different energies with the
use of previously saved elements of the truncated potential. These elements are
automatically saved to a file named (saved.vn.<nend>) when nend is achieved,
and then read in further runs of the program, when possible. As a consequence,
it is possible to continue already finished calculations, by specifying new nstart
as nend, taken from the finished calculations.

The parameter napprox is used to speed-up the non-relativistic calcula-
tions. When its value is positive, we use the approximated formula for elements of
the truncating potential for napprox < 𝑁 ≤ nend. This approximation has been
proposed in [12]. One should put 0 or a negative number to disable approxima-
tions.

The keyword pot type is responsible for the kind of scattering potential
used in computations. There are three types of potentials predefined in the
program: square-well (value: well), the truncated Coulomb potential (value:
coulomb) and the Yukawa potential (value: yukawa). The specific parameters for
the above potentials should also be specified in the input file.

If square-well is selected, the depth v0, left and right bounds (a and b,
respectively) are required (all of them in atomic units), according to the following
definition:

𝑉 (𝑟) =
⎧{
⎨{⎩

0 for 𝑟 ∈ (0,𝑎)
𝑉0 for 𝑟 ∈ [𝑎,𝑏)
0 for 𝑟 ∈ [𝑏,∞)

(28)

The Coulomb potential has the form 𝑉 (𝑟) = −𝑧/𝑟𝛼, so the parameters z and alpha
should be specified. The Yukawa potential has the form 𝑉 (𝑟) = −𝑔2 exp(−𝑚𝑟)/𝑟,
so the parameters g and m should be specified. In the Coulomb and Yukawa
potentials, the parameter r0 (in atomic units) specifies at which 𝑟 the potential
will be truncated, so that 𝑉 (𝑟 > r0) = 0.
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Moreover, the program is able to use a user-defined scattering potential
given in any analytical form, by using the value other for the keyword pot type
in the input file. The requested formula describing the potential should be specified
in the file user potential, then the program has to be recompiled.

The last two parameters, screen and shift are of a logical-type and they
are responsible for displaying (default) or not the results on screen and for shifting
(or not, which is default) the calculated phase shifts to the range [0,𝜋].

During its execution, the program creates two or more output files with the
results of calculations.
• The main file is named phases.<suffix>.out, where suffix is optional. The

program asks for this suffix at the beginning of its execution, just after collecting
the name of the input file. In that file, the calculated phase shifts as function
of the basis size are saved, for the specified energy and quantum numbers.

• Second output file, phases-rms.<suffix>.out, is created only when the poten-
tial square-well has been used and there are at least 200 phase shifts calculated
(nend−nstart ≥ 200). It contains the root-mean-square error of the calculated
phase shifts, with the use of the analytical phase shifts.

• Third output file, phases-avg.<suffix>.out, is created only when there are
at least 50 phase shifts calculated (nend−nstart ≥ 50), and contains averaged
phase shifts. Averaging is done over every 50 calculated phase shifts.

• Next output file, phases-en.<suffix>.out is created when the flag energies
= .true. and it contains calculated phase shifts as function of energy of the
projectile (for the final value of 𝑁, specified by the nend keyword).

Additionally, the file saved.vn.<nend> is created. It contains elements of
the truncated potential. This file is utilized to save the computational time, in
separate runs of the program. The program will automatically use this file, when
information stored in that file corresponds to the actual set of parameters, i.e.
calculations are performed in the same basis, scheme, with the same quantum
numbers describing the projectile and the scaling parameter. When this informa-
tion does not conform to the current calculations, the file saved.vn.<nend> is
deleted and created again for a new set of parameters. For example, when the
current calculations were performed for nstart = 1 and nend = 500, it was possi-
ble to start new calculations with nstart = 500 and any nend ≥ nstart. It saves
a lot of time.

At the beginning of each output file, a header containing the parameters
used to calculations is written. It allows output files to be easily distinguished for
several scattering systems.

3.3.2. JMATRIX-CS – example input file and description of output files
Table 3 shows an example of the input file containing all keywords recogni-

zed by the program.
Now, we emphasize only the differences between the input file for the

JMATRIX-CS code, and the previously described input file for JMATRIX-CONV.
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Table 3. Example input file for the JMATRIX-CS program; descriptions and comments are
shortened, to save space

; PROPERTIES OF THE PROJECTILE AND PARTIAL WAVE EXPANSION
estart = 0.2 ; Calculations are performed for a~set of energies within range
eend = 1.0 ; [estart, eend] (in atomic units),
estep = 0.2 ; with step size estep.
lmax = 1 ; Upper limit of angular momentum quantum numbers

; for partial waves expansion.

