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Abstract
In this paper, we describe Laplace domain boundary element method (BEM) for transient dynamic problems of three-
dimensional finite homogeneous anisotropic linearly elastic solids. The employed boundary integral equations for displace-
ments are regularized using the static traction fundamental solution. Modified integral expressions for the dynamic parts of
anisotropic fundamental solutions and their first derivatives are obtained. Boundary elements with mixed approximation of
geometry and field variables with the standard nodal collocation procedure are used for spatial discretization. In order to
obtain time-domain solutions, the classic Durbin’s method is applied for numerical inversion of Laplace transform. Problem
of alleviating Gibbs oscillations is addressed. Dynamic boundary element analysis of the model problem involving trigonal
material is performed to test presented formulation. Obtained results are compared with finite element solutions.

Keywords
Anisotropic elasticity, boundary element method, dynamic analysis, Laplace transform, Durbin’s method

Corresponding author:

Leonid Igumnov, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Building 6, Nizhny Novgorod 603950,

Russian Federation.

Email: igumnov@mech.unn.ru

Postprint of: Markov I., Igumnov L. A., Belov A., Eremeev V., Laplace domain BEM for anisotropic transient elastodynamics,  MATHEMATICS 
AND MECHANICS OF SOLIDS (2022), pp.1-12, Copyright 2022 SAGE Publications. DOI: 10.1177/10812865221078202.

http://crossmark.crossref.org/dialog/?doi=10.1177%2F10812865221078202&domain=pdf&date_stamp=2022-03-04
https://doi.org/10.1177/10812865221078202


1. Introduction

Although boundary element method (BEM) is a very useful and powerful numerical method applied to
various fields of engineering analysis, its application within anisotropic elasticity is somewhat difficult
due to unavailability of closed-form analytical fundamental solutions for the both statics and dynamics
of anisotropic solids [1–10]. Static anisotropic elastic (and with coupled fields) fundamental solutions are
extensively investigated and many different approaches for their calculation have been proposed over
the last years [11,12]. Most commonly used practical application form of regular part of the three-
dimensional frequency-domain dynamic anisotropic elastic fundamental solution is derived using Radon
transform. It has very complex structure and is expressed as an integral over the surface of a half of a
unit sphere [13,14].

Wave propagation phenomenon has been extensively studied in various applications. Especially, as
the design of advanced materials is becoming a topical subject [15], investigation of such phenomena
becomes more and more important to conceive new materials (‘‘metamaterials’’), for example, panto-
graphic metamaterials, the macroscopic mechanical properties of which are mostly defined by the struc-
ture of the metamaterial at the micro and nano scale [16–19]. Verification of theoretical investigations
of designed models and determination of constitutive parameters are frequently performed by numerical
modeling [20–23]. The BEM and the Green’s function method can be very useful for numerical solution
of boundary value problems involving such metamaterials [24,25].

In this paper, we present a conventional direct Laplace domain boundary element approach for anal-
ysis of the wave propagation in anisotropic linearly elastic finite solids. The static anisotropic elastic
traction fundamental solution is used to regularize the boundary integral equations. Modified integral
expressions for the dynamic parts of the fundamental solutions are employed. Standard nodal colloca-
tion procedure and mixed boundary elements are used for spatial discretization. Classic Durbin’s
method [26] for numerical inversion of Laplace transform is utilized to obtain solutions in the time
domain. Frequency-domain data windowing technique is applied to alleviate Gibbs oscillations.
Boundary element results for the model numerical example involving trigonal material are compared
with the solutions obtained with the finite element method (FEM).

2. Problem statement and BEM formulation

Let us consider a three-dimensional, homogeneous, anisotropic, and linearly elastic solid body occupy-
ing a bounded volume O 2 R3 with a surface G = ∂O: Under the assumption of absent body forces and
zero initial conditions, the equations of motion in the Laplace domain are given by

�sij, j x, sð Þ � rs2�ui x, sð Þ= 0, x 2 O, i, j = 1, 2, 3, ð1Þ

where �sij, r, s, and �ui are the stress, mass density, the Laplace transform parameter, and displacement,
respectively.

