
1 

KEMR-Net: A Knowledge-Enhanced Mask Refinement Network for 

Chromosome Instance Segmentation 

Renhao Zhou a, Linfeng Yu a, Ding Chen a, Haoxi Zhang a b, Edward Szczerbicki c 

a School of Cybersecurity, Chengdu University of Information Technology, 

Chengdu, China; b Advanced Cryptography and System Security Key Laboratory of 

Sichuan Province, Chengdu, China; c Faculty of Management and Economics, Gdansk 

University of Technology, Gdansk, Poland 

Abstract. This paper proposes a mask refinement method for chromosome 

instance segmentation. The proposed method exploits the knowledge 

representation capability of Neural Knowledge DNA (NK-DNA) to capture 

the semantics of the chromosome's shape, texture, and key points, and then 

it uses the captured knowledge to improve the accuracy and smoothness of 

the masks. We validate the method's effectiveness on our latest high-

resolution chromosome image dataset. The experimental results show that 

our proposed method's mask average precision (MaskAP) is 3.66% higher 

than Mask R-CNN and outperforms advanced Cascade Mask R-CNN by 

1.35%. 
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INTRODUCTION 

Chromosome segmentation is a fundamental task in human chromosome karyotype 

analysis. Chromosomes are randomly located and may overlap with others in the 

metaphase images. The manual segmentation of chromosomes is time-consuming and 

labour-intensive due to the complexity of the metaphase image (see Figure 1). Therefore, 

automatic chromosome segmentation can greatly facilitate karyotype analysis. 

Traditional chromosome segmentation methods heavily relied on computer image 

processing techniques, such as threshold-based, region-based, and edge-based 

segmentation methods (Minaee et al. 2014; Saiyod et al. 2014; Poletti Pallavoor et al. 

2012). These methods have achieved some success in pre-processing chromosome 

images and segmenting non-overlapping chromosomes. However, traditional 

 

Figure 1. The instance segmentation of chromosome. The goal of the chromosome 
instance segmentation is to separate chromosomes into instances (b) from the given 
image (a). 
 
 

(a) (b)
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segmentation methods based on fixed rules are not robust and fail in complex situations 

like chromosome overlaps or adhesions. 

The feasibility of neural networks in chromosome segmentation was first introduced 

in Hu's pioneering work (Hu et al. 2017) using a U-Net (Ronneberger et al. 2015). They 

focus on segmenting overlapping and non-overlapping regions of chromosomes. Their 

method constrains that overlaps only happen between two chromosomes, and their 

dataset is constructed under this constraint via synthesis images. Subsequent 

improvements and attempts based on U-Net networks have been made by other 

researchers (Mei et al. 2022; Bai et al. 2022). These approaches are highly accurate in 

segmenting overlapping and non-overlapping regions of chromosomes. However, they 

require complex pre-processing steps of dividing chromosomes into chromosome 

clusters, and they can only perform semantic segmentation that cannot produce complete 

chromosome instances. Moreover, combining the overlapping and non-overlapping 

regions into complete chromosomes will dramatically increase the method's complexity. 

To directly generate the complete mask of each chromosome, instance segmentation 

methods were introduced by researchers. Several studies (Pijackova et al. 2022; Wang et 

al. 2022) apply the Mask R-CNN model (He et al. 2017) to chromosome instance 

segmentation. Lin proposed an improved AS-PathNet based on the path enhancement 

network (Lin et al. 2020). Feng et al. (2020) proposed a Mask Oriented R-CNN 

chromosome instance segmentation framework based on components such as a directed 

enclosing frame, AwIoU metric, and directed convolutional pathway structure. 
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The existing chromosome instance segmentation networks use the fully 

convolutional network (FCN) as the segmentation branch. However, the deconvolution 

operation used in FCN inevitably loses low-dimensional semantic information, resulting 

in poor performance predicting instance masks. We propose a knowledge-enhanced 

method for refined masks to improve the accuracy and robustness of chromosome 

instance segmentation. Our approach uses a cascaded network for initial instance 

segmentation. Then, it utilizes probability graphs to describe the relationship between 

the pixel values and the initial masks of chromosome instances. This relationship 

effectively expresses the knowledge of the chromosome's shape, texture, and key points 

and is captured by the NK-DNA. The introduction of knowledge into chromosome 

instance segmentation notably increases the accuracy and robustness of the model. 

