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Abstract 

The paper concerns the load capacity analysis of thermally loaded multilayered plates and 

shells. The multilayered body is treated as an equivalent single layer whose kinematics is 

consistent with the first-order shear deformation theory. The Authors focus on the thermo-

elastic stability problem of the thin-walled structures. The equilibrium paths are traced with 

the use of Riks-Wempner-Ramm algorithm. By making use of the Tsai-Wu hypothesis the 

material’s strength examination is included in the study. The considered problems are 

resolved with the Authors’ program. The presented results confirm that proposed model can 

be very effective in the stability analysis of multilayered panels. 
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1.Introduction

Multilayered composite panels play nowadays an important role in many branches of 

industry. Wide applications of composites result from their attractive advantages like high 

strength-to-weight ratio, significant chemical and corrosion resistance or excellent thermal 

insulation parameters. Thus composite shells can work in a range of environments serving for 

example as fuselages of space vehicles, turbine blades in jet-engines, wind turbine blades, 
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chimney liners or industrial ducts. Consequently the structures can be subjected to various 

types of loadings, i.e. mechanical, chemical and thermal influences.  

In this work the Authors concentrate on the load capacity of thermally influenced 

multilayered panels. It must be stressed, that the temperature impact can lead to many 

complex problems like [1]: instability or material degradation, e.g. reduction of strength and 

elastic properties, decrease of density [2], delamination [2, 3]; creep, thermal yielding, 

cracking etc.  

This article is devoted to thermally induced instability of elastic panels. It is assumed, that the 

material properties remain constant during the loading process and the delamination 

mechanism does not occur, what is obviously - in view of above mentioned effects - a 

considerable simplification. However, by taking into account that the composite forming 

processes are still being improved, the assumption of a perfect bond can be partially justified. 

Secondly, one has to state, that most of composite panels are thin, slender constructions, 

which are able to withstand relatively high loads, particularly due to high strength of the 

materials themselves. As a result, the thin structures are usually highly susceptible to 

instability phenomenon, like buckling or snap-through, which can in such a situation occur 

before the strength of material is exceeded. Moreover, depending on slenderness, boundary 

conditions [4] but also a lamination-scheme [5-6], the regime of linear behavior of structure 

changes. Very often the geometrically non-linear effects arise before the instability takes 

place. Then, the most popular and simplest stability study method, namely linear eigenvalue 

problem analysis becomes insufficient. Therefore, the geometrically non-linear analysis 

seems to be a more appropriate attitude in this situation. 

To the best of the Authors’ knowledge, one of the most extensive surveys dedicated to 

temperature influence on composite structures and its analysis was published by Noor and 

Burton [3]. The authors of [3] reviewed many articles related to thermally induced instability 
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of composite panels, including about 80 works concerning bifurcation, although the majority 

of them are connected with plate problems. However, only 20 of the listed works deal with 

the non-linear analysis, and just 4 of them are associated with shells. Another essential work 

published in the early 90’s is the article of Huang and Tauchert [5] concerning the 

geometrically non-linear analysis of multilayered plates and shells under a uniform 

temperature rise. Probably due to a significant number of numerical examples presented there, 

especially for shells, this work is still widely cited; see e.g. [7-14]. 

The valuable review [3] can be augmented by examining supplementary works published 

after 1992. The simplest analyses concerning the determination of critical temperatures 

obtained by means of linear eigenvalue problem are presented in [15-19]. In [20] the buckling 

temperature is determined from a closed formula resulting from the assumptions of classical 

thin plates theory, and the obtained solutions are compared with experimental data. Thermal 

buckling temperatures of plate strips supported along two opposite edges are analyzed in [21]. 

The author uses there the analogy to the bar theory to establish the formula for the thermal 

critical load of a transversely isotropic layer. In [22], on the other hand, the trigonometric 

series are employed to find the buckling temperatures. 

The post-critical analysis is usually performed with the use of an incremental analysis taking 

into account large deformations. Mostly, the weak form of the boundary value problem and 

finite element method are utilized, see e. g. [5, 7, 9-12]. However, in [23-24] the post-critical 

paths are established on the basis of a sequential solution of the eigenvalue problem and in 

[25-26] to resolve the non-linear differential equations the Chebyshev series are adopted. 

It is worth to mention that some authors consider thermo-mechanical influences [13, 19, 25-

34]. Nevertheless, probably to avoid problems with a two-parametric load description, usually 

only one influence (i.e. mechanical load or temperature field) acts in such a case as an active 

load, while the second one remains constant during the analysis. 
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The degradation of material parameters caused by the temperature rise is analyzed in [13-14, 

23, 25, 27, 35-37]. One has to stress, that the temperature-dependency functions are typically 

arbitral, like linear function [25, 35, 37] or higher-order polynomials [27]. A special piece-

wise linear function is adopted in [13-14, 23, 36], whereas it must be noticed, that this 

approach is applied for one material only.  

The stability study with simultaneous control of stress state in material is presented in [5, 13-

14, 27]. In [5, 14] the failure initiation is detected by the use of Tsai-Wu hypothesis, while in 

[13] the Hashin criterion is employed. Another methodology is introduced in [27], where the 

value of bending energy is adopted as a failure control parameter. It is worth to state, that in 

all above mentioned cases the failure control has a passive character, i.e. the stiffness and 

strength parameters of material remain constant regardless of the failure progress. 

In order to verify the sensitivity of the structure to certain conditions, the analysis of stability 

is usually extended by various parametric studies. The most distinctive parameters for the 

stability analysis of multilayered panels are: the influence of initial geometric imperfections 

[27, 32, 33, 37], boundary conditions [10-11, 13, 18-19, 23-24, 36, 38], lamination scheme 

[14, 18, 31, 33, 35-36, 39], and number of layers [5, 14, 33, 36]. One can find also more 

specific studies taking into account the influence of such factors as: the layout of stiffeners [9, 

40], the size and orientation of a crack [15], the stochastic variability of material parameters 

[19], the moisture concentration [8], the location and size of a cut-out [7, 10, 31], or the 

temperature distribution in the thickness direction [7, 26, 39]. 

As stated earlier, the Authors of the present report focus on the thermo-elastic stability 

problem. The pre- and post-critical behavior of thermally loaded multilayered panels is 

investigated on the basis of the geometrically non-linear analysis within the Total Lagrangian 

description. The equilibrium paths are traced with the use of the Riks-Wempner-Ramm 
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algorithm. In each step the stress state is monitored according to the Tsai-Wu hypothesis; 

however, the material parameters are kept constant during the analysis. 

In the incremental formulation presented below, the following notation has been adopted (cf. 

[41]): the left superscript describes the configuration in which the value is obtained, while the 

left subscript stands for the configuration the value refers to. 

