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Abstract

When parameters of wireless communication channels vary at a fast rate, simple esti-

mation algorithms, such as weighted least squares (WLS) or least mean squares (LMS)

algorithms, cannot estimate them with accuracy needed to secure reliable operation of

the underlying communication systems. In cases like this, the local basis function (LBF)

estimation technique can be used instead, significantly increasing the achievable tracking

accuracy. We show that when some prior knowledge of statistical properties of param-

eter changes is available, such as the bandwidth of their variation, both the type and

the number of basis functions, used in the LBF approach to approximate time-varying

channel parameters, can be optimized using the Karhunen-Loève (KL) decomposition

based technique.
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1. Introduction

Many wireless communication channels (terrestrial, underwater) can be well approx-

imated by a time-varying FIR model of the form [1, 2]

y(t) =
n∑
i=1

θ∗i (t)u(t− i+ 1) + e(t) = θH(t)ϕ(t) + e(t), (1)
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Preprint submitted to Elsevier March 21, 2023

Postprint of: Niedźwiecki M., Gańcza A., Karhunen-Loeve-based approach to tracking of rapidly fading wireless 
communication channels, SIGNAL PROCESSING Vol. 209 (2023), 109043, DOI: 10.1016/j.sigpro.2023.109043
© 2023. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/

https://dx.doi.org/10.1016/j.sigpro.2023.109043
https://creativecommons.org/licenses/by-nc-nd/4.0/


where t = . . . ,−1, 0, 1, . . . denotes discrete (normalized) time, y(t) denotes the received

complex-valued signal, ϕ(t) = [u(t), . . . , u(t − n + 1)]T denotes regression vector made

up of past values of the complex-valued transmitted signal, θ(t) = [θ1(t), . . . , θn(t)]T de-

notes the vector of time-varying channel impulse response coefficients, and {e(t)} denotes

circular white noise independent of {u(t)} and {θ(t)}. The symbol ∗ denotes complex

conjugate and H – complex conjugate transpose (Hermitian transpose). We will further

assume that {u(t)} is a sequence of zero-mean independent and identically distributed

circular random variables with variance σ2
u.

The application, studied recently, which particularly well fits the technique developed

in this paper, is adaptive self-interference (SI) cancellation in full-duplex (FD) underwater

acoustic (UWA) communication systems [3]. An interesting feature of this application is

that it allows one to work with a decision delay, which means that estimation of channel

parameters can be based not only on past signal samples but also on a certain number of

“future” (with respect to the moment of interest) ones. Hence, channel identification can

be carried out using noncausal estimation algorithms with improved tracking capabilities,

such as the one described in this paper.

In the LBF approach each parameter trajectory is locally approximated by known

functions of time, called basis functions [4]. When nothing is known about the way

system parameters vary with time, some general purpose approximation schemes are

applied, resulting in such popular choices of basis functions as powers of time (Taylor

series approximation) or sine/cosine functions (Fourier series approximation) [5]. We will

show that when channel parameters can be regarded as wide-sense stationary processes

with known (or experimentally determined) second order characteristics, the choice of the

basis set can be optimized using the Karhunen-Loève decomposition technique. The main

contribution of the paper is solution of the estimation bias-variance trade-off problem -

derivation of the decision rule that allows to determine the number of basis functions

guaranteeing minimization of the mean squared parameter tracking error.D
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2. Local basis function estimators and their properties

In the LBF approach, proposed and analyzed in [4], system parameters are modeled,

in a sliding analysis window Tk(t) = [t − k, t + k] of length K = 2k + 1, as linear

combinations of known, linearly independent functions of time f1(j), . . . , fm(j), j ∈ Ik =

[−k, k], further referred to as basis functions. This leads to the following local description

of the parameter trajectory

θi(t+ j) =

m∑
l=1

f∗l (j)ail(t) = fH
m(j)αi(t), j ∈ Ik, i = 1, . . . , n, (2)

where fm(j) = [f1(j), . . . , fm(j)]T and αi(t) = [ai1(t), . . . , aim(t)]T denotes the vector of

basis expansion coefficients. Since the value of αi, characterizing evolution of the i-th

system parameter in the analysis window Tk(t), may change along with the position of

the window, it is written down as a function of time.

If no prior knowledge of the type or speed of parameter variation is available the

selection of basis functions is usually based on some universal approximation arguments.