Moreover, our method avoids complex pre-processing and post-matching procedures, 

making it more practical for real-world applications. 

We create a high-resolution chromosome image dataset with 901 metaphase cases 

to evaluate our proposed method. Our method achieves a 3.66% improvement to the 

baseline method Mask R-CNN and is 1.35% more accurate than Cascade Mask R-CNN 

on the Mask AP. 
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NEURAL KNOWLEDGE DNA 

Neural knowledge DNA (NK-DNA) is proposed to store and represent knowledge 

captured in machine learning systems that use artificial neural networks as the central 

driving force of their intelligence. The construction of NK-DNA is similar to the 

formation of DNA (Travers 2015): it is composed of four key elements. When DNA 

produces a phenotype, neural knowledge DNA carries information and knowledge 

through its four key components: States, Actions, Experiences, and Networks (see Figure 

2).  

Generally, knowledge is acquired as models after training in machine learning 

systems. The model usually stores information about weights and biases of the 

connections between neurons of the neural network and the hierarchy of the neural 

network in detail. In the NK-DNA,  the Networks is used to carry such models, and in 

this study, we utilize the fully connected conditional random fields (FC-CRFs) (Lafferty 

et al. 2002) as the Networks to interpret the relationship among all pixels in the masks. 

 

Figure 2. The conceptual structure of the NK-DNA. 
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CASCADE MASK R-CNN  

Cascade Mask R-CNN is a multi-stage extension of the Faster R-CNN architecture. It 

aims to get high-quality target detection. It is achieved by combining cascade bounding 

box regressions. As shown in figure 3: the Cascade Mask R-CNN has three heads linked 

together in a series. It means that the former head's output is the latter's input. This form 

of linked structure is called: cascading. 

The cascade detector has three increasing IoU thresholds (i.e., 0.5, 0.6, 0.7) for its 

three heads, respectively. It solves the problem of the degrading performance with 

increased IoU thresholds and improves the hypotheses quality, ensuring a positive 

training set for three detectors and minimizing overfitting. 

The identical three cascade detectors in the segmentation branches output the initial 

mask in a sequential manner. The last head produces the initial masks of our approach 

from an ensemble of three segmentation branches.  

 

Figure 3.  The architectures of Cascade Mask R-CNN  
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KNOWLEDGE-ENHANCED MASK REFINEMENT NETWORK 

A. Overview 

The proposed mask refinement method for chromosome instance segmentation mainly 

consists of Feature Extraction, Initial Chromosome Segmentation, and Mask Refinement. 

As shown in Figure 4: Firstly, a backbone network is used to extract image features, and 

then, the extracted features are fed into the Cascade Mask R-CNN for predicting classes, 

bounding boxes, and generating initial masks. Finally, these initial masks and bounding 

boxes are sent to the FC-CRFs stored as NK-DNA knowledge for refinement. After mask 

refinement, our approach produces the final masks the same size as the input metaphase 

images. 

B. KNOWLEDGE BUILDING AND REASONING 

Humans can naturally utilize the sense of objects' boundaries and contents for 

segmentation tasks. Inspired by this, we introduce the semantics of boundaries and 

contents as a kind of knowledge into chromosome instance segmentation in this work. In 

order to capture the semantics among all pixels in the initial masks, the FC-CRFs (fully 

connected conditional random fields) are used.  FC-CRFs have good Markovianity, and 

 
Figure 4. The architecture of our Knowledge-Enhanced Mask Refinement Network. 
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the maximal cliques of FC-CRFs are all mutually independent sets of random variables, 

which enables FC-CRFs the good divisibility and effectiveness for refining the 

chromosome instance masks. 

