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Knowledge‑based expedited 
parameter tuning of microwave 
passives by means of design 
requirement management 
and variable‑resolution EM 
simulations
Slawomir Koziel 1,2, Anna Pietrenko‑Dabrowska 2* & Ali Ghaffarlouy Raef 1

The importance of numerical optimization techniques has been continually growing in the design of 
microwave components over the recent years. Although reasonable initial designs can be obtained 
using circuit theory tools, precise parameter tuning is still necessary to account for effects such as 
electromagnetic (EM) cross coupling or radiation losses. EM‑driven design closure is most often 
realized using gradient‑based procedures, which are generally reliable as long as the initial design is 
sufficiently close to the optimum one. Otherwise, the search process may end up in a local optimum 
that is of insufficient quality. Furthermore, simulation‑based optimization incurs considerable 
computational expenses, which are often impractically high. This paper proposes a novel parameter 
tuning procedure, combining a recently reported design specification management scheme, and 
variable‑resolution EM models. The former allows for iteration‑based automated modification of 
the design goals to make them accessible in every step of the search process, thereby improving 
its immunity to poor starting points. The knowledge‑based procedure for the adjustment of the 
simulation model fidelity is based on the convergence status of the algorithm and discrepancy 
between the current and the original performance specifications. Due to using lower‑resolution EM 
simulations in early phase of the optimization run, considerable CPU savings can be achieved, which 
are up to 60 percent over the gradient‑based search employing design specifications management and 
numerical derivatives. Meanwhile, as demonstrated using three microstrip circuits, the computational 
speedup is obtained without design quality degradation.

Geometries of microwave passive components become continuously more involved to fulfil the performance 
requirements of various application areas (wireless communications including 5G and  6G1,2, internet of  things3, 
wireless  sensing4, microwave  imaging5, wearable  devices6, autonomous  vehicles7, etc.). In particular, many of 
these applications require specific functionalities such as multi-band  operation8, harmonic  suppression9, cus-
tomized phase  characteristics10,  reconfigurability11, often combined with limitations on the physical size of the 
 devices12–15. Due to their inherent complexity, microwave structures designed to meet these and other require-
ments typically feature considerably increased numbers of design variables than conventional circuits, whereas 
their design process has to account for several objectives and constraints imposed on their electrical character-
istics. Adequate parameter tuning of such circuits requires rigorous numerical  optimization16–20. At the same 
time, the adjustment process has to be carried out at the level of full-wave electromagnetic (EM) simulations 
to account for effects such as EM cross-couplings, or dielectric and radiation losses. These cannot be properly 
quantified using analytical or equivalent network models, yet are important for the operation of modern circuits 
implemented using techniques such as transmission line  folding21, defected ground  structures22, the employment 
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of slow-wave phenomena (e.g., compact microstrip resonant cells,  CMRCs23), or the incorporation of geometrical 
modifications  (stubs24,  slots25, shorting  pins26). Although imperative from the standpoint of ensuring design 
quality, EM-driven design optimization is computationally expensive, even in the case of local  tuning27, let alone 
 global28 or multi-objective  search29, or statistical  design30.

Given the importance of simulation-based design, substantial research efforts have been aimed at addressing 
the underlying challenges, primarily in terms of improving the computational efficiency of the optimization pro-
cedures. In the case of local gradient-based search, the major bottleneck is the evaluation of the system response 
gradients, which can be accelerated using adjoint  sensitivities31,32, by restricting the finite-differentiation-based 
 updates33–35, or utilization of mesh deformation  techniques36. In some cases, the cost of simulation-driven design 
may be reduced by the employment of fast dedicated  solvers37. Another option is the exploration of the specific 
structure of the system response (e.g., the allocation of resonances, in-band ripples, etc.) using techniques such 
as response feature  technology38,39, or cognition-driven  design40. Notwithstanding, one of the most popular 
approaches in the recent years have become surrogate-assisted  methods20,41,42. Therein, most of the operations 
are carried out at the level of fast surrogates, with costly EM simulations only executed occasionally, to validate 
the designs produced using the metamodels or to obtain the data necessary for model refinement. Among the 
two major classes of surrogate modelling methods, the physics-based ones are more often used for local search 
purposes (space  mapping43, response  correction44–46), whereas data-driven models  (kriging47, Gaussian process 
regression,  GPR48, artificial neural  networks49–51, support vector  regression52, polynomial chaos  expansion53) 
are perceived as more generic, and suitable for global and multi-criterial  design54–56, as well as uncertainty 
 quantification57–60. Related methods include machine learning  techniques61–63, as well as surrogate-assisted frame-
works involving variable-resolution models (two-level  GPR64, co-kriging65).