For example, when the polynomial basis is adopted [4, 5, 6, 7]: fl(j) = jl−1, l = 1, . . . ,m,

the model (2) can be interpreted as a local Taylor series expansion of the true parameter

trajectory in the neighborhood of the time instant t. Without any loss of generality we

will further assume that basis functions are orthonormal, i.e.,
∑k
j=−k fm(j)fH

m(j) = Im,

where Im denotes the m × m identity matrix. In the case of the polynomial basis,

orthogonalization, which can be performed using the Gram-Schmidt procedure, results

in a set of discrete-time Legendre polynomials.

Combining (1) and (2), one arrives at

y(t+ j) = βH
m(t)ψm(t, j) + e(t+ j), j ∈ Ik, (3)

where βm(t) = [αT
1 (t), . . . ,αT

m(t)]T, and ψm(t, j) = ϕ(t+ j)⊗ fm(j) denotes the mn× 1

generalized regression vector. The symbol ⊗ stands for the Kronecker product of the
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respective matrices/vectors. The LBF estimator of θ(t) takes the form

β̂m(t) = arg min
βm

k∑
j=−k

|y(t+ j)− βH
mψm(t, j)|2 = P−1

m (t)pm(t)

θ̂m(t) = Fmβ̂m(t), (4)

where Pm(t) =
∑k
j=−k ψm(t, j)ψH

m(t, j) is the mn ×mn generalized regression matrix,

pm(t) =
∑k
j=−k y

∗(t+ j)ψm(t, j) is the mn× 1 vector, and Fm = In ⊗ fH
m(0).

The estimated vector of hyperparameters β̂m(t) allows one to approximate parameter

trajectory in the entire analysis interval [t − k, t + k]. However, in agreement with the

local estimation policy, for each position t of the sliding analysis window Tk(t), only the

“central” estimate θ̂m(t) is computed and further utilized.

The LBF estimators are noncausal as they rely on both past and “future” (with

respect to the instant t) input/output measurements. They introduce decision delay (la-

tency) equal to k sampling intervals. The computational burden associated with evalua-

tion of θ̂m(t) is dominated by the cost of computing β̂m(t). When β̂m(t) = P−1
m (t)pm(t)

is computed in a näıve, straightforward manner, the cost is very high as it involves

O(m2n2K) complex MAC (multiply and accumulate) operations per time update, needed

to evaluate Pm(t) and pm(t), and O(m3n3) operations required to invert Pm(t) and mul-

tiply it by pm(t). As shown recently in [8], both cost components can be significantly

reduced. by taking into account the transversal structure of the regression vector ϕ(t)

and using the dichotomous coordinate descent iterative technique to solve the matrix

equation Pm(t)β̂m(t) = pm(t).

As shown in [4], under the assumptions made above the mean path of LBF estimates

can be expressed in the form

θ̄m(t) = E
[
θ̂m(t)

]
∼=

k∑
j=−k

hm(j)θ(t+ j), (5)

where averaging is carried over {ϕ(t)} and {e(t)}, and

hm(j) = fH
m(0)fm(j), j ∈ Ik, (6)
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denotes impulse response of the FIR filter associated with the LBF estimator.

If the estimated parameter trajectories belong to the subspace spanned by the basis

functions, the covariance matrix of LBF estimates can be expressed in the form

cov[θ̂m(t)] ∼= σ2
eΦ

−1
k∑

j=−k

h2
m(j) = σ2

eΦ
−1fH

m(0)fm(0), (7)

where Φ = cov[ϕ(t)] = σ2
uIn. When system parameters cannot be exactly represented

as linear combinations of basis functions, the accuracy of this approximation quickly

increases with growing m.

3. Optimization of tracking performance

Suppose that some statistical knowledge of parameter time variation is available. In

particular, we will assume that {θi(t)}, i = 1, . . . , n are mutually uncorrelated random

sequences with the same - up to the scaling factors γi ≥ 0, i = 1, . . . , n which reflect the

power decay profile of the channel - autocorrelation function E[θi(t+ τ)θ∗i (t)] = γirθ(τ),

i = 1, . . . , n. Note that this assumption is fulfilled for typical communication channels.