 

2. The shell description 

The basic concept used in the present description of the shell is the Equivalent Single Layer 

(ESL) model, where it is assumed, that the multilayered medium can be described by the 

statically equivalent homogeneous single layer [42]. The ESL idea is one of the two-

dimensional lamination theories [43] that consists in an appropriate reduction of a 3-D multi-

layer medium into a 2-D single-layer body - an operation usually based on the pre- integration 

of the stress distribution in the cross-section during the computation of resultant forces. All 

variables are therefore connected with a reference surface (usually the middle surface) of the 

shell and their number is independent of the number of layers. As a consequence, the theories 

known for the homogeneous shells can be employed in the analysis of multilayered shells. 

Since composite materials are characterized by significant shear flexibility, the shell model 

should take into account the transverse shear deformation. To include this effect in two-

dimensional formulations either the First-Order-Shear-Deformation (FOSD) or the Higher-

Order-Shear-Deformation (HOSD) theories should be used. Although HOSD theories 

represent more advanced concept and therefore they can be more effective in the analysis of 

various problems, like for example thick panels [43]; their implementation requires a superior 

number of unknowns, what significantly limits the application of HOSD models in non-linear 

analyses [44]. The Authors of the present study recognize the FOSD concept as being 
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absolutely sufficient for the range of problems considered. The employed FOSD model of the 

shell is outlined in Appendix A. 

 

2.1. Thermal load distribution 

It is assumed, that the temperature distribution varies in a linear form in the thickness 

direction.  Taking into account, that the shells considered in the paper are rather thin 

structures, this presumption seems to be fully justified. In order to provide a one-parameter 

load description in the incremental analysis, the ratio p between the maximum temperatures at 

the top and bottom surfaces remains constant during the loading process. The general formula 

describing the temperature distribution has the following form: 

3 (0) (1) 3
0

(0)

(1)

( ) ,

1 ,
2

1 ,

m

m m
th max th init

m
th max

T T T

pT T T

pT SIGN T
H

= +

+ = ⋅ − ⋅ 
 

− = ⋅ ⋅  
 

θ θ

λ λ

λ

 (1) 

where m
thλ  is the load parameter; initT  stands for the initial temperature, which is assumed to be 

the same on the opposite external surfaces; maxT  is a presumed maximum value of so called 

leading temperature, i.e. on the chosen external surface. H is the thickness of the shell, p is the 

ratio between maximum temperature values on the outer surfaces and SIGN is a supporting 

two-value parameter: 

,

,

1 ,

1 .

b max

t,max

t max

b,max

T
SIGN p

T

T
SIGN p

T

= ⇔ =

= − ⇔ =

 (2) 

,t maxT  and ,b maxT  are presumed maximum temperature values on top and bottom surface of the 

shell, respectively. The temperature in denominators in (2) is a leading one. 

One can observe that for p=1 the formula (1) describes the uniform temperature distribution. 
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2.2. Constitutive law of a single layer 

The layers of laminated structures are usually made of isotropic or transversely isotropic 

materials. Figure 1 presents the orientation of the local material axes a-b-c. The angle αk is a 

measure of the deviation of the longitudinal direction (a) of a layer from the global axis θ1. 

The following stress-strain relations correspond to the general case of a monoclinic medium. 

 

Fig. 1. Local axes of transversely isotropic material 

Due to the thermo-mechanical coupling, the elastic strains are dependent on the thermal 

strains, so the effective stresses are given as follows 

{ } [ ] { } { }( ) { } { } { }Cm m m th m m m
ef m ef mech thS E E S S S= − ⇔ = − , (3) 

where { }mE , { }m thE  are displacement dependent and thermal strain vectors, { }m
mechS , { }m

thS , 

{ }m
efS  are mechanical, thermal and effective stress vectors, respectively, and [ ]Cm  is the 

constitutive matrix.  

In an incremental formulation of nonlinear problems the mechanical strains and stresses must 

be decomposed into a sum of the actual value and the increment [41]. The constitutive 

relations must be then given in an incremental form, which in local material axes can be 

expressed as follows  

[ ]

0 0

0 0

0 0

0 0

0 0

C 2
2
2

aa
mech aa
bb
mech bb
ab

mmech ab
bc
mech bc
ac
mech ac

S E
S E
S E
S E
S E

   
   
      =   
   
   
      

. (4) 
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On the other hand, the thermal strains and stresses are displacement independent and therefore 

they do not need to be decomposed. As a result, one gets the constitutive relations expressed 

in the material axes a-b-c as: 

[ ] [ ]

0 0

0 0
3

0C C ( )0 0 0
0 0 0
0 0 0

m aa m th th
th aa aa

m bb m th th
th bb bb

m
m m

S E
S E

T

     
     
          = =     
     
     
          

α
α

θ , (5) 

where th
aaα , th

bbα  are the thermal expansion coefficients in directions of the axes a and b, 

respectively, (Figure 1) and 3
0 ( )mT θ  is the temperature at the considered point in the 

configuration t=m. 

The components of the local material matrix [ ]Cm  are following: 

[ ]

( )
( )

0 0 0
1 1

0 0 0
1 1C

0 0 0 0
0 0 0 0
0 0 0 0

a ab b

ab ba ab ba

ba a b

ab ba ab bam

ab

bc

ab

E v E
v v v v

v E E
v v v v

G
k G

k G

 
 − − 
 
 − −=  
 
 
 
 
 

, (6) 

where aE and bE  are the Young’s moduli in the directions of the axes a and b, respectively, 

abG , bcG , acG  are the shear moduli in the planes a-b, b-c, a-c, respectively, and abv  is the 

Poisson’s ratio in the plane a-b. For the orthotropic material [45] the following relation is in 

force 

a ba b abE v E v= . (7) 

The k parameter in (6) stands for the shear correction factor. It is introduced to compensate 

the overestimated transverse shear strain energy which follows from the constant distribution 

of these strains in the FOSD concept, see (A.10). The determination of the k value in 

multilayered media is still an open question [46]. Very often it is set to 5/6, according to 

Reissner. Nevertheless, in (6) k is given in parentheses, because in the present work the shear 
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factors are not introduced at the layer level; instead, they are evaluated numerically for the 

whole cross-section and for each transverse shear plane, see (B.13). The adopted procedure is 

well known in the literature [47-48] - a value of the composite transverse shear correction 

factor is determined by matching the transverse shear strain energy predicted by the FOSD 

model with that obtained from the three-dimensional elasticity theory. As shown in [12, 46] 

such an approach combines a simplicity with a significant effectiveness.  

The above stress-strain relations are given in the local material axes, but for practical 

application they need to be transformed into the global coordinate system θ1-θ2-θ3 (Figure 1). 