; TYPE OF CALCULATIONS
lambda = 1.0 ; Scaling parameter.
basis = laguerre ; Basis set (laguerre, gauss, oscillator).
scheme = relativistic ; Scheme (relativistic, non-relativistic).
v light = finite ; Velocity of light (finite, infinite)

; in relativistic calculations.
ntrunc = 800 ; Basis size to truncate scattering potential.
napprox = 0 ; Basis size, from what the approximations start.

; SCATTERING POTENTIAL
pot type = coulomb ; Potential type (well, coulomb, yukawa, user).
r0 = 1.0 ; Truncating parameter, so that v(r > r0) = 0.

; PARAMETERS OF POTENTIAL SQUARE-WELL
v0 = -1.0 ; Depth.
a = 0.8 ; Left bound.
b = 1.0 ; Right bound.

; PARAMETERS OF COULOMB-LIKE POTENTIAL V(r) = - z / (r^alpha)
z = 30.0 ; The charge parameter.
alpha = 1.0 ; The power parameter.

; PARAMETERS OF YUKAWA POTENTIAL V(r) = - g^2 * Exp(-m*r) / r
g = 1.0 ; Coupling constant.
m = 0.5 ; Mass parameter.

; OTHER PARAMETERS
screen = .true. ; Display (or not) results and other information on screen.
shift = .false. ; Shift (or not) calculated phase shifts to range [0, pi].

Here, we do not have a separate parameter for specifying the projectile
energy. The only parameters for the projectile energy are now estart, eend and
estep, of the same meaning as before. Also, there is no need to set the flag
energies.

The parameters to specify the orbital angular momentum quantum number 𝑙
and the quantum number 𝜅 are removed. Instead, the user should specify
the maximum orbital angular momentum quantum number (keyword lmax),
taken into account in the partial-waves analysis. For example, when lmax is set
to 3, the relativistic phase shifts will be calculated for the following pairs of
(𝑙,𝜅): (0,−1), (1,−2), (1,1), (2,−3), (2,2), (3,−4), (3,3).

As the JMATRIX-CS code has been designed for calculations in a fixed basis
size (of an optimal value found e.g. by using the JMATRIX-CONV code), instead
a set of parameters nstart, nend, we have only one parameter specifying the
basis size: ntrunc.
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As previously, the program asks for this suffix at the beginning of its
execution, after collecting the name of the input file. The following output files
are now created:

• phases.<suffix>.out with numerical phase shifts for a given basis size, a set
of quantum numbers and a range of projectile energies;

• dcs.<suffix>.out with differential cross sections for a range of energies;
• tcs.<suffix>.out with total cross sections;
• mtcs.<suffix>.out with momentum transfer cross sections;
• spcs.<suffix>.out with spin polarization cross sections (only in a relativistic

case).

As in the previous code, elements of the truncated potential are dumped to
files, now named saved.vn.<ntrunc>.<l>.<kappa>. It allows repeating calcula-
tions e.g. for a different set of energies without time-consuming integrations.

3.4. Results and discussion
The JMATRIX codes were thoroughly tested with many combinations of

input parameters. In each case numerical stability was achieved.
Here, we present the results obtained with the input parameters as presented

in Tables 2 and 3. All calculations were performed for the truncated Coulomb
scattering potential, in the Laguerre basis.

In Figure 1 we can observe the convergence of phase shifts versus the basis
size. As we can see, the convergence for this case is rather slow but systematic.
Also, the result is in good agreement with the result of Krośnicki [13].

Figure 1. Convergence of relativistic phase shift versus the number of Laguerre basis
function 𝑁, used to truncate the scattering potential; 𝑙 = 0, 𝜅 = −1, 𝐸 = 0.4 a.u.

result from [13]: −1.035866
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Figure 2. Numerical phase shift versus the projectile energy;
𝑙 = 0, 𝜅 = −1, 𝐸 = 0.4 a.u.

Phase shifts for a set of projectile energies are presented in Figure 2. The
results obtained by using the input parameters from Table 2, were completed by
calculations for more intermediate energies.

In Figures 3 and 4, differential and spin polarization cross sections in
scattering of electrons from the truncated Coulomb potential are plotted for
different electron energies.