While the methods outlined in the previous paragraph mainly focus on reducing the CPU costs, reliability of 
simulation-based design procedures is just as important consideration. In practice, the lack of sufficiently good 
initial design may lead to a failure of local parameter tuning, with the alternative being the involvement of much 
more expensive global search algorithms. A typical situation is dimension scaling (re-design of a circuit to meet 
different operating parameters, e.g., the centre frequency or dielectric substrate), or design of miniaturized com-
ponents employing  CMRCs66. Although global search may be accelerated using surrogate-assisted  methods67,68, 
these methods are incapable of handling structures featuring large number of  parameters69.

An attempt to address the reliability issues pertinent to local search procedures has been made in a recently 
introduced design requirement management  procedure70. Therein, the design goals for a given iteration of the 
optimization algorithm are set up having in mind the actual operating parameters of the circuit at hand. In 
particular, the goals (e.g., target operating frequencies) are relocated automatically to ensure their attainability 
through local tuning. As the optimization process progresses, the objectives step-by-step converge to their initial 
values. The method of Koziel et al.70 has been shown to significantly enhance the immunity of the gradient-
based algorithms to inferior-quality starting points at the expense of a certain increase of the computational 
cost. In this paper, we describe a novel procedure, which is an advancement  over70 in terms of improving the 
computational efficacy of the search process. The latter is achieved via the incorporation of variable-fidelity EM 
models, selected from a continuous spectrum of the assumed resolutions. A priori knowledge concerning the 
range of admissible model resolutions is necessary to set up the proposed optimization framework, and it has to 
be provided by the user. Typically, this range is assessed through grid convergence studies, i.e., visual inspection 
of the families of component responses at various fidelities. The lowest-fidelity simulations are utilized at the 
onset of the optimization process, which allows for parameter space exploration at minimum CPU expenses. 
During the algorithm course, the problem-specific knowledge (in the form of the actual operating parameters of 
the current design) is extracted from the EM-simulated components response at this design, and, similarly as in 
Koziel et al.70, is subsequently utilized to adjust the design goals at the current iteration, as well as the EM model 
fidelity. As the design goals (according to the scheme adopted  from70) become closer to their original values, 
and the algorithm starts to converge—as measured by the relocation of the design and iteration-wise objective 
function differences—the model fidelity increases, to eventually attain the high-fidelity level near the conclusion 
of the run. The proposed knowledge-based procedure has been verified using three microstrip circuits, including 
two couplers and a dual-band power divider. The obtained results demonstrate a significant improvement of the 
computational efficiency with the average savings of 55 percent over the single-fidelity procedure of Koziel et al.70, 
and essentially no detrimental effects on the design quality. The presented algorithm offers improved reliability 
under difficult design scenarios (e.g., poor initial conditions), as well as reduced running costs. The former 
feature extends the applicability of local search procedures by reducing the need to default to global routines, 
which is of significant practical importance. The aforementioned advantages of the introduced procedure, i.e., its 
enhanced reliability and increased computational efficacy, have been achieved by employing two mechanisms, 
automated design requirement management and knowledge-based adjustment of the simulation model fidelity.

The novelty and the technical contribution of this work can be summarized as follows: (1) development and 
implementation of a variable-resolution design optimization framework algorithm with design requirement man-
agement, (2) association of the model fidelity management scheme with the discrepancy between the target and 
actual operating frequencies of the component under design, (3) verifying reliability and low computational cost 
of the introduced algorithm under demanding scenarios, especially inferior-quality starting points operating at 
frequencies severely misaligned with the targets. The presented algorithm combines the computational efficiency 
and robustness, which are integrated in a single optimization procedure. To the authors’ best knowledge, no com-
parable algorithm for design optimization of microwave components has been reported in the literature thus far.
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Adaptive design requirements for reliability improvement
This section briefly summarizes the adaptive performance specification method of Koziel et al.70, which is one 
of the two major ingredients of the optimization framework proposed in the paper. The other, variable-fidelity 
model management, will be elaborated on in “Variable-fidelity models for optimization cost reduction” section.

Automated adaptation of design requirements for local search enhancement. The design 
requirement management scheme of Koziel et al.70 will be explained using a design problem in which the N-band 
circuit at hand is to work at the target frequencies fk, k = 1. We denote by x a vector of design parameters, and 
by S(x) the EM-evaluated outputs (normally, the scattering parameters). The frequencies fk are gathered into a 
target vector F = [f1 … fN]T. The aim is to find

with U being a merit function (or objective function). For additional clarification, consider an equal-split cou-
pler, which is to run at the operating frequency f0; the device is supposed to minimize both input matching and 
port isolation at f0. Given the above, the characteristics of interest are S-parameters Sj1, j = 1, …, 4. The function 
U can take the form of

Note that the objectives are categorized: minimization of |S11| and |S41| is the primary goal; the equal power 
split condition is an equality constraint, ensured by the penalty term proportional to the penalty coefficient β. 
It should be emphasized that (2) is only an illustrative example, whereas the overall concept outlined here is 
generic and applicable to other EM-driven tasks.