The following transformation rules are valid 

[ ] [ ]

11
0 0 0 0 11

22
0 0 0 0 22

12
0 0 0 0 12

23
0 0 0 0 23

13
0 0 0 0 13

T , T2 2
2 2
2 2

aa
mech mech aa

bb
mech mech bb

T ab
mech mech ab

bc
mech mech bc

ac
mech mech ac

S S E E
S S E E
S S E E
S S E E
S S E E

       
       
              = =       
      
      
            

[ ]

11
0 0

22
0 0

12
0, T ,0
0 0
0 0

m m aa
th th

m m bb
th th

Tm
th

S S
S S
S

   
   
      =   

    
    
       

 (8) 

with the transformation matrix: 

[ ]

2 2

2 2

1cos ( ) sin ( ) sin(2 ) 0 0
2
1sin ( ) cos ( ) sin(2 ) 0 0
2T .

sin(2 ) sin(2 ) cos(2 ) 0 0
0 0 0 cos( ) sin( )
0 0 0 sin( ) cos( )

k k k

k k k

k k k

k k

k k

 
 
 
 − =
 − 
 −
 
  

α α α

α α α

α α α
α α
α α

 (9) 

One can observe, that after the transformation, the third thermal stress component occurs in 

the global coordinate system θ1-θ2-θ3 (8). Finally we get the stress-strain relations in global 

axes: 
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[ ] [ ][ ] [ ]

11 11
0 0 11 0 0 11

22 22
0 0 22 0 0 22

12 12
0 0 12 0 0 12

23 23
0 0 23 0 0 23

13 13
0 0 13 0 0 13

T C T C2 2
2 2
2 2

mech mech

mech mech
T

mmech mech

mech mech

mech mech

S E S E
S E S E
S E S E
S E S E
S E S E

       
      
            = ⇔ =       
      
      
            

[ ] [ ] { }

11 11
0 0

22 22
0 0

3 312 12
0 00 0

,

T C ( ) C ( ).0
0 0 0
0 0 0

m th m
th aa th

m th m
th bb th

T m mm m
m thth th

S S
S S

T TS S








     
     
          = ⇔ =     
     
     
          

α
α

θ θ

 (10) 

The corresponding constitutive relations valid at the cross-section level can be found in 

Appendix B. 

 

3.Incremental analysis 

In order to distinguish configurations in Total Lagrangian description, the following 

convention regarding the left superscript is adopted: the reference configuration is the initial 

one (t=0), the actual configuration refers to t=1 and the unknown one corresponds to t=2.  

The appropriate incremental decomposition of the virtual work principle is presented in 

Appendix B, whereas the derivation of the incremental equilibrium equation is described in 

Appendix C.  

In the incremental analysis the load is usually defined as a reference load multiplied by a load 

factor. In the case of thermal influences within the framework of Total Lagrangian description 

the load vector is dependent on the actual displacements (C.6), therefore, the attention should 

be paid to an implementation of an appropriate expression for the incremental load. The 

formula 2 2
0 ,th th th REF=F Fλ  would be rather inadequate, because in this case a constant reference 

vector ,th REFF  does not exist. In point of fact, the reference term is constituted by the leading 

temperature amplitude  

 REF max initT T T∆ = − , (11) 

at the chosen shell surface (see (1)). 
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The thermal load vector 2
0 thF  and thermal stiffness matrix 2

0 ,G thK will be then expressed as 

( )
( )

2 2 1
0

2 2
0 , ,

, ,

,
th th th REF

G th th G th REF

T

T

= ∆

= ∆

F F q

K K

λ

λ
 (12) 

and the incremental equation (C.13) can be then rewritten into  

( )( ) ( )1 1 2 2 1 1
0 0 , 0,U G th G th REF th th REFT T+ − ∆ ∆ = ∆ −K K K q F q Fλ λ , (13) 

where 1
0 UK , 1

0 GK , ,G thK  are the particular parts of the global stiffness matrix (cf. (C.7-C.9)), 

thF  and 1
0F  are the thermal load vector and balanced force vector (cf. (C.6) and (C.5)). 

In (13) it is emphasized, that the thermal load vector depends on the actual displacements. It is 

also worth to mention that the thermal stiffness matrix depends on the unknown temperature 

value. To simplify the notation a shorter version of (13) is introduced: 

( ) ( ) ( )1 2 2 1 1, , ,th REF th th REFT T∆ ∆ = ∆ −K q q F q F qλ λ . (14) 

 

3.1. Riks-Wempner-Ramm algorithm 

To trace the equilibrium path of the structure the arc-length method is implemented, or more 

specifically, the Riks-Wempner-Ramm (RWR) algorithm [49]. In order to distinguish the 

increment and iteration numbers two superscripts are employed: the left one stands for the 

increment (step) number (n), while the right one refers to the number of the iteration (i). 

Each step (n) of the analysis starts with the calculation of the zero approximation of the 

displacement and load parameter increments which are combined by the mix parameter – arc-

length (ds) - as follows: 

( ) ( ) ( )2(0) (0) (0) 2Tn n n n
th ds∆ ∆ + ∆ =q q λ  (15) 

The zero approximation of the displacement increment depends on the load parameter and the 

reference displacement increments 

(0) (0)n n n
th REF∆ = ∆ ∆q qλ , (16) 
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where REF∆q  results from the solution of the following equation: 

( ) ( )( 1) ( 1) ( 1), , ,n n n n
th REF REF th REFT T− − −∆ ∆ = ∆K q q F qλ . (17) 

One has to notice, that on the right side of (17) only the temperature amplitude is present, 

while on the left side the stiffness matrix is built in the accordance with the actual temperature 

value.  

By substituting (16) into (15) we get 

( ) ( ) ( )2(0) 21
Tn n n n

th REF REF ds ∆ ∆ ∆ + =  
q qλ . (18) 

As the arc-length parameter is known, the relation (18) enables to find the unknown value of 

the load parameter. However, in the first step (n=1) of the analysis the load parameter 

increment is predefined and the arc-length value is obtained from (18). On the other hand, in 

next steps the arc-length value is scaled according to convergence condition 

2 ( 1) 2 , 1n nNDITds ds n
NITE

−= > , (19) 

where NDIT and NITE are the numbers of iterations performed in the previous step and the 

desired number of iterations, respectively. 

Moreover, the arc-length parameter should satisfy an additional condition 

 n
min maxds ds ds< < , (20) 

where dsmin and dsmax are the prescribed minimum and maximum values. 

Finally the zero approximation of the displacement vector and the load parameter can be 

found from the relations:  

(0) ( 1) (0)

(0) ( 1) (0)

,
.

n n n

n n n
th th th

−

−

= + ∆

= + ∆

q q q

λ λ λ
 (21) 

The next approximation of the displacement vector and the load parameter can be estimated 

as 

( ) ( 1) ( )

( ) ( 1) ( )

,
,

n i n i n i

n i n i n i
th th th

−

−

= +

= +

q q qδ

λ λ δλ
 (22) 
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where ( )n iqδ  and ( )n i
thδλ  are the corrections obtained in the iteration process.  

The incremental equation (14) which is to be resolved during the iterations can be rewritten as 

follows: 

( ) ( ) ( )( 1) ( 1) ( ) ( ) ( 1) ( 1), , , , ,n i n i n i n i n i n i
th REF th th REF U REFT T T− − − −∆ = ∆ + ∆K q q F q J qλ δ δλ  (23) 

where 

( ) ( ) ( )( 1) ( 1) ( 1) ( 1), ,n i n i n i n i
U REF th th REFT T− − − −∆ = ∆ −J q F q F qλ  (24) 

is an unbalanced force vector (cf. (C.12)). It must be stressed, that on the right side of (23) the 

unknown temperature value is present, whereas the stiffness matrix is obtained with the use of 

the actual temperature.  