Constitutive law is written as Hooke’s law:

�sij x, sð Þ= Cijkl�ekl x, sð Þ, k, l = 1, 2, 3, ð2Þ

where Cijkl is a constant fourth-order elastic stiffness tensor and does not depend on spatial variable x,
that is, material is assumed to be homogeneous. The elasticity tensor satisfies the following symmetry
relations: Cijkl = Cjikl = Cijlk = Cklij:

Considering small deformations, the strain–displacement relationship is given by

�eij x, sð Þ= 1

2
�ui, j x, sð Þ+ �uj, i x, sð Þ
� �

, ð3Þ

where �eij is the symmetric linear strain tensor, and with subscript after comma we denote a spatial partial
derivative.

Substituting equation (3) into equation (2) and then the result into equation (1), the dynamic equa-
tions take the following form:
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Cijkl�uk, lj x, sð Þ � rs2�ui x, sð Þ= 0,x 2 O: ð4Þ

For a mixed boundary value problem, the boundary conditions are given by

�ui x, sð Þ= �u�i x, sð Þ, x 2 Gu, ð5Þ

�ti x, sð Þ= �sik x, sð Þnk xð Þ=�t�i x, sð Þ, x 2 Gt, ð6Þ

where nk is the outward normal to the boundary G at x, Gu and Gt are the corresponding parts of the
boundary, and �u�i (x, s) and �t�i (x, s) are given displacements and tractions.

Equivalent to equation (4), boundary integral equations (BIEs) for displacements are regularized
using the static anisotropic elastic traction fundamental solution hS

jk(y, x). They are weakly singular and
have the following form:ð

G

�uk y, sð Þ�hjk y, x, sð Þ � �uk x, sð ÞhS
jk y, xð Þ ��tk y, sð Þ�gjk y,x, sð Þ

h i
dG yð Þ= 0, j, k = 1, 2, 3, ð7Þ

where x 2 G, �gjk, and �hjk denote Laplace domain displacement and traction dynamic fundamental solu-
tions, respectively.

For the spatial discretization of BIEs (equation (7)), we employ boundary elements with quadratic
interpolation. The simplest possible mixed representation of the field variables on the boundary ele-
ments is adopted. Displacements and tractions are approximated using different shape functions: linear
and constant, respectively. This approach to discretization allows one correct modeling of discontinuous
tractions while at the same time maintaining continuity of displacements. After following standard
nodal collocation procedure and taking into account the prescribed boundary conditions, for a given
value of Laplace transform parameter s we obtain the complex-valued resolving system of linear alge-
braic equations:

A sð Þp sð Þ= f sð Þ, ð8Þ

where A(s) 2 CNdof ×Ndof is the dense and asymmetric influence matrix, p 2 CNdof × 1 contains unknown
field variables, and elements of f 2 CNdof × 1 are linear combination of integrals of the kernels in equation
(7) corresponding to the prescribed boundary data; Ndof is the total number of degrees of freedom.

3. Fundamental solutions

Displacement and traction fundamental solutions in Laplace domain represented as a sum of static and
dynamic parts as follows:

�gij y,x, sð Þ= �gij r, sð Þ= gS
ij rð Þ+ �gR

ij r, sð Þ, j, k = 1, 2, 3, ð9Þ

�hmi y, x, sð Þ= �hmi r, sð Þ= Cijkl�gmk, l r, sð Þnj yð Þ= hS
mi rð Þ+ �hR

mi r, sð Þ, m = 1, 2, 3, ð10Þ

r= y� x, r = rj j, ð11Þ

where nj is outward unit normal of the boundary G at y.
Following Wang and Achenbach [13,14], we employ integral expressions for the static and dynamic

parts of the displacement fundamental solution. The integration for the dynamic part and its derivative
takes over a half of a unit sphere nj j= 1 which is expressed in terms of spherical coordinates 0 ł c ł p=2
and 0 ł u ł 2p:

gS
ij rð Þ=

1

8p2r

ð2p

0

G�1
ij n u,

p

2

� �� �
du, ð12Þ
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�gR
ij r, sð Þ= �

s
ffiffiffi
r
p

8p2

ð2p

0

ðp=2

0

X3

m = 1

EimEjm sinc

l3=2
m

exp sr
ffiffiffi
r
p � coscffiffiffiffiffiffi

lm

p
� �� �

dcdu, ð13Þ

�gR
ij, l r, sð Þ= s2r

8p2

ð2p

0

ðp=2

0

X3

m = 1

nl u,cð ÞEimEjm sinc

l2
m

exp sr
ffiffiffi
r
p � coscffiffiffiffiffiffi

lm

p
� �� �

dcdu, ð14Þ

cm =

ffiffiffiffiffiffi
lm

r

s
, km =

s

cm

, ð15Þ

where lm and Ejm are the eigenvalues and the corresponding eigenvectors of the matrix
Gij(n(u,c)) = Ckijlnknl. Vector n(u,c) required in equations (12)–(15) is defined as follows (see also
Figures 1 and 2):