Figure 1 shows the example of a branch-line coupler, which is intended to work at 1.8 GHz. Local search start-
ing from the design indicated using black lines will succeed, whereas optimization from the design shown using 
the grey lines will fail because of a significant discrepancy between the target and existent operating frequencies.

The automated adaptive specification management  scheme70 addresses the above issue by relocating the targets 
throughout the optimization run so that they are reachable at each stage of the process. The amount of reloca-
tion depends on the detected discerned discrepancy between the existent and desired operating frequencies. A 
graphical illustration of the specification management procedure has been provided in Fig. 2.

Automated adaptation of design requirements: prerequisites and implementation. The 
design specification management scheme operates based on the following prerequisites: (i) the necessary reloca-
tion of the target frequencies should be identified using the actual operating conditions at the current design, 
and (ii) the relocated goals should be reachable through local search.

In the following, J(x) will represent the sensitivity matrix of the system outputs S(x). Assuming that the opti-
mization procedure is iterative and yields approximate designs x(i), i = 0, 1, …, to the optimum solution x* of (1) 
(x(0) denotes the starting point), we utilize the first-order linear expansion model LS

(i)(x) of S(x) at x(i)

(1)x∗ = argmin
x

U(S(x), F)

(2)
U(S(x), F) = U

(

[S11(x, f ), S21(x, f ), S41(x, f ), S41(x, f )], [f0]
)

=

max
{

|S11(x, f0)|, |S41(x, f0)|
}

+ β
[

|S21(x, f0)| − |S31(x, f0)|
]2

(3)L
(i)
S (x) = S(x(i))+ J(x(i)) · (x − x(i))
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Figure 1.  S-parameters of a compact branch-line coupler. Vertical line indicates the intended operating 
frequency of 1.8 GHz, which is reachable by a local optimizer if launched from the design marked black. Yet, it 
cannot be reached from the design marked grey due to the operating frequency overly distant from the intended 
one.
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Also, consider an auxiliary sub-problem

where the search radius D is typically set to D = 1, whereas xtmp denotes the temporary design.
The automated alteration of design specs is based on the factors described in Table 170.These guide the 

decision-making process and are used to define the conditions gathered in Table 2, satisfaction of which decides 
upon modification of the design goals with respect to their original values aggregated in the target vector F. In 
particular, satisfaction of any of the conditions is considered an indication that the performance requirements 
are unlikely to be attained and should be relaxed accordingly.

(4)xtmp = arg min
||x−x(i)||≤D

U(L
(i)
S (x), F)

(a)                                                                         (b)

(c)                                                                         (d)
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Figure 2.  The concept of the design requirement adjustment on the example of a branch-line coupler of Fig. 1. 
The starting point (marked gray) and the intended operating frequency (marked using vertical line) are identical 
to that of Fig. 1: (a) target frequency shifted near the actual operating frequency of the initial design to make 
sure that the ongoing specifications (dashed line) may be reached from this very design, (b) intermediate step 
with the current design and specs shown, (c) ultimate optimization step: the intended operating frequency 
restored to its assumed value, (d) final design meeting the original requirements.

Table 1.  Adaptive performance specifications: decision factors.

Decision factor Analytical formulation Comments

Improvement factor Fr =
∣

∣

∣
U(L

(i)
S (xtmp), F)− U(L

(i)
S (x(i)), F)

∣

∣

∣

Determines potential for design improvement starting from x(i)

Distance between the actual and target operating frequencies
Dc = ||Fc − F||

where
Fc = [fc.1 … fc.N]T (actual operating frequencies) 
F = [f1 … fN]T (target frequencies)

Used as a safeguard to ensure that the updated specifications are 
sufficiently close to the current operating frequencies

Table 2.  Design specification adjustment  conditions&. & Design specifications will be subject to modification if 
either of the conditions is satisfied. $ Fr.min and Dc.max are the user-defined acceptance thresholds.

# Condition$ Comment

1 Fr < Fr.min Fr is too small =  > current design is not likely to be improved sufficiently when starting from x(i)

2 Dc > Dc.max Dc is too large =  > the operating frequencies at x(i) are too far away from the current targets
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The thresholds Fr.min (for improvement factor) and Dc.max (for distance between the actual and target operating 
frequencies) of Table 2 are generally problem dependent, and should be set up having in mind the typical (or 
expected) operating bandwidths of the circuit at hand. A simple procedure for adjusting these values has been 
described in Koziel et al.70.