The calculated zero approximations of displacement and load parameter increments are the 

components of the tangent vector: 

(0) (0) (0),n n n
th = ∆ ∆ t q λ , (25) 

while the unknown corrections compose the vector 

( ) ( ) ( ),n i n i n i
th ∆ =  qδ δ δλ . (26) 

In the subsequent iterations the tangent vector (25) is updated and composed as: 

( 1) ( 1) ( 1),n i n i n i
th

− − − = ∆ ∆ t q λ . (27) 

The RWR algorithm states, that in each iteration the vector ( )n i∆δ  is perpendicular to the 

vector ( 1)n i−t , thus  

 ( 1) ( ) 0n i n i− ⋅ ∆ =t δ . (28) 

By substituting (26) and (27) into (28) one get the expression 

( ) ( )( 1) ( ) ( 1) ( ) 0
Tn i n i n i n i

th th
− −∆ + ∆ =q qδ λ δλ . (29) 

The displacement correction is decomposed in the following form 

( ) ( ) ( ) ( )n i n i n i n i
th F J= +q q qδ δλ δ δ , (30) 

which corresponds to the decomposition of the equation (23): 
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( ) ( )
( ) ( )

( 1) ( 1) ( ) ( 1)

( 1) ( 1) ( ) ( 1)

, , , ,

, , , .

n i n i n i n i
th REF F th REF

n i n i n i n i
th REF J U REF

T T

T T

− − −

− − −

∆ = ∆

∆ = ∆

K q q F q

K q q J q

λ δ

λ δ
 (31) 

Moreover, by introducing (30) to (29) one gets the following expression 

( ) ( )
( ) ( )

( 1) ( )
( )

( 1) ( ) ( 1)

Tn i n i
Jn i

th Tn i n i n i
F th

−

− −

− ∆
=

∆ + ∆

q q

q q

δ
δλ

δ λ
. (32) 

Finally the solutions of (31), together with (32) and (30) enable to find the required 

corrections in the subsequent iterations and correct the result (21) according to (22). 

The main advantage of the arc-length technique is the ability to trace the unstable parts of 

equilibrium paths. However, in order to distinguish whether the load increment (0)n
th∆λ  (18) 

should increase or decrease an appropriate unloading condition is required. Very often, a 

criterion basing on the sign of the global stiffness matrix is adopted, i.e.: 

( ) ( )(0) ( 1) ( 1)sgn sgn , ,n n n
th th REFT− −∆ = ∆K qλ λ . (33) 

The condition (33) works well at the load limit points but it fails at the bifurcation points by 

leading to characteristic oscillatory problems. Since the junction points are very characteristic 

for thermally induced shells, this criterion is usually insufficient in that kind of the analysis. 

Therefore, in the present study the condition suggested in [50] has been implemented as an 

alternative, which states, that: 

( ) ( )( 1) (0) 0Tn n− ∆ ⋅ >t , (34) 

where ( 1)n− ∆  is the vector composed of the displacement and load parameter increments 

obtained in the previous step: 

( 1) ( 1) ( 1),n n n
th

− − − ∆ = ∆ ∆ q λ . (35) 

From (34), by the use of (16), we get 

( ) ( )( )(0) ( 1) ( 1) 0
Tn n n n

th REF th
− −∆ ∆ ∆ + ∆ >q qλ λ , (36) 

which means, that 
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( ) ( ) ( )( )(0) ( 1) ( 1)sgn sgn
Tn n n n

th REF th
− −∆ = ∆ ∆ + ∆q qλ λ . (37) 

The criterion (37) allows to overcome the bifurcation points and to trace the path in the 

direction determined in the previous step. 

 

 

4.Numerical examples 

As the examination of the proposed numerical model some illustrative examples are 

presented. All of them are resolved with the use of the Authors’ own program in which 8-

node Serendipity and 9– and 16-node Lagrange finite elements are available [51]. The 

analysis of the elements efficiency is widely discussed in [51]. Basing on that, in the present 

study the doubly curved 8-node Serendipity element with uniform reduced integration 

technique (8URI) is routinely used. To control the unloading criteria in the RWR algorithm, 

the steering parameter ICRIT is introduced. Its value is set to 0, which corresponds to 

condition (33) or 1, which refers to criterion (37). If not specified, the condition (37) 

(ICRIT=1) is employed. 

In each incremental step the stress state in material is controlled according to the Tsai-Wu 

hypothesis [44, 45]. The failure control is performed at the Gauss points located in the middle 

of the thickness of each layer in every finite element. The failure mechanism is recognized in 

an approximate manner, i.e. depending on the part, which dominates in Tsai-Wu polynomial.  

 

4.1. Multilayered plate subjected to thermal gradient 

This example was proposed in [7]. A square plate (A=B=254mm) subjected to the thermal 

gradient is analyzed (Figure 2). 
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Fig. 2. Geometry of square plate 

The panel is made of 16 layers of the thickness HL=0.127mm each, with fibers oriented 

according to the scheme [45º/-45º/0º/90º]2s. Every one layer is composed of the same material 

with properties: Ea=130.3GPa, Eb=9.37GPa, Gab=Gac=Gbc=4.5GPa, νab=0.33, th
aaα =0.139·10-

61/ºC, th
bbα =9·10-61/ºC. The plate is simply supported with two opposite edges immovable in 

three directions, whereas the other edges are free to translate in in-plane directions. 

Additionally, in order to preserve the boundaries from wrinkling, the rotations about the 

normal lines to the edges are fixed. The mesh of 10x10 8URI elements is used in the study. 

The thermal gradient is described by the parameter p=Tt/Tb, where Tt and Tb are the maximum 

temperature values on the top and bottom surface of the plate. In the original study [7] 

following gradients p=0, 0.3, 0.6, 0.8, 0.9, 0.95 and their reciprocal are considered. The 

present analysis is extended by the examination of the uniform heating (p=1) and p=0.999 and 

p=1/0.999. The two latter cases can be treated as numerical approximations of the uniform 

temperature rise. 

Figure 3 presents the normalized deflection of the central point in relation to the temperature 

on the middle surface of the plate. The reference results are marked with broken lines. One 

can observe that the present solutions match very well the reference ones. The additional 

studies of the influence of gradients p=0.999 and p=1/0.999 suggest, that the uniformly heated 

plate has a bifurcation point about 220ºC. This fact is supported by the results obtained for 

p=1 with ICRIT=0. Employing of the condition (33) results in oscillatory problems at 220ºC. 

It can be seen that for ICRIT=1 the bifurcation point is surpassed without any problems. 