Figure 3. Differential cross sections in elastic scattering of electrons
from truncated Coulomb potential

Total and momentum transfer cross sections are presented in Figure 5. The
results obtained by using the input parameters from Table 2 were completed by
calculations for more intermediate energies.
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Figure 4. Spin polarization cross sections in elastic scattering of electrons
from truncated Coulomb potential

Figure 5. Total and momentum transfer cross sections in elastic scattering of electrons
from truncated Coulomb potential

4. Conclusions
In the last few years the interest in the J-matrix method has significantly

increased, mainly due to relativistic extension of the method and its application
to the photoionization ([14, 15]). Also, the multichannel extension has been
proposed and tested ([16]). Comparing to other methods, i.e. multicofiguration
Dirac-Fock ([17, 18]), the method allows calculations for several incident energies
with a relatively small computational effort.
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Here, we propose a set of programs for elastic scattering phase shifts
calculations using the J-matrix method, both relativistic as well as non-relativistic
versions. The calculated phase shifts are then used to calculate differential, total,
spin polarization and momentum transfer cross sections.

The presented package allows applying any scattering potential vanishing
faster than the Coulomb potential and given in an analytical form. An example
of scattering on the truncated Coulomb potential has been presented.

There are several ways for our further investigations of the J-matrix method
and developing the JMATRIX package. The first method will consist in adding the
atomic targets in elastic scattering. Then, inelastic scattering will be introduced.
The second way will consist in adaptation of the JMATRIX package to use in
multiphoton single and double ionization of atoms.

Appendix A: JMATRIX-CONV – test run output
The following is a partial listing of the output file phases.out with phase

shifts4 versus the basis size, produced by running the program JMATRIX-CONV
with the input data file displayed in Table 2. The result is plotted in Figure 1.

; OUTPUT FROM THE JMATRIX-CONV PROGRAM
; date: 06.03.2017 time: 15.54
;
; energy = 0.4000000000000000
; l = 0
; kappa = -1
; lambda = 1.0000000000000000
; basis = laguerre
; scheme = relativistic
; v light = finite
; shift = F
; nstart = 1
; nend = 800
; napprox = 0
; pot type = coulomb
; r0 = 1.0000000000000000
; z = 30.0000000000000000
; alpha = 1.0000000000000000
;
; NUMERICAL RESULTS: N tan(delta) delta

1 1.4436859860002820 0.9650058354002918
2 -7.2935796275664940 -1.4345390030771520
3 -0.7577541953878013 -0.6484453508657673
4 0.3325885835580812 0.3210801299097921
5 3.0719824293835960 1.2560917404464580
6 -2.1400000250798780 -1.1336576625694830
7 -0.6960516717147044 -0.6080711614140711
8 -0.3217172058928592 -0.3112598648694454
9 -0.3681945644029319 -0.3527909530536955

10 -1.6265146513012670 -1.0195571047193800
(...)

4. Please note that last digits in the presented phase shifts may be slightly different when
using different compilers.
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100 -1.4284853174042920 -0.9600420428225145
101 -1.5388742059853840 -0.9945436504268680
102 -1.9087989519037480 -1.0882201651185770
103 -2.0637600363004700 -1.1195829451367280
104 -2.0039861673690500 -1.1079446819609800
105 -1.7295557811174060 -1.0465731200430290
106 -1.4546108779256980 -0.9685299779735516
107 -1.4925573967605910 -0.9804958020433222
108 -1.7894447585046440 -1.0611971784602960
109 -1.9121056186830640 -1.0889313028665690
110 -1.9047956044283380 -1.0873566066322920

(...)
(...)

300 -1.6593440729878360 -1.0284322131643040
301 -1.6601840782995450 -1.0286559272320880
302 -1.6981877146925300 -1.0386060071849260
303 -1.7090324456313380 -1.0413850913174440
304 -1.7087974808680580 -1.0413251572948720
305 -1.6985835208550830 -1.0387079005479220
306 -1.6560287856975640 -1.0275476465101900
307 -1.6458461447140100 -1.0248144756195580
308 -1.6898256681119600 -1.0364450746449170
309 -1.7164113678855730 -1.0432610532078590
310 -1.7180313639971640 -1.0436712983703760

(...)
500 -1.6751488683172080 -1.0326137405885180
501 -1.6661096819263750 -1.0302293531498250
502 -1.6849510898408280 -1.0351780538483590
503 -1.6976027977302150 -1.0384553659737790
504 -1.6976334345608100 -1.0384632581846120
505 -1.6960592917715350 -1.0380574767307470
506 -1.6782823834603120 -1.0334358890826290
507 -1.6645613752004400 -1.0298190254584810
508 -1.6807206973302300 -1.0340740701128630
509 -1.6968863496183180 -1.0382707448067310
510 -1.6978305766513450 -1.0385140379794300