Having defined the decision factors and adjustment conditions, we can now summarize the design specifi-
cation management procedure. The target operating frequencies for the (i + 1)th iteration of the optimization 
algorithm will be denoted as Fcurrent(a) = [fcurrent.1(a) … fcurrent.N(a)]T, where 0 ≤ a ≤ 1. The individual frequencies 
fcurrent.k are obtained as

where fc.k are the existent operating frequencies at x(i) (we also have the vector of current operating frequen-
cies Fc = [fc.1 … fc.N]T). The value of the factor a is determined as the maximal value a ≤ 1 so that Fr ≥ Fr.min and 
Dc ≤ Dc.max at the design xtmp obtained through minimizing (cf. (4))

In practice, a is found using an auxiliary numerical optimization process, in which it is gradually reduced 
(starting from a = 1) so that Fr ≥ Fr.min and Dc ≤ Dc.max for xtmp produced by (6). Satisfaction of both conditions 
means that the current targets are reachable from x(i). In the course of the optimization run, the adjusted specs 
will ultimately converge to the assumed values (which is equivalent to satisfying both Fr ≥ Fr.min and Dc ≤ Dc.max 
for a = 1), assuming that that initial specs are attainable. Otherwise, the algorithm will terminate when getting 
as close to the targets as achievable.

The described decision-making procedure is executed before each iteration of the search process. Conse-
quently, the design targets are continuously adjusted to account for the current discrepancies between the actual 
and desired operating parameters. An important observation is that the modification process incurs no extra 
computational costs (in terms of additional EM evaluations), because it is based on the sensitivity data already 
evaluated during routine working of the optimization procedure.

Variable‑fidelity models for optimization cost reduction
In this work, the primary tool incorporated to enhance computational efficacy of the optimization process is the 
incorporation of variable-fidelity EM simulation models. This section explicates the introduced knowledge-based 
model fidelity management procedure, which is based on two factors: (1) the detected discrepancy between the 
current and original design targets, and (2) the convergence indicators of the algorithm.

Variable‑fidelity EM simulations. Computational models of microwave devices can be implemented 
using full-wave EM  analysis71, or circuit theory tools (equivalent  networks72, analytical  descriptions73). In this 
work, it is assumed that the primary (high-fidelity) representation of the circuit of interest is in the form of (high-
fidelity) EM simulation, whereas lower-fidelity models are obtained through EM analysis executed at lower 
discretization density of the structure. This is a versatile and easy to control way, which also ensures a sufficiently 
good correlation between the models of different resolutions. Other simplification factors (e.g., neglecting losses, 
reducing computational  domain74) will not be considered here. Utilization of multi-fidelity models can be ben-
eficial for computational efficiency of the CAD procedures, e.g., space  mapping75, response  correction45,46, co-
kriging76. Typically, two levels of fidelity are employed (coarse/low-fidelity, fine/high-fidelity)77), which raises 
some practical issues related to appropriate model selection and  setup78.

Model fidelity can be modified using the parameters controlling the meshing algorithms, e.g., lines-per-
wavelength (LPW) of CST Microwave Studio. Figure 3 provides an example of a dual-band power divider and the 
relationship between LPW and the average simulation times of the structure. The minimum model fidelity (here, 
denoted as Lmin) should be selected to ensure that the corresponding circuit responses are still representative, i.e., 
not excessively distorted with respect to the maximum fidelity (here, denoted as Lmax). The latter, corresponding 
to the high-fidelity model, should render the circuit response of the accuracy considered sufficient for practical 
purposes. Observe that in our work, the model accuracy is understood as the accuracy of the EM simulation 
model implemented is CST Microwave Studio, and it depends on the mesh density. In general, the higher the 
density, the better the model accuracy.

The computational model fidelity L is selected from the admissible range Lmin ≤ L ≤ Lmax. At the initial phase 
of the optimization procedure, L is set to Lmin so as to accelerate the optimization process. Towards the end of 
the run, L gradually converges to Lmax to ensure reliability. The resolution at any given iteration of the optimiza-
tion algorithm is governed by the discrepancy between the original and current values of the target operating 
frequencies (cf. “Knowledge-based model fidelity adjustment based on performance specifications”section), 
and by the algorithm convergence status (cf. “Model fidelity adjustment based on convergence status”section).

Knowledge‑based model fidelity adjustment based on performance specifications. Here, 
we propose to adjust the model fidelity at the initial phase of the optimization run based on the distance 
Dcr =||Fcr − F|| between the target operating vector Fcr at the current iteration point and the target F. It should be 
noted that Dcr is similar to Dc (cf. Table 1), but evaluated using the modified targets instead of the current operat-
ing frequencies Fc. Further, we denote Dcr

(0) as the value of Dcr after the initial adjustment of the targets, which 
will be the point of reference for subsequent fidelity modifications. At this point, the fidelity parameter L is set 

(5)fcurrent.k(a) = (1− a)fc.k + afk for k = 1, . . . ,N

(6)xtmp = arg min
||x−x(i)||≤1

U(L
(i)
S (x), Fcurrent(a))
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to Lmin (i.e., the optimization process is initiated with the lowest-fidelity model). The model fidelity L(i) at the ith 
iteration is set according using the formula

where Fcr denotes the target operating vector at the current iteration point, D(i)
cr = ||F

(i)
cr − F|| ; here, and Fcr

(i) 
stands for the target operating frequencies modified for iteration i. The scalar coefficient α ∈ [0, 1] controls the 
maximum model fidelity used until Fcr

(i) reaches F (for the experiments of “Verification case studies” section, 
we set α = 0.5).