In the sequel we will also assume that the autocorrelation function rθ(τ) and scaling

coefficients γi are known a priori or were determined experimentally. For example, in the

terrestrial wireless communication systems, operated under uncorrelated scattering and

Rayleigh fading, the Jakes’ model is often adopted leading to rθ(τ) = σ2
θJ0(ωdτ), where

J0(·) denotes the zero order Bessel function and ωd denotes the maximum normalized

Doppler frequency, which is upper bounded by the moving speed of the mobile and

scatterers, divided by the carrier wavelength [9].

The performance optimization approach described below is based on the idea of choos-

ing as the basis functions the eigenvectors of the K ×K correlation matrix

Rθ =


rθ(0) . . . rθ(K − 1)

...
. . .

...

r∗θ(K − 1) . . . rθ(0)
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Consider the eigendecomposition of the correlation matrix Rθ = QΛQH, where Λ =

diag{λ1, . . . , λK}, λi ≥ 0, i = 1, . . .K, is the diagonal matrix made up of the eigenvalues

of Rθ, arranged in the decreasing order, and the K ×K matrix Q of the form

Q = [q1| . . . |qK ], qH
i qj =

 1 if i = j

0 otherwise
(8)

is made up of the corresponding eigenvectors. We postulate to set

[fi(−k), . . . , fi(k)]T = qi.

It is straightforward to show that, in the case considered, it holds that JKq∗
i = qi,

where JK is the K × K antidiagonal matrix with all antidiagonal elements equal to

1, which flips the vector q∗
i “upside down”. Actually, note that Rθqi = λiqi entails

λiJKq∗
i = JKR∗

θq
∗
i = JKR∗

θJKJKq∗
i = RθJKq∗

i , where the last two transitions follow

from the facts that JKJK = IK and JKR∗
θJK = Rθ. As a consequence of this property,

one obtains fi(j) = f∗i (−j), j ∈ Ik. Additionally, the quantities fi(0), i = 1, . . . ,K, must

be real-valued.

Values of the selected number of the largest eigenvalues and the corresponding eigen-

vectors of Rθ can be efficiently computed (without the need to calculate all K eigen-

values/eigenvectors) using bisection and inverse iteration algorithms, after converting

the matrix Rθ into a symmetric tridiagonal (Hessenberg) form via orthogonal similarity

transformations [10, 11]. This step can be performed off-line prior to identification.

Since, according to the Karhunen-Loève expansion theorem, every zero-mean ran-

dom process {θ(t)} with correlation matrix Rθ can be in the interval Tk(t) expressed

(exactly) as a linear combination of eigenvectors of Rθ, the basis set proposed above is a

pretty straightforward choice [12, 13]. However, selection of the most appropriate num-

ber of eigenvectors used for parameter approximation is in the case of LBF estimators

an unsolved practically important problem. When the number m of basis functions is

increased, the bias component B(m) of the mean squared parameter estimation error

(MSE) decreases, but its variance component V (m) increases and vice versa [4]. Since
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MSE is the sum of its bias and variance components, a compromise value of m should be

chosen, which constitutes the well-known bias-variance trade-off in system identification.

Based on the results established for LBF estimators, we will show how one can find m

which minimizes MSE(m) = B(m) + V (m).

Denote by Qm = [q1| . . . |qm] the K×m matrix made up of the first m eigenvectors of

Rθ, and denote by hm = [hm(−k), . . . , hm(k)]T the K×1 vector of the impulse response

coefficients. Finally, let rθ = [rθ(−k), . . . , rθ(k)]T. Under the assumptions made above,

the bias component of MSE(m) can be expressed in the form

B(m) = E
[
‖ θ̄m(t)− θ(t) ‖2

]
= η[rθ(0)− rH

θ h∗
m − rT

θ hm + hH
mRθhm] (9)

where η =
∑n
i=1 γi and ‖ · ‖ denotes the Euclidean norm. Note that under (6) it holds

that hm = Qmf∗m(0) and f∗m(0) = QH
mc, where c = [0, . . . , 0, 1, 0, . . . 0]T is the K × 1

vector with only one nonzero element located in its center. This leads to hm = QmQH
mc

and hH
mRθhm = cTQmQH

mRθQmQH
mc. It holds that

QmQH
m =

m∑
i=1

qiq
H
i , Rθ =

K∑
i=1

λiqiq
H
i .

Hence, exploiting (8), one arrives at hH
mRθhm =

∑m
i=1 λic

Tqiq
H
i c =

∑m
i=1 λif

2
i (0).