(...)
790 -1.6843694372918920 -1.0350265060623720
791 -1.6848829126012750 -1.0351602944810790
792 -1.6895199059344910 -1.0363657587838310
793 -1.6857696019189820 -1.0353911836483270
794 -1.6854758830781660 -1.0353147207309590
795 -1.6889487947394440 -1.0362175534322880
796 -1.6834292264780580 -1.0347813733047800
797 -1.6820119641393190 -1.0344114804475810
798 -1.6889014613241090 -1.0362052669151110
799 -1.6882777772045880 -1.0360433271862530
800 -1.6869463881640860 -1.0356973351931200

The following is a partial listing of the output file phases-en.out with
phase shifts versus the projectile energy, produced by running the program
JMATRIX-CONV with the input data file displayed in Table 2. The results
completed by calculations for more intermediate energies, are plotted in Figure 2

; OUTPUT FROM THE JMATRIX-CONV PROGRAM
; date: 06.03.2017 time: 17.37
;
; estart = 0.2000000000000000
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; eend = 1.0000000000000000
; estep = 0.2000000000000000
; l = 0
; kappa = -1
; lambda = 1.0000000000000000
; basis = laguerre
; scheme = relativistic
; v light = finite
; shift = F
; ntrunc = 800
; pot type = coulomb
; r0 = 1.0000000000000000
; z = 30.0000000000000000
; alpha = 1.0000000000000000
;
; NUMERICAL RESULTS: energy tan(delta) delta

0.200000 -0.9048125148028265 -0.7354675961868376
0.400000 -1.6869463881640860 -1.0356973351931200
0.600000 -3.1274310464893210 -1.2613190386478510
0.800000 -8.1805304614505160 -1.4491583474052740
1.000000 24.1538661817417700 1.5294187177135440

The following is a partial listing of the output file phases-avg.out with
phase shifts averaged over every 50 results, versus the projectile energy, produced
by running the program JMATRIX-CONV with the input data file displayed in
Table 2.

; OUTPUT FROM THE JMATRIX-CONV PROGRAM
; date: 06.03.2017 time: 17.37
;
; energy = 0.4000000000000000
; l = 0
; kappa = -1
; lambda = 1.0000000000000000
; basis = laguerre
; scheme = relativistic
; v light = finite
; shift = F
; nstart = 1
; nend = 800
; napprox = 0
; pot type = coulomb
; r0 = 1.0000000000000000
; z = 30.0000000000000000
; alpha = 1.0000000000000000
;
; AVERAGED RESULTS: N averaged delta

501 -0.626294566087534600
1001 -0.720398615846079800
1501 -1.042201442840791000
2001 -1.036108062525964000
2501 -1.035508879706652000
3001 -1.035482248949317000
3501 -1.035448656548142000
4001 -1.035452544304233000
4501 -1.035355437368863000
5001 -1.035526401969362000
5501 -1.035451537272408000
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6001 -1.035540244238388000
6501 -1.035350284693187000
7001 -1.035565732996265000
7501 -1.035505095437630000
8001 -1.035509634873714000

Appendix B: JMATRIX-CS – test run output
The following is a listing of the output file phases.out with phase shifts

versus quantum numbers and the projectile energy, produced by running the
program JMATRIX-CS with the input data file displayed in Table 3.

; OUTPUT FROM THE JMATRIX-CS PROGRAM
; date: 06.03.2017 time: 22.27
;
; estart = 0.2000000000000000
; eend = 1.0000000000000000
; estep = 0.2000000000000000
; lmax = 1
; lambda = 1.0000000000000000
; basis = laguerre
; scheme = relativistic
; v light = finite
; shift = F
; ntrunc = 800
; napprox = 0
; pot type = coulomb
; r0 = 1.0000000000000000
; z = 30.0000000000000000
; alpha = 1.0000000000000000
;
; PHASE SHIFTS: l kappa delta
;
; e = 0.20000
;

0 -1 -0.7354675961655643
1 -2 -0.0888352741605350
1 1 -0.0866645765767718

;
; e = 0.40000
;

0 -1 -1.0356973351309860
1 -2 -0.2070842885111708
1 1 -0.2036286954886156

;
; e = 0.60000
;

0 -1 -1.2613190387931790
1 -2 -0.3236089801259628
1 1 -0.3186842589748248

;
; e = 0.80000
;

0 -1 -1.4491583472968800
1 -2 -0.4375655918415151
1 1 -0.4314227779877501

;
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; e = 1.00000
;

0 -1 1.5294187177582880
1 -2 -0.5454001318105261
1 1 -0.5370995776847606

The following is a partial listing of the output file dcs.out – differential
cross sections, produced by running the program JMATRIX-CS with the input
data file displayed in Table 3. The result is plotted in Figure 3.