Model fidelity adjustment based on convergence status. The increase of the model fidelity is con-
tinued after reducing Dcr

(i) to zero, i.e., after Fcr
(i) becomes equal to F. This second stage is governed by the proce-

dure discussed  in79. It is also assumed that the optimization process is concluded if one of the two conditions is 
met: (i) ||x(i+1) − x(i)||< εx (convergence in argument), or |U(x(i+1)) − U(x(i))|< εU (convergence in the merit function 
value). Therein, εx and εU are the termination thresholds, set to εx =  10−3 and εU =  10−2, in the numerical experi-
ments of “Verification case studies” section. Let us also consider the convergence  factor79

(7)L(i) = Lmin + α(Lmax − Lmin)

[

1−
D
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Figure 3.  Dual-band power divider with multi-fidelity EM simulations: (a) average simulation time vs model 
resolution (controlled by LPW, i.e., lines-per-wavelength parameter), (b) certain S-parameters for the chosen 
LPW values. The vertical lines denote resolutions of the fine (high-fidelity) model (—), and the coarse (low-
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It is employed to decide upon the model fidelity level L(i+1) for the (i + 1)th algorithm iteration. We have

where Lcr is the model fidelity when the actual frequency Fcr
(i) first reached the target F. The parameter M deter-

mined the convergence level for initiating fidelity adjustment (set M =  102εx, as recommended  in79). Furthermore, 
the fidelity is obligatorily set to Lmax near the convergence if the highest L(i) was below Lmax. In such case, the 
search region size (cf. “Trust-region-embedded gradient-search” section) is additionally extended by a multiplier 
Md (we use, Md = 10), and the search continues with L(i+1) = Lmax

79.
The final acceleration mechanism is to evaluate the Jacobian matrices of the circuit at hand through finite 

differentiation executed at iteration i at lower level of fidelity LFD (model fidelity for carrying out finite differen-
tiation), rather than L(i). Here, LFD = max{Lmin, λL(i)}, with λ = 2/3 (cf.79). It has been observed that this typically 
results in reducing the overall computational cost (due to good correlation of sensitivities for models of different 
resolutions), even though the optimization may require a slightly larger number of iterations.

Complete optimization framework
Here, we put together the algorithmic components discussed in “Adaptive design requirements for reliabil-
ity improvement” and “Variable-fidelity models for optimization cost reduction” sections, and summarize the 
operation of the entire procedure proposed in this work. The core optimization procedure is a gradient-based 
routine with numerical derivatives, which will be recalled in “Trust-region-embedded gradient-search” section. 
“Optimization algorithm” section provides the pseudocode of our algorithm, along with the flow diagram thereof.

Trust‑region‑embedded gradient‑search. The algorithmic components oriented towards improving 
the reliability (“Adaptive design requirements for reliability improvement” section) and computational effi-
ciency of the search process (“Variable-fidelity models for optimization cost reduction” section) can be incorpo-
rated into any iterative optimization procedure. In this work, the core routine is the trust-region (TR) gradient 
 search80. The design task is the minimization problem (1). The TR algorithm works iteratively and yields a series 
of approximations x(i), i = 0, 1, …, to the optimum design x* as

In (10), L(i) is a linear expansion model (3) established at the current design x(i). Recall that Fcr
(i) is the current 

vector of assumed operating frequencies. Throughout the optimization run, the update of the TR search radius 
d(i) is performed iteratively by taking into account the gain ratio r = [U(S(x(i+1)),Fcr

(i)) − U(S(x(i)),Fcr
(i))]/[U(LS

(i)

(x(i+1)),Fcr
(i)) − U(LS

(i)(x(i)),Fcr
(i))], which quantifies the actual improvement of the objective function (based on 

EM analysis) versus the estimated improvement (based on the linear model prediction). In case of improvement 
(r > 0), the design x(i+1) is accepted. Also, if r > 0.75, d(i+1) is increased to 2d(i); if r < 0.25, d(i+1) is reduced to d(i)/3. 
Rejection of the design (r < 0) results in repeating the iteration with a reduced TR size.