However, the path above the junction point is obviously unstable. 
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Fig. 3. The deflection of the central point of the plate subjected to the thermal gradients 

 

4.2. Multilayered plate under uniform thermal loading 

Following the proposal from [14] a square plate of the ratio A/H=100 (Figure 2) under a 

uniform temperature rise is analyzed. All four edges of the plate are fixed against the three 

translations and rotations about the normal lines to the edges. The laminate is made of 16 

layers of the same material with following parameters: Ea=141GPa, Eb=13.1GPa, Gab=Gac= 

Gbc=9.31GPa, νab=0.28, th
aaα =0.18·10-61/ºC, th

bbα =21.8·10-61/ºC, Xt=Xc=1650MPa, 

Yt=58.9MPa, Yc=236MPa, Ss=106MPa. Three lamination schemes are considered: cross-ply 

[0º/90º]4s, quasi-isotropic [45º/-45º/0º/90º]2s and angle-ply [45º/-45º]4s. The initial temperature 

is Tinit=20ºC. The whole plate is discretized with 8x8 8URI elements. Due to the symmetry of 

the lamination schemes the bifurcation points can be expected in the equilibrium path, 

similarly as in the example 4.1. To avoid the oscillatory problems the uniform temperature 

rise is approximated with small thermal gradient Td/Tg=0.9999. It is worth to notice, that in 

[14], to reach this objective, small perturbation forces were applied to the structure. 

The agreement of present results with the reference solutions is demonstrated in Figure 4, 

where the reference ones are marked with broken lines. The small discrepancies observed in 

the post-buckling range can be explained by reading errors during reconstruction of results 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


18 
 

from the graphs published in [14]. The results show, that the buckling temperature depends on 

the lay-up. The critical temperatures are Tcr=63ºC (64ºC), Tcr=81ºC (81ºC), Tcr=87ºC (81ºC) 

in the case of cross-ply, quasi-isotropic and angle-ply schemes, respectively, while in 

parentheses the reference results are given. The critical temperature of the angle-ply plate 

reported in [14] as being equal to 81ºC seems to be mistaken (compare Figure 4). 

 

Fig. 4. The deflection of the central point of the plates subjected to the uniform heating 

In this example the strength analysis was performed leading to the conclusion, that the failure 

occurs at temperature levels TTW=810ºC (794.5 ºC), TTW=738ºC (700ºC), TTW=712ºC (691ºC) 

for, respectively, cross-ply, quasi-isotropic and angle-ply plate. The present results are 

comparable with the reference ones given in parentheses. According to the examination of 

dominating parts in the Tsai-Wu polynomial (38) the material fails due to the matrix cracking 

in outer layers. 

Moreover, it can be observed, that the cross-ply scheme preserves the highest strength with 

the lowest buckling resistance.  

It must be however stressed, that the failure temperatures reported above are very high and 

rather unrealistic, what is a consequence of neglecting the thermal degradation of material 

properties during computations. Nevertheless, one can observe, that the material strength is 

exceeded after the loss of stability takes place. 
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4.3. Orthotropic cylindrical shell under uniform thermal loading 

This example was proposed in [5] and analyzed among others in [7, 9-10]. A behavior of a 

cylindrical orthotropic shell under uniform temperature rise is examined. The geometric data 

are: A=B=Rφ, R/A=5, A/H=200 (Figure 5). All the edges are fixed against the translations in 

three directions and rotations about the normal lines to the edges. The shell consists of one 

layer with reinforcement oriented in the circumferential direction and is made of the material 

with following properties: Ea=138GPa, Eb=8.28GPa, Gab=Gac=Gbc=6.9GPa, νab=0.33, 

th
aaα =0.18·10-61/˚C, th

bbα =27·10-61/˚C, Xt=Xc=1263MPa, Yt=33.7MPa, Yc=207MPa, 

Ss=57.3MPa. 

 

Fig. 5. Geometry of cylindrical shell 

In papers [5, 7, 10] and probably also in [9] the symmetry conditions were adopted and a 

quarter of the structure was analyzed. By taking into account, that such an approach 

eliminates the possibility of unsymmetrical deformations, in the present study the whole shell 

is examined with mesh density of 16x16 8URI elements.  

Figure 6 presents the equilibrium path of the normalized deflection of the central point. The 

solution obtained with the use of condition ICRIT=1 matches very well the reference path of 

Huang [5]. In 84ºC the shell loses the stability due to the snap-through phenomenon. 

On the other hand, the application of the criterion ICRIT=0 leads to the oscillatory problems 

at about 80ºC and only a part of the path can be found. This fact implies the possibility of 

bifurcation point’s presence at this temperature level. It has to be noticed, that in an additional 

study with the usage of symmetry conditions and criterion ICRIT=0, the convergence 

problems do not occur. 
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Fig. 6. Central deflection of the perfect cylindrical shell 

In order to trace the possible secondary path the supplementary computations were performed 

with small transverse perturbation forces, which were removed from the model after the 

quality change of the path was detected. The location of the imperfections was not obvious 

and therefore it was determined by a trial and error method. Figure 7 illustrates the points the 

perturbations forces were applied at.  

 

Fig. 7. Locations of perturbation forces 

The imperfections situated on the longitudinal symmetry axis, i.e. at the points A and B did 

not change the solution obtained for the perfect case. However, the application of forces at the 

points D and E (also D’) leads to the result shown in Figure 8. The junction point arises, as 

expected, at about 80ºC. The perturbations forces required to cause the path change in this 

case were very small – their magnitude was estimated at the level that in linear analysis 

produced the transverse deflection equal to 0.001H.  

The perturbation forces of the above mentioned intensity at the points C and F were 

insufficient to modify the result shown in Figure 6. Nonetheless, after increasing the 
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perturbation forces to the level corresponding to the linear transverse deflections of 0.01H, the 

alternative result as shown in Figure 9 was obtained. In this case the bifurcation point refers to 

the temperature 82ºC. 

Figure 10 demonstrates the deformations of the shell in 100ºC corresponding to three 

equilibrium paths. One can observe that the shape modes connected with the secondary paths 

are not bisymmetrical. It is also worth to stress that the detected deformation changes 

corresponding to both bifurcation points have a dynamic nature what is manifested through 

the characteristic decrease of load values after the paths’ changes and the occurrence of 

turning points (Fig. 8-9). Both bifurcation points are then unstable. 

 

Fig. 8. Cylindrical shell. Comparison of fundamental and secondary path (imperfections at points D, D’, E) 

 

Fig. 9. Cylindrical shell. Comparison of fundamental and secondary path (imperfections at points C, F) 
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Fig. 10. Deformation shapes in 100ºC: a) fundamental path, b) imperfections at points D, D’, E, c) imperfections 

at points C, F 

From the practical point of view the secondary path connected with the bifurcation point at 

80ºC (Figure 8) is of great importance. Additional studies proves, that this point is symmetric 

unstable, what is shown in Figure 11. This illustration demonstrates the behavior of one of the 

post-bifurcation degrees of freedom - the in-plane longitudinal translation (uG) of the point G 

(Figure 7) - obtained for the perfect case and for imperfections situated at the points D and D’. 