; OUTPUT FROM THE JMATRIX-CS PROGRAM
; date: 06.03.2017 time: 22.27
;
; estart = 0.2000000000000000
; eend = 1.0000000000000000
; estep = 0.2000000000000000
; lmax = 1
; lambda = 1.0000000000000000
; basis = laguerre
; scheme = relativistic
; v light = finite
; shift = F
; ntrunc = 800
; napprox = 0
; pot type = coulomb
; r0 = 1.0000000000000000
; z = 30.0000000000000000
; alpha = 1.0000000000000000
;
; DIFFERENTIAL CROSS SECTIONS: theta DCS
;
; e = 0.20000
;

0 1.997028770204161
1 1.996869917561556
2 1.996393455717600
3 1.995599672836478
4 1.994489048900678
5 1.993062255274577
6 1.991320154094161
7 1.989263797483546
8 1.986894426599160
9 1.984213470502679

10 1.981222544863948
(...)

170 0.6019666475794693
171 0.6009232148378477
172 0.5999911761660854
173 0.5991700164475436
174 0.5984592784870765
175 0.5978585640120654
176 0.5973675345427406
177 0.5969859121306079
178 0.5967134799639825
179 0.5965500828398124
180 0.5964956275011480

;
; e = 0.40000
;
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0 2.274683004903255
1 2.274406597892534
2 2.273577590524305
3 2.272196623567552
4 2.270264764228106
5 2.267783505035843
6 2.264754762288580
7 2.261180874054479
8 2.257064597735305
9 2.252409107193364

10 2.247217989445482
(...)

170 0.5050549135101174
171 0.5051501602023247
172 0.5052420116899238
173 0.5053282710847509
174 0.5054069921066956
175 0.5054764820157850
176 0.5055353041609367
177 0.5055822801421263
178 0.5056164915832077
179 0.5056372815131269
180 0.5056442553537605
(\etc. for e = 0.6, 0.8 and 1.0)

The following is a partial listing of the output file spcs.out – spin
polarization cross section, produced by running the program JMATRIX-CS with
the input data file displayed in Table 3. The result is plotted in Figure 4

; OUTPUT FROM THE JMATRIX-CS PROGRAM
; date: 06.03.2017 time: 22.27
;
; estart = 0.2000000000000000
; eend = 1.0000000000000000
; estep = 0.2000000000000000
; lmax = 1
; lambda = 1.0000000000000000
; basis = laguerre
; scheme = relativistic
; v light = finite
; shift = F
; ntrunc = 800
; napprox = 0
; pot type = coulomb
; r0 = 1.0000000000000000
; z = 30.0000000000000000
; alpha = 1.0000000000000000
;
; SPIN POLARIZATION CROSS SECTIONS: theta SPCS
;
; e = 0.20000
;

0 0.000000000000000
1 3.1619710330447731E-005
2 6.3246876428162775E-005
3 9.4888950596280718E-005
4 1.2655337819537005E-004
5 1.5824759413637761E-004
6 1.8997901933053251E-004
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7 2.2175505708184350E-004
8 2.5358308940771142E-004
9 2.8547047327305211E-004

10 3.1742453672327608E-004
(...)

170 1.1867857928092216E-003
171 1.0711838638016904E-003
172 9.5461680604832806E-004
173 8.3718827718466345E-004
174 7.1900319653249499E-004
175 6.0016758837562240E-004
176 4.8078842476774328E-004
177 3.6097346799096087E-004
178 2.4083111276035376E-004
179 1.2047022825007478E-004
180 0.000000000000000

;
; e = 0.40000
;

0 0.000000000000000
1 2.5096047654032672E-005
2 5.0210306429317313E-005
3 7.5360998942991230E-005
4 1.0056637079129402E-004
5 1.2584470200729874E-004
6 1.5121431847997684E-004
7 1.7669360332104190E-004
8 2.0230100816535774E-004
9 2.2805506438989284E-004

10 2.5397439423528880E-004
(...)