Similarly, since rθ = R∗
θc and RH

θ = Rθ, one obtains rT
θ hm = rH

θ h∗
m = hH

mRθhm which

finally leads to

B(m) = η

[
rθ(0)−

m∑
i=1

λif
2
i (0)

]
. (10)

As to the variance component of MSE, one obtains

V (m) = E
[
‖ θ̂m(t)− θ̄m(t) ‖2

]
= tr{cov[θ̂m(t)]} ∼=

nσ2
e

σ2
u

hH
mhm =

nσ2
e

σ2
u

m∑
i=1

f2
i (0). (11)

Note that, as expected, the bias component B(m) decreases, and the variance component

V (m) increases, with growing m.

To guarantee invertibility of the generalized regression matrix Pm(t), the width of the

analysis window K should be at least equal to the number of estimated hyperparameters

mn. To avoid numerical problems caused by near singularity of Pm(t), we will restrict
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the search of mopt to the range [1,M0], where M0 = b(K − 10)/nc and b·c denotes

the floor function. Under this restriction the optimal value of m for a given K can be

obtained from

mopt = arg min
1≤m≤M0

MSE(m) = arg min
1≤m≤M0

m∑
i=1

[
nσ2

e

σ2
u

− ηλi
]
f2
i (0)

= arg max
1≤m≤M0

{
m s.t. λm >

nσ2
e

ησ2
u

}
. (12)

i.e., one should reject all eigenvectors qi for which it holds that λi ≤ (nσ2
e)/(ησ2

u) =

nσ2
θ/SNR, where SNR= E[|θH(t)ϕ(t)|2]/σ2

e = ησ2
uσ

2
θ/σ

2
e denotes the signal-to-noise ratio.

The summary of the proposed LBF KL algorithm is presented below.

Summary of the LBF KL algorithm

Given/assumed:

• {u(t), y(t), t = . . . ,−1, 0, 1, . . .} – input/output data

• n – number of estimated parameters

• k – decision delay (latency)

• K = 2k + 1 – width of the sliding analysis window Tk(t) = [t− k, t+ k]

• σ2
u – variance of the input signal

• σ2
e – variance of the measurement noise (known or estimated)

• Rθ – autocorrelation matrix of parameter changes (known or estimated)

• γ1, . . . , γn – channel power decay profile (known or estimated)

Off-line calculations (performed once prior to identification):

• Compute M0 = b(K − 10)/nc largest eigenvalues of Rθ along

with the corresponding eigenvectors (using standard numerical

procedures available e.g. in MATLAB).

• Choose the optimal number of basis functions (eigenvectors of Rθ)

m using (12).

On-line computations (performed for consecutive locations t of the

sliding analysis window):

• Compute the generalized regression matrix Pm(t) and the vector pm(t).

• Evaluate the estimate of the vector of basis expansion coefficients β̂m(t)

by solving the associated set of linear equations Pm(t)β̂m(t) = pm(t).

• Evaluate the estimate of the vector of channel coefficients θ̂m(t) using (4).
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Optimization carried out above was based on the assumption that the autocorrelation

function rθ(τ) is known. In practice, however, the autocorrelation function can be usu-

ally expressed in the form rθ(τ, ξ), where ξ denotes the vector of environmental factors.

For example, in the case of Jakes’ model the maximum Doppler frequency ωd depends on

the vehicle speed, which is usually time-varying. To obtain robust tracking algorithms,

one can use the parallel estimation technique. In this case not one but several parameter

tracking algorithms, corresponding to different values of design parameters ξ1, . . . , ξM ,

are run concurrently and compared using the local measure of fit. At each time instant t

the “locally the best” algorithm is chosen - see [4] for more details on this approach. Al-

ternatively, if the prior distribution of ξ, denoted by π(ξ), is known, one can replace rθ(τ)

with r̄θ(τ) =
∫
rθ(τ, ξ)π(ξ)dξ,∀τ . Note that averaging retains the positive definiteness

property of the autocorrelation function.