Optimization algorithm. The kernel of the knowledge-based optimization procedure introduced in this 
paper is the TR algorithm briefly discussed in “Trust-region-embedded gradient-search” section. The automated 
design requirement management strategy of “Adaptive design requirements for reliability improvement” section, 
and the variable-fidelity model adjustment scheme of “Variable-fidelity models for optimization cost reduction” 
section, are simultaneously incorporated therein. In particular, both the design goals and the model fidelity are 
adjusted before each iteration of the TR routine. The goals are modified based on the decision factors of Table 1 
and conditions of Table 2, whereas the model fidelity is altered using the coefficient Dcr (cf. “Knowledge-based 
model fidelity adjustment based on performance specifications” section), and the convergence indicator Q(i) (cf. 
“Model fidelity adjustment based on convergence status” section). Figure 4 shows the pseudocode of the entire 
procedure, whereas Fig. 5 provides its flow diagram. The designer needs to supply the following information:

• Initial design x(0),
• Analytical formula for the objective function U,
• Target vector F,
• The range of EM model fidelities Lmin and Lmax.

Also, the termination condition discussed in “Model fidelity adjustment based on convergence status” section 
(argument and objective function convergence) needs to be complemented by an additional condition specific 
to the trust region frameworks, i.e., d(i) < εx (reduction of the TR size).

(8)Q(i)(εx , εU ) = max
{

εx/||x
(i+1) − x(i)||, εU/|UP(x

(i+1))− UP(x
(i))|

}

(9)L(i+1) =















Lcr if Q(i)(εx , εU ) ≤ M

max

�

L(i), Lcr + (Lmax − Lcr)

�

1−
log(Q(i)(εx , εU )

logM

��

(10)x(i+1) = arg min
||x−x(i)||≤d(i)

U(L
(i)
S (x), F(i)

cr )
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Verification case studies
The algorithm introduced in “Adaptive design requirements for reliability improvement” through “Complete 
optimization framework” sections is verified here with the use of three examples of microstrip circuits: two 
branch-line couplers (a single- and dual-band one), and a dual-band power divider. All circuits are optimized 
from inferior-quality initial designs, i.e., such whose operating frequencies are away from the design targets. 
This setup allows us to demonstrate the relevance of the reliability improvements achieved through the adaptive 
performance requirement approach. At the same time, we investigate computational savings that can be obtained 
using the variable-fidelity mechanisms incorporated into our procedure. All the simulations were performed on 
Intel Xeon 2.1 GHz dual-core CPU with 128 GB RAM.

Circuit I: compact branch‑line coupler (BLC). The first example is a compact branch-line coupler 
shown in Fig. 6a. Figure 6b provides the relevant data, including designable parameters, computational models, 
initial design, and performance specifications. The circuit is to be optimized to minimize its matching and port 
isolation, as well as to provide equal power split at the center frequency of 1.0 GHz. The results obtained using 
the proposed algorithm, standard gradient-based optimization (cf. "Trust-region-embedded gradient-search" 
section), as well as adaptive design requirements  technique70, have been gathered in Table 3. The S-parameters of 
the circuit at the initial design as well as design obtained using the presented approach can be found in Fig. 7. The 
optimized parameter values are x* = [0.99 0.65 8.59 13.2 1.00 0.94 0.85 0.62 4.02 0.24]T mm. It can be noted (cf. 
Table 3) that the designs obtained using the algorithm discussed in this work and the method of Koziel et al.70 are 
of similar quality. Moreover, the computational speedup achieved through the incorporation of variable-fidelity 
EM simulations is significant: the total cost of the parameter tuning process corresponds to only 97 high-fidelity 
circuit analyses (51 percent savings  over70). As indicated in Table 3, conventional gradient-based search failed 
to identify a satisfactory design. The evolution of the design targets and model fidelity has been illustrated in 
Fig. 8. Note that the major part of the optimization process has been carried out using lower-fidelity models, the 
high-fidelity simulations are only applied at the latest stages of the algorithm, which translated into the afore-
mentioned speedup.

1. Set the iteration index i = 0;
2. Set model resolution L(i) = Lmin;
3. Evaluate circuit characteristics S(x(i)) and Jacobian J(x(i));
4. Find the scalar a to determine current specification vector Fcr

(i)(a) (cf. Section 2.2); if the 
conditions Dr ≥ Dr.min and Dc ≤ Dc.max, do not hold even for a = 0, go to 7 (premature 
termination);

5. Perform TR iteration (13) to find the new iteration point x(i+1) according to Fcr
(i);

6. Update the TR radius d(i);
7. If Dcr

(i) = ||Fcr
(i) – F|| = 0 (current design specifications coincide with original targets)

          Update model resolution L(i) using (6);
      else
          Update model resolution L(i) using (8);
      end
8. If termination condition is satisfied
          if L(i) = Lmax    
              Go to 10;
          else
              Set L(i) = Lmax;
              Set d(i) = Mdd(i) (cf. Section 3.3);
              Go to 3;
          end
      end
9. If U(S(x(i+1)),Fcr

(i)) – U(S(x(i)),Fcr
(i))

          Set i = i + 1;
          Go to 3;
      else 

    Go to 5;
      end
10. END

Figure 4.  Pseudocode of the proposed optimization algorithm with design requirement management and 
variable-fidelity EM models.
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Figure 5.  Flow diagram of the introduced optimization algorithm with design requirement adjustment and 
variable-fidelity EM models.