n u,cð Þ= d uð Þ sinc + e cosc = n1, n2, n3½ �T, ð16Þ

d uð Þ � r= 0, e=
r

r
, e= e1, e2, e3½ �T, ð17Þ

p=
e2, �e1, 0½ �Tffiffiffiffiffiffiffiffiffiffiffiffiffi

1� e2
3

p , q= e× p=
e1e3, e2e3, � 1� e2

3

� �	 
Tffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

3

p , ð18Þ

Figure 1. Illustration of vector n and auxiliary variables.

Figure 2. Close-up of variables required to define vector n.
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p�e= 0, q�e= 0, p�q= 0, d uð Þ= p cosu + q sinu, 0 ł u ł 2p, ð19Þ

d uð Þ=
e2cosu+ e1e3sinu, �e1cosu + e2e3sinu, � 1� e2

3

� �
sinu

	 
Tffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

3

p : ð20Þ

4. Numerical inversion of Laplace transform

The Laplace transform and its inversion are defined as follows:

F sð Þ= L f tð Þf g=

ð+ ‘

0

e�stf tð Þdt, f tð Þ= 0 for t\0, s = a + iv, ð21Þ

f tð Þ= L�1 F sð Þf g=
1

2pi

ða + i‘

a�i‘

estF sð Þds, ð22Þ

where a is an arbitrary real number greater than the real parts of all the singularities of F(s).
To obtain time-domain solutions, we employ classic well-known Durbin’s method [26] to numerically

invert the Laplace integral transform. Durbin’s method is frequently used together with Laplace domain
BEM and for solving wave propagation problems as in the most cases it can provide reliable results over
all selected time range [27–33]. Durbin’s method for real function f (t), with f (t) = 0 for t\0, is based on
the following equivalent representation of f (t), which can be obtained after simple algebraic manipula-
tions on the right-hand side of equation (22):

f tð Þ= eat

p

ð+ ‘

0

Re F a + ivð Þð Þ cos vtð Þ � Im F a + ivð Þð Þ sin vtð Þ½ �dv, t ø 0: ð23Þ

Equation (23) corresponds to an integration along a straight line Re(s) = a parallel to the imaginary
axis in the complex plane. The following approximation of the time-domain function f (t), which is
referred to as Durbin’s formula, was obtained in Durbin [26] using a Fourier series expansion of e�atf (t)
on the time interval ½0, 2T � and by cutting off an infinite series on Nsum terms:

f tð Þ’ eat

T
� 1

2
Re F að Þð Þ

�
+
XNsum

k = 0

Re F a + i
kp

T

� �� �
cos

kp

T
t

� �
� Im F a + i

kp

T

� �� �
sin

kp

T
t

� �� #
,

ð24Þ

where 0 ł t ł 2T is the considered time range for the inversion.
For BEM calculations, we restricted ourselves to certain values of vmax and tmax, which are the maxi-

mum value of imaginary part of complex Laplace transform parameter s and the maximum time that
we are interested in, respectively. Taking it into consideration, the parameter T and the number of terms
Nsum in the series can be determined by the following formulae:

2T . tmax ) T .
tmax

2
) T = T �tmax,T

�. 0:5,Nsum =
vmaxT

�tmax

p

� �
: ð25Þ

Relying on the results in Crump [34], we choose a as

a =
k ln 10

T
=

k ln 10

T�tmax
, k . 1:0: ð26Þ
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So we identify vmax and tmax as the input parameters of the Durbin’s method, and T � and k as the free
parameters.

5. Numerical example

For the numerical example, we consider a model problem which is frequently used to test versatility and
efficiency of boundary element approaches. An anisotropic elastic bar shown in Figure 3 with the length
of 1m and a square cross section of 0:2 m × 0:2 m is clamped at x3 = 0 m and subjected to a step load
t3 = PH(t), P = �1�106 Pa at the face x3 = 1 m.