 According to the present failure control the material is safe in the range of 0-100ºC if the 

fundamental or secondary path connected with the bifurcation point at 80ºC is considered. In 

the case of the post-critical path corresponding to the junction point at 82ºC the matrix 

cracking occurs at about 100ºC. The authors of [5], where only the primary path is analyzed, 

report that the material fails at 94ºC. It must be however stressed, that the failure results are 

strongly dependent on the location of control points. In the present study the stress state is 

monitored at four Gauss points in each element. Moreover, the physical single layer of the 

shell is divided into three sub-layers, whereas the two outer ones have the thickness equal to 

0.01H. It is not clear, how the control points are distributed in the thickness direction in [5]. 

One can only suppose that the stress state is monitored there in 9 Gauss points, because of the 

9-node element with selective reduced integration (SRI) usage. The supplementary analysis 

performed by the Authors with the application of 8SRI elements leads to the solution of the 

failure temperature at 96ºC. However, according to [52] the best convergence of stress results 

in 8- and 9-node elements is achieved at the points matching the uniform reduced integration 

scheme.  
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Fig. 11. Cylindrical shell. In-plane translation of point G; symmetrical unstable bifurcation point 

 

4.4. Cross-ply cylindrical thin shell under uniform thermal loading 

The example was proposed in [9, 11] and also investigated in [38]. A cylindrical panel with 

geometrical data A=B=Rφ, φ=15º, A/H=800 (Figure 5) under uniform thermal loading is 

analyzed. Three translations and rotations about the normal lines to the edges are fixed along 

all four edges. The shell is composed of four layers [0º/90º]s made of the same material as in 

the example 4.3. 

Due to the significant A/H ratio one has to take care of the appropriate mesh density used in 

the computations. Considerable quality changes of the solutions were observed during the 

present convergence study. At least 20x20 8URI elements must be used to achieve the 

stabilization of the results. Nonetheless, as shown in Figure 12, the usage of such a mesh 

leads to completely different solution than reported by Oh and Lee [9, 11]. To verify the 

present solution obtained with the use of 8URI elements, an additional analysis was 

performed with the application of 16-node fully integrated finite elements (16FI). The 

agreement of two present results (Figure 12) indicates that the reference solution of [9, 11] 

and also of [38] can be incorrect. 
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Fig. 12. Central deflection of the cross-ply cylindrical thin shell 

Since the shell is very thin, one can suppose, that the results can be very much influenced by 

the shear locking. Thus the solution can strongly depend on the kind of element and mesh 

density applied in the computations. 

In [9] and [38] 5x5 elements were used to discretize the quarter of the shell. In [9] the 

Hellinger-Reissner 9-node element was applied, whereas in [38] the 8-node Serendipity 

element with smoothed interpolation functions was adopted. The symmetry conditions were 

not applied in [11] and the 10x10 mesh of probably the same element as in [9] was employed. 

In the Authors’ opinion, the solution error present in above mentioned works follows from too 

poor mesh density and shear locking. 

To support this opinion, supplementary computations were performed by the Authors with the 

use of own 9-node fully integrated elements (9FI). Figure 13 demonstrates, that by applying 

the same mesh density as reported in [9, 11, 38] (10x10 9FI) almost the same path is obtained 

as the reference solution. However, as the mesh is condensed to 20x20 9FI elements, then the 

solution moves closer to that achieved with the mesh 20x20 of 8URI elements. 
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Fig. 13. The influence of discretization on the results 

The obtained in the present study branch-type path with the several load limit and turning 

points occurring (Fig. 12-13) proves the dynamic and complex deformation of the shell which 

is caused by the significant slenderness of the structure. Since that the proper mesh of 

elements needs to be employed in the analysis to project the evolution of complicated 

deformation waves. Figures 14 and 15 show clearly, that the mesh density used in [9, 11, 38] 

is too poor for a proper representation of a thin shell deformation. 

 

Fig. 14. Deformation shapes corresponding to w/H=1: a) 20x20 8URI elements, b) 10x10 9FI elements 

 

Fig. 15. Deformation shapes corresponding to 100ºC: a) 20x20 8URI elements, b) 10x10 9FI elements 

 

The Tsai-Wu criterion in this example is not exceeded in the investigated range of 

temperatures. 
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4.5. Spherical orthotropic shell under uniform temperature rise 

A nonlinear behavior of a spherical orthotropic panel subjected to a uniform temperature rise 

is analyzed in this example after [8]. The geometry of the shell (Figure 16) is characterized by 

the following data A=B, A/H=200, R/A=6. All edges are immovable to translate in three 

directions and to rotate about the normal lines to the edges. The material parameters are: 

Ea=130GPa, Eb=7.0GPa, Gab=Gac=4.75GPa, Gbc=2.375GPa, νab=0.3, th
aaα =-0.3·10-61/K, 

th
bbα =28.1·10-6 1/K. 

In the present computations 12x12 8URI elements were utilized. Figure 17 illustrates the 

equilibrium path for the normalized central deflection of the shell. It has to be noticed, that the 

normalization of deflections applied in Figure 17 (0.01wA/H) was changed when compared 

with (w/H) originally used in [8]. The Authors tested that such a modification provides a very 

good agreement of the present results with the reference solution for different values of R/A, 

what allows to make a conclusion of a possible printing error in [8]. 

 

Fig. 16. Geometry of spherical shell 
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Fig. 17. Central deflection of spherical orthotropic shell 

In supplementary studies the load distribution was modified, i.e. the influence of thermal 

gradients Tb=0.5Tt and Tt=0.5Tb on the structure’s behavior was investigated. The results are 

presented in Figure 18. It is observed that both uniform heating (Tb=Tt) and gradient Tb=0.5Tt 

do not cause the instability effects up to the 120K. Contrary the distribution Tt=0.5Tb leads to 

snap-through in 112K.  

 

Fig. 18. The influence of load distribution on the structure stability 

 

5.Conclusions 

A numerical model of thermally loaded multilayered elastic plates and shells is presented in 

the paper. The main goal of the work is the stability study performed on the basis of the 

incremental nonlinear analysis, in which large displacements but small strains are assumed. 
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To extend the information about the bearing capacity of the structure, in each step the stress 

state is controlled in accordance with the Tsai-Wu failure criterion. 

The multilayered panel is analyzed as an equivalent single layer (ESL) within framework of 

the first-order shear deformation theory (FOSD). The global constitutive relations were 

established with enhanced Lamination Theory adequate for the FOSD theory. In order to trace 

arbitrary equilibrium paths the Riks-Wempner-Ramm algorithm is adopted with the use of 

two different unloading conditions for a better examination of post-bifurcation branches. All 

computations are performed with the Authors’ own finite element method program.  

Several numerical examples are presented as the illustration of possibilities of the proposed 

model. It is shown, that thermally influenced thin shells can be very sensitive to the buckling, 

thus during the analysis a special attention should be paid to such aspects, like an appropriate 

path tracing method, suitable mesh density, using of symmetry conditions. It is also exposed, 

that the bearing capacity of thin shells is dominated by stability problems. 