Figure 6.  Compact branch-line coupler (Circuit I): (a)  geometry81; (b) main parameters and design objectives.
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Circuit II: dual‑band branch‑line coupler. As the second verification case, consider a dual-band branch-
line coupler of Fig. 9a. The important parameters of the circuit have been listed in Fig. 9b. In this case, the design 
objective is to minimize the matching |S11| and isolation |S41|, and to achieve equal power split at the operating 
frequencies of 1.2 GHz and 2.7 GHz. Table 4 gathers the optimization results for the introduced and the bench-
mark methods. Figure 10 shows the coupler S-parameters at the initial and the final design, x* = [42.0 10.0 0.85 
2.56 1.50 1.33 0.60 0.44 2.01]T mm, found by the algorithm of "Verification case studies" section. Similarly as for 
the first example, the utilization of variable-fidelity simulations leads to considerable computational savings of 
61 percent over the adaptive design specification method of Koziel et al.70. The cost reduction is achieved without 
compromising the design quality as indicated in Table 4. In absolute terms, optimization cost corresponds to 

Table 3.  Optimization results for Circuit I. $ Objective function computed as in (2). # Cost expresses in 
equivalent number of high-fidelity EM simulations. & The algorithm failed to identify a satisfactory design, in 
particular, align the circuit operating frequency with the target. *Relative computational savings in percent 
w.r.t. the algorithm of Koziel et al.70.

Algorithm Operating frequency at the optimized design Optimization  cost# Cost savings over algorithm of Koziel et al.70*

Conventional TR procedure (cf. "Trust-region-embedded 
gradient-search" section) N/A& N/A& N/A&

Adaptive performance  specifications70 1.0 GHz 198 –

Variable-fidelity adaptive performance specifications (this 
work) 1.0 GHz 97 51.0%
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Figure 7.  Compact branch-line coupler: circuit responses at the initial design (grey lines), and the optimal 
design rendered by the introduced framework with design specification adaptation and variable-fidelity models 
(black lines). Vertical line marks target operating frequency.

(a)                                                                             (b)

2 4 6 8 10 12 14

Iteration index

0.8

1

1.2

1.4

1.6

1.8

2

T
ar

g
et

fr
eq

u
en

cy
[G

H
z]

2 4 6 8 10 12 14

Iteration index

10

15

20

25

30

M
o

d
el

fi
d

el
it

y
(L

P
W

)

Figure 8.  Compact branch-line coupler: (a) history of the target operating frequency (horizontal line marks the 
initial target); (b) evolution of the model resolution.
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Figure 9.  Dual-band branch-line coupler (Circuit II): (a)  geometry82; (b) main parameters and design 
objectives.

Table 4.  Optimization results for Circuit II. $ Objective function computed as in (2). # Cost expresses in 
equivalent number of high-fidelity EM simulations. & The algorithm failed to identify a satisfactory design, in 
particular, align the circuit operating frequency with the target. *Relative computational savings in percent 
w.r.t. the algorithm  of70.

Algorithm Operating frequency at the optimized design Optimization  cost# Cost savings over algorithm of Koziel et al.70*

Conventional TR procedure (cf. "Trust-region-embedded 
gradient-search" section) N/A& N/A& N/A&

Adaptive performance  specifications70 [1.2 2.7] GHz 243 –

Variable-fidelity adaptive performance specifications (this 
work) [1.2 2.7] GHz 94 61.3%
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Figure 10.  Dual-band branch-line coupler: circuit responses at the initial design (grey lines), and the optimal 
design rendered by the introduced framework with design specification adaptation and variable-fidelity models 
(black lines). Vertical lines mark target operating frequencies.
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94 EM analyses of the coupler using highest resolution. Figure 11 illustrates the evolution of design goals and 
model fidelity.

Circuit III: dual‑band power divider. The final verification case is a dual-band power divider shown in 
Fig. 12a. The essential circuit parameters have been provided in Fig. 12b. The aim is to minimize the input and 
output matching (|S11|, |S22|, |S33|) and port isolation |S23| simultaneously at the operating frequencies 2.4 GHz 
and 3.8 GHz, as well as to obtain equal power division ratio. The latter is implied by the circuit symmetry, there-
fore, does not have to be explicitly handled in the optimization process. The numerical results are provided in 
Table 5. The algorithm performance is in accordance with that of the previous examples. On the one hand, we 
observed considerable computational savings of 54 percent over the single-fidelity procedure of Koziel et al.70. 
On the other hand, the quality of design produced by the presented method is similar to the benchmark. It 
should also be noted that the conventional gradient search fails due to severe misalignment between operat-
ing frequencies of the coupler at the initial design and the assumed ones. The optimized parameter vector is 
x* = [26.3 5.09 20.6 5.12 1.0 0.60 4.34]T. The remaining results can be found in Fig. 13 (circuit responses at the 
initial and optimal designs), and Fig. 14 (evolution of the design specifications and model fidelity).