Trigonal material (sapphire) of the mass density r = 3970 kg=m3 and of the following elastic moduli
[7,35,36] is considered:

C=

494 158 114 �23 0 0

494 114 23 0 0

496 0 0 0

145 0 0

symm: 145 �23

168

2
6666664

3
7777775
GPa:

Matrix C is a positive definite as the corresponding complete necessary and sufficient conditions for it
for a trigonal crystal [37] are satisfied, that is, c11 . c12j j, (c11 + c12)c33 . 2c2

13, and (c11 � c12)c44 . 2c2
14:

To obtain time-domain solutions in the boundary element analysis, we selected the following values
of the input and free parameters in Durbin’s method:

vmax = 150, 000
rad

s
, tmax = 0:001 s, T�= 1:65, k = 2:0:

By this way, the number of sampling frequencies became Nsum = 79:
First, we employ four different uniform meshes with 88 (denoted as mesh 1), 352 (mesh 2), 792 (mesh 3),

and 1408 (mesh 4) quadrilateral boundary elements to test mesh convergence. Obtained results for displace-
ments u3(t) at point A (0.0, 0.0, 1.0) m located on the loaded face and at point B (0.0, 0.0, 0.5) m inside the
bar are displayed in Figures 4 and 5, respectively. In Figures 6 and 7, the results for stress s33(t) at point B
and point C (0.0, 0.0, 0.0) m are presented.

Obtained results are consistent throughout all the considered time range and the difference between
the solutions with the refining of the mesh is quickly diminishing.

Next, we compare BEM solutions on mesh 4 with the results of the linear and full transient finite ele-
ment analysis performed with Ansys software. System of equations was solved with a default solver. The
uniform FEM model of the bar consists of 5000 twenty-node solid elements SOLID186, all comparison
points located on the corresponding nodes of the FEM model. For a time-stepping scheme in a transient
anisotropic elastodynamic analysis of a considered structure under impact load, where spurious

Figure 3. Anisotropic elastic bar under Heaviside load.
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oscillations (Gibbs phenomenon) occur near sharp gradients and discontinuities in structural response,
we employ a damped Newmark’s algorithm. Parameters of Newmark’s method are as follows [38]:
a = 0:5 and d = 0:7: When choosing d . 0:5, numerical dissipation is introduced (d = 0:5 corresponds to
an undamped version) [39] to damp out spurious high-frequency response. The maximum time is 0.001 s

Figure 5. BEM solutions for displacements u3(t) at point B.

Figure 6. BEM solutions for stress s33(t) at point B.

Figure 4. BEM solutions for displacements u3(t) at point A.
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and the total number of time steps is 930. Comparing the BEM and FEM results in Figures 8–11, we
observe that solutions are in a good agreement. Slight decrease of amplitude of displacements u3(t) at
point A for FEM solution can be attributed to the numerical damping.

We can observe from Figures 6, 7, 10, and 11 that BEM solutions for stresses exhibit relatively strong
oscillations which occur due to the Gibbs phenomenon. The truncation of the frequency spectrum at
vmax causes oscillations in time-domain responses near jump discontinuities. A frequency-domain data
windowing approach is used to alleviate the Gibbs oscillations. Before transferring frequency-domain
response back into the time domain using Durbin’s method, said response is multiplied at each fre-
quency by some suitable data window function W (vk): And so, the magnitude of oscillations in time
domain is reduced. Results of our extensive numerical testing of various window functions indicate that
Hanning and Blackman windows often employed in frequency-domain BEM analysis yield overly
smoothed results. We propose to use Riesz window:

W vkð Þ= 1:0� vk

vmax

� �2

:

Figures 12 and 13 display the FEM results and post-processed with data windowing technique BEM
solutions. Indeed, agreement between them improved significantly.

Figure 8. BEM and FEM solutions for displacements u3(t) at point A.

Figure 7. BEM solutions for stress s33(t) at point C.
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Figure 9. BEM and FEM solutions for displacements u3(t) at point B.

Figure 10. BEM and FEM solutions for stress s33(t) at point B.

Figure 11. BEM and FEM solutions for stress s33(t) at point C.
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6. Conclusion

The obtained results allow us to conclude that the presented Laplace domain BEM coupled with the
Durbin’s method and frequency-domain data windowing technique is able to produce stable and accu-
rate results for anisotropic elastodynamic analysis even for a low number of sampling frequencies.
Moreover, in a further study, the presented framework can be readily applied to more complex struc-
tures and materials with coupled fields (piezoelectric, magnetoelectroelastic, etc). A lot of effort has
been put to investigate different phenomena in such materials [40,41].
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Figure 12. BEM solutions with data windowing for stress s33(t) at point B.

Figure 13. BEM solutions with data windowing for stress s33(t) at point C.
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