 First, we build a random field 𝑋𝑋 = {𝑋𝑋1,𝑋𝑋2,⋯ ,𝑋𝑋𝑁𝑁} for the N pixels of a chromosome 

mask. 𝑋𝑋𝑖𝑖  denotes that the 𝑖𝑖𝑡𝑡ℎ  pixel is assigned to a category label by the cascade 

segmentation network. Next, we define another random field 𝐼𝐼 = {𝐼𝐼1, 𝐼𝐼2,⋯ , 𝐼𝐼𝑁𝑁} , 

consisting of RGB values of pixels (see Figure 5), where  𝐼𝐼𝑖𝑖 represents the RGB value of 

the 𝑖𝑖𝑡𝑡ℎ pixel, and the distribution of the conditional random field (𝐼𝐼,𝑋𝑋) conforms to the 

Gibbs distribution. Therefore, the task of instance mask refinement can be expressed as 

minimizing the conditional probability: 

                                                               𝑃𝑃(𝑋𝑋|𝐼𝐼) = 1
𝑍𝑍(𝐼𝐼)

𝑒𝑒−𝐸𝐸(𝑋𝑋|𝐼𝐼) ,                                         (1) 

where 𝑍𝑍 is a matrix that has the same size as the instance mask. It is the normalization 

factor of the Gibbs distribution. In FC-CRFs, the corresponding energy 𝐸𝐸(𝑋𝑋|𝐼𝐼) is defined 

as:  

 

Figure 5. The conditional random field of the chromosome image  

ix
𝑖𝑖
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                                          𝐸𝐸(𝑋𝑋) = ∑ 𝜓𝜓(𝑥𝑥𝑖𝑖)𝑖𝑖 + ∑ 𝜓𝜓𝑝𝑝(𝑥𝑥𝑖𝑖 · 𝑥𝑥𝑗𝑗)𝑖𝑖<𝑗𝑗   ,                             (2) 

where 𝐸𝐸(𝑋𝑋|𝐼𝐼) takes values in the range (0, 1], with a maximum value of 1 and a minimum 

value infinitely converging to 0. The unary potential function 𝜓𝜓(𝑥𝑥𝑖𝑖) is used to measure 

the class probability of a pixel. It represents the probability that the 𝑖𝑖𝑡𝑡ℎ pixel predicted to 

be 𝑥𝑥𝑖𝑖 . And the unary potential comes from the output sampled on the segmentation 

network. The pairwise potential 𝜓𝜓𝑝𝑝(𝑥𝑥𝑖𝑖 · 𝑥𝑥𝑗𝑗) describes the relationship between pixels. 

We want pixels with the same relationship to be given the same category label, while 

pixels with dissimilar relationships are determined to be in different categories. The  

𝜓𝜓𝑝𝑝(𝑥𝑥𝑖𝑖 · 𝑥𝑥𝑗𝑗)  is calculated as: 

 𝜓𝜓𝑝𝑝�𝑥𝑥𝑖𝑖 · 𝑥𝑥𝑗𝑗� = u�𝑥𝑥𝑖𝑖 · 𝑥𝑥𝑗𝑗�∑𝑤𝑤𝐾𝐾�𝑓𝑓𝑖𝑖 ,𝑓𝑓𝑗𝑗�  ,                       (3) 

which considers the pixels' RGB values and the distance between pixels: Where 𝑢𝑢(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) 

represents label compatibility, constraining that energy can be transferred between pixels 

only if they have the same label. The 𝑤𝑤 is the weight parameter, and 𝐾𝐾(𝑓𝑓𝑖𝑖,𝑓𝑓𝑗𝑗) is the 

feature function representing the pixels' RGB values and distance as: 