The introduced approach is an accelerated version of the algorithm proposed in Koziel et al.70. In contrast 
 to70, where only single-fidelity EM model of the component under design is employed, here, we utilize EM 

(a)                                                                             (b)

5 10 15

Iteration index

1

1.5

2

2.5

3

3.5

T
ar

g
et

fr
eq

.
[G

H
z]

5 10 15

Iteration index

12

14

16

18

20

22

24

26

M
o

d
el

fi
d

el
it

y
(L

P
W

)

Figure 11.  Dual-band branch-line coupler: (a) history of the target operating frequency (horizontal lines mark 
the initial targets); (b) evolution of the model resolution.

Figure 12.  Dual-band power divider (Circuit III): (a)  geometry83; (b) main parameters and design objectives.
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models of various fidelities belonging to the continuous range of admissible resolutions. This is a source of the 
computational benefits of our procedure over that proposed in Koziel et al.70. The reliability of our procedure 
is excellent: it has been capable of yielding the designs fulfilling the required design specifications in all the 
considered cases, even though the starting points have been to a large extent misaligned with the targets. At the 
same time, the speedup over the single-fidelity  framework70 is around fifty-five percent on average (from fifty to 
sixty percent across the benchmark set).

Table 5.  Optimization results for Circuit III. $ Objective function computed as in (2). # Cost expresses in 
equivalent number of high-fidelity EM simulations. & The algorithm failed to identify a satisfactory design, in 
particular, align the circuit operating frequency with the target. *Relative computational savings in percent 
w.r.t. the algorithm of Koziel et al.70.

Algorithm Operating frequency at the optimized design Optimization  cost# Cost savings over algorithm of Koziel et al.70*

Conventional TR procedure (cf. "Trust-region-embedded 
gradient-search" section) N/A& N/A& N/A&

Adaptive performance  specifications70 [2.4 3.8] GHz 274 –

Variable-fidelity adaptive performance specifications (this 
work) [2.4 3.8] GHz 125 54.4%
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Figure 13.  Dual-band power divider: circuit responses at the initial design (grey lines), and the optimal design 
rendered by the introduced framework with design specification adaptation and variable-fidelity models (black 
lines). Vertical lines mark target operating frequencies.
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Figure 14.  Dual-band power divider: (a) history of the target operating frequency (horizontal lines mark the 
initial targets); (b) evolution of the model resolution.D
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Conclusion
In this work, we proposed a new technique for computationally-efficient and improved-reliability parameter 
tuning of microwave passive components. The presented approach combines two distinct algorithmic tools, 
the automated design requirement management scheme, and the knowledge-based adaptively-adjusted EM 
simulation fidelity mechanism. The former allows for a considerable improvement of the optimization process 
reliability. In particular, it enables successful local tuning even under challenging conditions (e.g., poor start-
ing point). The latter results in a significant computational speedup with respect to the standard, single-fidelity 
optimization. Both mechanisms are implemented to work simultaneously. More specifically, the decision-making 
procedure governing model fidelity setup for a given iteration of the optimization algorithm depends on the 
current discrepancy between the observed and target operating parameters of the circuit at hand, as well as the 
convergence status of the search process. The proposed framework is intended to work with full-wave simula-
tion models (e.g., finite-difference time-domain (FDTD), or finite element method (FEM)), but also dedicated 
solvers that permit a control over discretization density of the structure under simulation. The prerequisite is 
that the utilized computational models should be evaluated using the same simulation engine, and differ solely 
by mesh density to ensure satisfactory correlation between the models of different resolutions. Whereas this 
level of correlation is not possible to achieve with circuit-theory models (or equivalent circuits, or else analyti-
cal models). The methodology proposed in this work has been validated using three microstrip components, 
including two couplers and a power divider. In all cases, it demonstrated superior performance, both in terms 
of successful allocation of the operating frequencies of the considered circuits despite of poor initial designs, 
and computational efficiency. The average CPU savings over the recent technique involving adaptively adjusted 
design specifications are as high as 55 percent. The speedup has been shown not to be detrimental to the design 
quality. The optimization strategy introduced in this paper has a potential to replace or complement traditional 
methods, especially in situations where local optimization is likely to fail due to the lack of good starting points 
or the necessity of re-designing the circuit over broad frequency ranges, whereas the involvement of global search 
routines is questionable because of the incurred computational expenses.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request. Contact person: anna.dabrowska@pg.edu.pl.
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