Nonetheless, the Authors are aware of the fact, that the presented approach at this stage 

enables to perform only initial studies. From the practical point of view, one should also take 

into account such effects, like thermal degradation of material properties, delamination and 

progressive failure. Then the numerical results could be compared with experimental data. 
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APPENDIX A  

The shell kinematics 

In the following formulas the Greek indices are equal to 1 or 2, whereas the Latin ones are 1, 

2 or 3.  

The FOSD formulation states, that a straight and normal line remains straight but not 

necessarily normal during the deformation, see Figure A.1. The position vectors of an 
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arbitrary point P* of the shell in the initial (t=0) and actual (t=m) configuration can be 

expressed in the following form: 

0 1 2 3 0 1 2 3 0 1 2( , , ) ( , ) ( , )= +R r nθ θ θ θ θ θ θ θ , (A.1) 

1 2 3 1 2 3 1 2( , , ) ( , ) ( , )m m m= +R r dθ θ θ θ θ θ θ θ , (A.2) 

where 0n  and md  are the normal vector in the initial configuration and so called director in 

the configuration m, which is not necessarily perpendicular to the middle surface of the shell.  

 

Fig. A.1. Geometry of the shell 

The displacement vector of an arbitrary point P* comes out from: 

(0) (1)
0 0 3 0 3( ) ( )m m m m m m m= − ⇔ = − + − = +V R R V r r d n V Vθ θ . (A.3) 

In the Total Lagrangian formulation the displacement vector can be decomposed as follows 

0 3 0 0 0
3

m m m m m= + = +V a n a nα α
α αυ υ υ υ . (A.4) 

In a scalar description, the displacement components can be expressed as 

(0) (1)
1 2 3 1 2 3 1 2( , , ) ( , ) ( , )m m m

i i i= +υ θ θ θ υ θ θ θ υ θ θ . (A.5) 

One should notice that 6 scalar parameters are present in (A.5). Furthermore, it must be 

stressed that the sixth parameter in this case is associated with the transverse normal 

stretching. The last remark is very important, because in some other formulations the sixth 

parameter plays completely different role, namely serves as so called drilling rotation [54-56]. 
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The components of Green-Lagrange strain tensor can be expressed in terms of metric tensor 

components [53], namely 

 0
02 m m

ij ij ijE g g= − . (A.6) 

By separating the membrane, transverse shear and transverse normal parts in the strain tensor 

one gets the following expressions 

( )
(0) (1) (2)21 2 3 1 2 3 1 2 3 1 2

0 0 0 0

(0) (1)
1 2 3 1 2 3 1 2

0 3 0 3 0 3
(0)

1 2 3 1 2
0 33 0 33

( , , ) ( , ) ( , ) ( , ),

( , , ) ( , ) ( , ),

( , , ) ( , ).

m m m m

m m m

m m

E E E E

E E E

E E

αβ αβ αβ αβ

α α α

θ θ θ θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ

θ θ θ θ θ

= + +

= +

=

 (A.7) 

Taking into account, that the covariant base vectors at an arbitrary point P* obtained from 

(A.1) and (A.2) are following 

3

3
0 0 3 0

0 0
3

, ,

,

, ,

,

m m m

m m
α α α

α α α

θ

θ

= +

=

= +

=

g a d

g d

g a n

g n

 (A.8) 

the components of the strains in (A.7) result from: 

(0)
1 2 0 0

0

(1)
1 2 0 0 0 0

0

(2)
1 2 0 0

0

(0)
1 2

0 3
(1)

1 2
0 3

(0)
1 2

0 33

2 ( , ) ,

2 ( , ) , , , , ,

2 ( , ) , , , , ,

2 ( , ) ,

2 ( , ) , ,

2 ( , ) 1.

m m m

m m m m m

m m m

m m m

m m m

m m m

E

E

E

E

E

E

= ⋅ − ⋅

= ⋅ + ⋅ − ⋅ − ⋅

= ⋅ − ⋅

= ⋅

= ⋅

= ⋅ −

αβ α β α β

αβ α β α β α β α β

αβ α β α β

α α

α α

θ θ

θ θ

θ θ

θ θ

θ θ

θ θ

a a a a

d a a d n a a n

d d n n

a d

d d

d d

 (A.9) 

In (A.9) the transverse stretching is present. However, in the FOSD formulation it is usually 

assumed that the fibers are inextensible in the transverse normal direction, what can be also 

interpreted (c.f. [57]) as 

0 33 0 1 , 0m m m m mE α= ⇒ ⋅ = ⇒ ⋅ =d d d d , (A.10) 
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what implies that the transverse shear strain is constant in the thickness direction. 

Obviously, the displacement state (A.5) can be also simplified as the sixth displacement 

parameter is omitted 

(0) (1)
1 2 3 1 2 3 1 2

(0)
1 2 3 1 2

3 3

( , , ) ( , ) ( , ),

( , , ) ( , ) .

m m m

m m const

= +

= =

α α αυ θ θ θ υ θ θ θ υ θ θ

υ θ θ θ υ θ θ
 (A.11) 

Finally the displacement-strain relations in the 5-parameter theory can be expressed in the 

following form 

(0) (0) (0) (0) (0) (0) (0)

0 3 3

(1) (1) (1) (0) (0) (1) (0) (1) (0)
0 0

0

(0) (1) (0) (1)
0 0

3 3

(2) (1)
0 0

0

2 ,

2

,

2

m m m m m m m

m m m m m m m m m

m m m m

m m

E

E b b

b b

E b b

= + + +

= + − − + + +

+ +

= − −

δ
αβ βα αβ δα β α β

λ λ δ δ
αβ β α α β α λβ β λα δ α β δ β α

λ λ
β λ α α λ β

λ δ
αβ α λ β β

ϕ ϕ ϕ ϕ ϕ ϕ

υ υ ϕ ϕ υ ϕ υ ϕ

ϕ υ ϕ υ

υ
(1) (1) (1) (1) (1)

0 0

(0) (1) (0) (0) (1)

0 3 3

,

2 ,

m m m m m

m m m m m

b b

E

  
+ +   

  

= + +

λ δ λ
δ α α λ β δ α λ β

λ
α α α α λ

υ υ υ υ υ

υ ϕ ϕ υ

 (A.12) 

where 

(0) (0) (0)
0

3

(1) (1) (1) (1)
0

3

(0) (0) (0)
0

3 3
(1) (1) (1) (1)

0 0
3 3

(0) (0) (0) (0)
0 0

3

(1) (1) (1) (
0

3

,

,

, ,

, ,

,

m m m

m m m m

m m m

m m m m

m m m m

m m m m

b

b

b

b b

a b

a

= −

= − =

= +

= + =

= = −

= = −

αβ α β αβ

αβ α β αβ α β

λ
α λ α α

λ λ
α λ α α λ α

δ δλ δ δ
β βλ β β

δ δλ δ
β βλ β

ϕ υ υ

ϕ υ υ υ

ϕ υ υ

ϕ υ υ υ

ϕ ϕ υ υ

ϕ ϕ υ υ
1) (1)

0 .mb =δ δ
β βυ

 (A.13) 

The vertical line in (A.12) and (A.13) stands for the covariant differentiation of displacement 

vector components [53]. 