170 1.8597794515729695E-003
171 1.6760652124205102E-003
172 1.4916187060227623E-003
173 1.3065308952993420E-003
174 1.1208894161784198E-003
175 9.3477895477317430E-004
176 7.4828164044765698E-004
177 5.6147745221384960E-004
178 3.7444463602963617E-004
179 1.8726013067811361E-004
180 0.000000000000000

(\etc. for e = 0.6, 0.8 and 1.0)

The following is a listing of the output file tcs.out – total cross section,
produced by running the program JMATRIX-CS with the input data file displayed
in Table 3. The result is plotted in Figure 5.

; OUTPUT FROM THE JMATRIX-CS PROGRAM
; date: 06.03.2017 time: 22.27
;
; estart = 0.2000000000000000
; eend = 1.0000000000000000
; estep = 0.2000000000000000
; lmax = 1
; lambda = 1.0000000000000000
; basis = laguerre
; scheme = relativistic
; v light = finite
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; shift = F
; ntrunc = 800
; napprox = 0
; pot type = coulomb
; r0 = 1.0000000000000000
; z = 30.0000000000000000
; alpha = 1.0000000000000000
;
; TOTAL CROSS SECTIONS: energy TCS

0.2000000000000000 14.85988263646333
0.4000000000000000 13.57214926579226
0.6000000000000001 12.61534597658613
0.8000000000000000 11.89499924267921
1.000000000000000 11.25266236617469

The following is a listing of the output file mtcs.out – momentum transfer
cross section, produced by running the program JMATRIX-CS with the input data
file displayed in Table 3. The result is plotted in Figure 5.

; OUTPUT FROM THE JMATRIX-CS PROGRAM
; date: 06.03.2017 time: 22.27
;
; estart = 0.2000000000000000
; eend = 1.0000000000000000
; estep = 0.2000000000000000
; lmax = 1
; lambda = 1.0000000000000000
; basis = laguerre
; scheme = relativistic
; v light = finite
; shift = F
; ntrunc = 800
; napprox = 0
; pot type = coulomb
; r0 = 1.0000000000000000
; z = 30.0000000000000000
; alpha = 1.0000000000000000
;
; MOMENTUM TRANSFER CROSS SECTIONS: energy MTCS

0.2000000000000000 11.40419361702000
0.4000000000000000 8.531863741223996
0.6000000000000001 6.806331384893004
0.8000000000000000 5.643419652637525
1.000000000000000 4.817551883954241

Acknowledgements
The calculations were carried out at the Academic Computer Centre in

Gdańsk.
The authors thank T. Sumpter for testing the code. This work was partially

supported by Grant No 645/N-COST/2010/0 from the Polish Ministry of Science
and Higher Education and the COST action CM0702.

References
[1] Heller E and Yamani H 1974 Phys. Rev. A 9 1201
[2] Heller E and Yamani H 1974 Phys. Rev. A 9 1209
[3] Yamani H and Fishman L 1975 J. Math. Phys. 16 410

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


42 P. Syty and J. E. Sienkiewicz

[4] Horodecki P 2000 Phys. Rev. A 62 52716
[5] Alhaidari D, Yamani H A, and Abdelmonem M S 2001 Phys. Rev. A 63 62708
[6] Syty P 1999 TASK Quarterly 3 (3) 269
[7] Yamani H A, Alhaidari A D and Abdelmonem M S 2001 Phys. Rev. A 64 42703
[8] Sin Fai Lam L T 1980 Aust. J. Phys. 33 261
[9] Bateman H and Erdely A (ed.) 1953 Higher Transcendental Functions, McGraw-Hill,

New York, I,II
[10] Arfken G 1970 Mathematical Methods For Physicists, Academic Press, New York
[11] Takahasi H and Mori M 1974 Publ. RIMS, Kyoto Univ., 9 721
[12] Vanroose W, Broeckhove J, and Arickx F 2002 Phys. Rev. Lett. 82 10404
[13] Krośnicki M 1988 MSc thesis, Gdańsk University of Technology
[14] Foumouo E, Lagmago Kamta G, Edah G and Piraux B 2006 Phys. Rev. A 74 63409
[15] Foumouo E, Antoine P, Bachau H and Piraux B 2008 New J. Phys. 10 25017
[16] Syty P, Redynk Ł, and Sienkiewicz J E 2013 Eur. Phys. J. Special Topics 222 2323
[17] Syty P, Sienkiewicz J E and Fritzsche S 2003 Rad. Phys. Chem. 68 301
[18] Syty P and Sienkiewicz J E 2005 J. Phys. B: At., Mol. and Opt. Phys. 38 2859

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