4. Numerical results

The taps of a complex-valued FIR system of order n = 20 governed by (1), modeling

a FD UWA channel, were simulated as independent zero-mean unit-variance Gaussian

processes with uniform power spectral density Sθ(ω) obeying [6]

Sθ(ω) =

 S0 for |ω| ≤ ω0

0 for |ω| > ω0

, (13)

with ω0 = 2πf0, f0 = 0.001. The autocorrelation function corresponding to this flat

(nonpreferential) model of Doppler spectrum has the form rθ(τ) = σ2
θ

sinω0τ
ω0τ

. In this

case the eigenvectors of Rθ are made up of discrete prolate spheroidal (Slepian) sequences,

which can be efficiently calculated (usually a small number of them) using the algorithm

described in [14].

The FFT-based procedure described in [15] was used to generate realizations of

{θi(t), t = 1, . . . , N}, i = 1, . . . , n. The plots of real parts of selected parameters of

the simulated channel are shown in Fig. 1. The measurement noise and the input signal

were white (complex) Gaussian. The variance of the input signal was set to σ2
u = 1 and
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it was assumed that γi = 1, ∀i, i.e., η = n. Note that in FD UWA applications the input

signal, generated by the near-end transmitter, is known all the time.

Fig. 1 Real parts of selected parameters of the simulated channel.

Three variants of the signal-to-noise ratio were considered: 10 dB, 30 dB and 50

dB. For comparison, in addition to the optimized LBF algorithm, 3 variants of the

Legendre-based LBF algorithms were run, corresponding to m = 1, m = 3 and m = 5,

respectively. Fig. 2 shows the dependence of the steady state mean squared parameter

estimation errors, averaged over N = 105 time steps, on the width K of the analysis

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


interval. Additionally, in each case the plots illustrating the dependence of the optimal

number of basis functions on K were provided. Note that the optimized LBF algorithm

almost always yields results that are better than or equal to those obtained using the

Legendre-based LBF algorithms. When SNR=50 dB the performance gain is significant

and close to 10 dB for almost all values of K (note that in the full-duplex scenario, due

to the short distance between the transmit antenna and the receive antenna, the typical

SNR values are usually high, often in excess of 50 dB).

To obtain good tracking results using the Legendre-based LBF approach, the width of

the analysis window must be carefully tuned to the number of basis functions. Too small

or too large values of K for a chosen m may result in severe performance degradation. In

contrast with this, the optimized LBF algorithm is much easier to handle since the best

tracking performance is guaranteed for any preselected value of K, i.e., for any chosen

latency k. The lower performance bounds, shown in Fig. 1, were obtained by means of

unconstrained minimization of MSE regarded as a function of h = [h(−k), . . . , h(k)]T:

MSE(h) =
nσ2

e

σ2
u

hHh + η[rθ(0)− rH
θ h∗ − rT

θ h + hHRθh]. (14)

The optimal value of h is given by

hopt =

(
Rθ +

nσ2
e

ησ2
u

IK

)−1

r∗θ. (15)

The plots of MSE(hopt), shown in Fig. 2, constitute theoretical bounds on MSE which

could have been attained if one had a full control, via selection of basis functions, over the

shape of the impulse response {h(j)}. The limitations of the constrained optimization,

governed by (12), are clearly visible for small values of K.
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SNR=10 dB SNR=30 dB

SNR=50 dB

Fig. 2 Mean squared parameter tracking errors obtained for the Legendre-based LBF estimators and for the

optimized variant of the LBF scheme based on the Karhunen-Loève expansion (KL). The lower performance

bounds correspond to the optimal (unconstrained) choice of the impulse response. K denotes the width of the

local analysis interval and m is the number of applied basis functions. The number of estimated impulse

response coefficients was equal to n = 20. The graphs displayed below MSE plots show the dependence of the
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optimal

number of basis functions on K.

Finally, Table 1 shows the best results that can be obtained using the TU-RLS (time-

updated recursive least squares) algorithm, considered until recently the state-of-the-art

in UWA communication [16, 17].

SNR [dB] MSE [dB] λ µ

10 0.77 0.95 3.5E-03

30 -10.19 0.88 6.00E-07

50 -12.94 0.81 1.25E-02

Tab. 1 The best achievable performance yielded by the TU-RLS algorithm (λ and µ denote tuning parameters

specified in [16]).

5. Conclusion

It was shown that prior knowledge of the correlation structure of parameter changes

can be taken advantage of when selecting both the number and the type of basis functions

used in the local basis function approach to identification of time-varying communication

channels. Minimization of the mean squared parameter tracking error was performed

using a truncated Karhunen-Loève expansion of the estimated parameter trajectories.
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