                 𝐾𝐾�𝑓𝑓𝑖𝑖 ,𝑓𝑓𝑗𝑗� = 𝑤𝑤1 𝑒𝑒𝑒𝑒𝑒𝑒( −
�𝑝𝑝𝑖𝑖−𝑝𝑝𝑗𝑗�

2

2𝜎𝜎𝛽𝛽
2 −

�𝐼𝐼𝑖𝑖−𝐼𝐼𝑗𝑗�
2

2𝜎𝜎𝛽𝛽
2 ) + 𝑤𝑤2 𝑒𝑒𝑒𝑒𝑒𝑒( −

�𝑝𝑝𝑖𝑖−𝑝𝑝𝑗𝑗�
2

2𝜎𝜎𝛾𝛾2
)    .           (4) 

Where it has two Gaussian kernels: The first Gaussian kernel takes both the pixel's 

position (denoted as 𝑝𝑝) and RGB value (denoted as 𝐼𝐼), while the second only calculates 

the pixels' distance. The hyperparameters 𝜎𝜎𝑚𝑚  , 𝜎𝜎𝛽𝛽  and  𝜎𝜎𝛾𝛾 control the "scale" of the 

Gaussian kernel.  

𝐸𝐸(𝑋𝑋|𝐼𝐼)  equals 0 when each pixel is correctly classified. Consequently, the 

optimization process is to minimize this energy by finding the correct parameters 𝑤𝑤1 and 
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𝑤𝑤2 in this conditional distribution. The smaller the energy 𝐸𝐸(𝑋𝑋|𝐼𝐼), the more accurate the 

predicted category label 𝑋𝑋. As a result, FC-CRFs enable the masks to be segmented along 

the border as precisely as possible. Figure 6 demonstrates the effectiveness of our method 

on chromosome instance segmentation. 

THE EXPERIMENT 

A. DATASET  

The chromosome images used by cytogeneticists are not standardized. The resolution of 

chromosome images undergoes a series of changes (Figure 7). Rather than tackle the pre-

process-to-non-overlapping chromosome images shown in Figure 7 (d), we collect and 

create our high-resolution chromosome dataset from authentic day-to-day clinic case 

images like Figure 7(e), which have overlaps and adhesions among chromosomes.  These 

images are collected at the Department of Medical Genetics/Prenatal Diagnostic Center, 

West China Second Hospital. We label images with the annotation tool Labelme and 

 

Figure 6. Mask qualitative comparison of Mask R-CNN and the proposed approach. 
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resize them to 1280 × 1024. The dataset consists of 901 metaphase case images, including 

720 case images in the training set and 181 in the test set. 

B. EVALUATION METRICS 

Bounding box average precision(BoxAP), MaskAP, and Instance Accuracy(IA) metrics 

are used to evaluate the results. MaskAP is directly related to segmentation accuracy, 

which is the mean average precision (mAP) under different IoU thresholds. BoxAP 

measures bounding box average precision. BoxAP and MaskAP are calculated using the 

method defined in the COCO dataset (Dataset of Common Objects in Context Visual 

Recognition Challenge (Lin et al. 2014). AP50 signifies the IoU threshold of 0.5 is used 

to determine whether the predicted mask is positive in the assessment, and the rest of the 

IoU thresholds were expressed similarly. AP without threshold refers to the average 

result when the IoU is thresholded at 0.05 intervals between 0.5 to 0.95. Instance 

 
Figure 7. Datasets used for chromosome segmentations. The early chromosome images 
only have the outlines of chromosomes (a). In recent years, chromosome image resolution 
has been increasing: (b) and (c) show G200 and G300 resolution chromosome images, and 
(d) and (e) illustrate resolution G550 resolution chromosome images, respectively. In this 
work, we create our own dataset using images as (e). 

(a) (b)

(c) (d) (e)

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


 12 

Accuracy refers to the number of instances that are accurately segmented as a percentage 

of instances in the ground truth, abbreviated as IA: 

                                                                       𝐼𝐼𝐼𝐼 =  𝑁𝑁′

𝑁𝑁
         ,                                                             (5) 

where N denotes the actual number of all chromosome instances in the dataset, and N′ 

denotes the number of chromosome instances segmented by the model. The higher metric 

of IA, the more accurate the model is. 

C. EXPERIMENT SETTINGS 

The method proposed in this paper is implemented based on Pytorch 1.8.0. The 

experimental device is a computer with 16GB of RAM and an Intel(R) Core (TM) i7-

8700 CPU with ubantu18.04, carrying an NVIDIA TITAN XP with 12GB memory. Each 

model was set to train for 100 epochs, and all models were trained using ResNet-101 as 

the backbone. We optimize our model using Adam optimizer, with an initial learning rate 

of 10−3, and weight decay 10−4 . We set the interval to [0, 160,000, 200,000]. Each 

batch has two images. We adjust the learning rate at 0, 18000, and 240000 iterations and 

adjust the size of the gamma of the current learning rate. 

D. RESULTS 

Table 1: Comparison of models for chromosome instance segmentation. 

Model 𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 𝑨𝑨𝑨𝑨𝟓𝟓𝟓𝟓𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 𝑨𝑨𝑨𝑨𝟕𝟕𝟕𝟕𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 𝑰𝑰𝑰𝑰 

Mask R-CNN 88.91 75.12 95.35 87.15 90.21 

Blend Mask 88.97 76.09 95.86 87.67 90.15 

Cascade Mask R-CNN 𝟗𝟗𝟗𝟗.𝟒𝟒𝟒𝟒 77.43 97.47 90.83 95.19 

Ours 91.38 𝟕𝟕𝟕𝟕.𝟕𝟕𝟕𝟕 𝟗𝟗𝟗𝟗.𝟕𝟕𝟕𝟕 𝟗𝟗𝟗𝟗.𝟗𝟗𝟗𝟗 𝟗𝟗𝟗𝟗.𝟐𝟐𝟐𝟐 
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Segmentation accuracy is crucial for chromosome karyotype analysis. We compare the 

performances of our proposed methods with Mask R-CNN, Blendmask, and Cascade 

Mask R-CNN. The experiment result is summarised in Table 1. Our method outperforms 

Mask R-CNN by 3.66% and 2.47% in terms of mask average precision (MaskAP) and 

bounding box average precision (BoxAP), respectively. 

Specifically, in the maskAP50 metric, our method has a 2.41% improvement. In the 

MaskAP 75, our model obtains a 4.8% improvement. Meanwhile, Cascade Mask R-CNN 

and our model significantly outperformed Mask R-CNN and  Blendmask, which are not 

cascaded on both BoxAP and IA. Figure 8 shows the prediction comparison between our  

method and Mask R-CNN. In bounding box and mask accuracy, our method shows better 

results. 

 
Figure 8. Segmentation result comparison on high-resolution image. 

Mask R-CNN Ours
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CONCLUSION AND FUTURE WORK 

In this paper, we propose KEMR-Net, a knowledge-enhanced mask refinement network 

for chromosome instance segmentation, and validate it on our latest high-resolution 

chromosome dataset. Our method uses a cascaded network to produce high-quality 

chromosome detections and initial instance masks.  Then it optimizes the initial masks 

with the knowledge contained by the NK-DNA. The experiment results show that our 

method obtains a 3.66% improvement compared to the baseline method (Mask R-CNN) 

and outperforms Cascade Mask R-CNN by 1.35% on mask AP. There is still room to 

improve the segmentation accuracy in regions with multiple chromosomes overlapping. 

We plan to work on analyzing the semantic knowledge of overlapping regions to achieve 

more accurate segmentation results.  
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