It must be noticed that above displacement-strain relations are inadequate within a proper 

description of finite rotations [57]; however, it is assumed that the magnitude of rotations in 

the thermo-elastic problems considered in this work is considerably limited, as compared with 
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the case of shells under an arbitrary mechanical loading [56]. Similar assumption was made 

by the authors of [58]. 

 

APPENDIX B 

Incremental decomposition of virtual work  

According to the virtual work principle we can postulate equilibrium of the internal and 

external virtual work in the unknown configuration: 

 2 2
i eW W=δ δ  (B.1) 

The external work corresponds to the activity of external mechanical forces, which are not 

considered in this work, so that the detail discussion about this term will be omitted. 

The internal work in the unknown configuration has the following representation 

( )
2 2

2 2 2 2 2 2 2 2
2 2 2 2 2

ij ij ij
i ef ij mech th ij

V V

W e dV e dV= = −∫ ∫δ σ δ σ σ δ , (B.2) 

where the Cauchy stress and Euler-Almansi strain measures are employed, which are not 

suitable for the Total Lagrangian description. After the appropriate [12] transformation one 

can rewrite the formula (B.2) in terms of the 2-nd Piola-Kirchhoff stress and Green-Lagrange 

strain tensors: 

( ) ( )
2 0

2 2 2 2 2 2 2 2 0
2 2 2 0 0 0

ij ij mn mn
i mech th ij mech th mn

V V

W e dV S S E dV= − = −∫ ∫δ σ σ δ δ . (B.3) 

By decomposing of the stress and strain tensors one can transform (B.3) into  

( )( )
0

2 1 2 0
0 0 0 0

mn mn mn
i mech mech th mn

V

W S S S E dV= + −∫δ δ , (B.4) 

where 0 mnEδ  is the variation of the Green-Lagrange strain tensor. 

In the ESL concept the integration in the thickens direction (H) in (B.4) is separated from the 

integration in plane (Ω ): 

( ){ }
0 0

2 1 2 0 0 0
0 0 0 0

mn mn mn
i mech mech th mn

H

W S S S E dH d
Ω

= + − Ω∫ ∫δ δ µ , (B.5) 
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where 0µ  is the determinant of the shifter tensor [12, 53]. 

Finally, from the pre-integration of 3-D stress measures in (B.5), it follows, that 

0

( ) ( ) ( ) (0) (0)( ) (0)2
2 1 2 1 3 3 0

0 0 0 0 0 3 0 0
0

2
n n nn

i mech mech th mech mech
n

W E L L L E L L d
=Ω

      = + − + + Ω            
∑∫ αβ αβ αβ α α

αβ αδ δ δ . (B.6) 

In (B.6) 
( )

1
0

n

mechLαβ , 
(0)

1 3
0 mechLα  stand for the actual membrane-bending and transverse shear resultant 

forces:  

{ } { } { }

{ }

(0) (1) (2)
1 11 1 11 1 11
0 0 0

(0) (1) (2)
1 1 22 1 1 22 1 1 22
0 0 0 0 0 0

(0) (1) (2)
1 12 1 12 1 12
0 0 0

1
01

0

, , ,

mech mech mech

mech mech mech mech mech mech

mech mech mech

mech

L L L

L L L

L L L

L

     
     
          = = =     
     
     
          

=

N M B

Q

(0)
23

(0)
1 13
0

,mech

mechL

 
 
 
 
 

 (B.7) 

( )

0

n

mechLαβ , 
(0)

3
0 mechLα  are their corresponding increments: 

{ } { } { }

{ }

(0) (1) (2)
11 11 11

0 0 0
(0) (1) (2)

22 22 22
0 0 0 0 0 0

(0) (1) (2)
12 12 12

0 0 0

(0)
23

0
0

0

, , ,

mech mech mech

mech mech mech mech mech mech

mech mech mech

mech
mech

mec

L L L

L L L

L L L

L

L

     
     
          = = =     
     
     
          

=

N M B

Q
(0)

13

,

h

 
 
 
 
 

 (B.8) 

and 
( )

2
0

n

thLαβ  are the thermal resultant forces: 

{ } { } { }

(0) (1) (2)
2 11 2 11 2 11
0 0 0

(0) (1) (2)
2 2 22 2 2 22 2 2 22
0 0 0 0 0 0

(0) (1) (2)
2 12 2 12 2 12
0 0 0

, ,

th th th

th th th th th th

th th th

L L L

L L L

L L L

     
     
          = = =     
     
     
          

N M B . (B.9) 

The pre-integration of the 3-D stress measures leads to the constitutive relations at the cross-

section level and for the mechanical part we have: 
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{ } { }0 0 0 ,mech mech mech =  S H E  (B.10) 

where 

{ }

{ }
{ }
{ }
{ }

{ }

{ }
{ }
{ }
{ }

(0)
00

(1)
0 0

0 0 (2)
0 0

(0)
0 0

,

mech

mech

mech mech
mech

mech

  
  
     = =   

   
   
      

ε

ε

ε

γ

N

M
S E

B

Q

. (B.11) 

The constitutive matrix [ ]0 mechH  has the following structure  

[ ]

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

(0,0) (0,1) (0,2)

3 3 3 3 3 3 3 2
(1,0) (1,1) (1,2)

3 3 3 3 3 3 3 2
0 (2,0) (2,1) (2,2)

3 3 3 3 3 3 3 2
(0,0)

2 3 2 3 2 3 2 2

0

0

0

0 0 0

mech

A

A B D

B D E

D E F

S

× × × ×

× × × ×

× × × ×

× × × ×

 
 
 
 

=  
 
 
 
  

H , (B.12) 

where  

[ ] [ ]
11 12 13 2
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[ ] ( )
11 12 13 2 23 0 3
21 22 233 3

31 32 33 2

, ,

H

ij ij
H

d d d
D d d d d c d

d d d
×

−

 
 = = 
  

∫ θ µ θ  (B.15) 

[ ] ( )
11 12 13 2 33 0 3
21 22 233 3

31 32 33 2

, ,

H

ij ij
H

e e e
E e e e e c d

e e e
×

−

 
 = = 
  

∫ θ µ θ  (B.16) 

[ ] ( )
11 12 13 2 43 0 3
21 22 233 3

31 32 33 2

, ,

H

ij ij
H

f f f
F f f f f c d

f f f
×

−

 
 = = 
  

∫ θ µ θ  (B.17) 

In (B.13)-(B.17) cij stands for the components of the constitutive matrix [ ]C  (10). It is worth 

to notice, that the global transverse shear correction factors k13 and k23 are incorporated in 

block [ ]AS  in (B.13) as declared in 2.2. 
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For the thermal part we get the analogical relations: 

{ } { }2 2
0 0 0th th =  S H T , (B.18) 

where  
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with 
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The vectors included in 0 th  H  have the following components 
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where i
thc  are the components of the vector { }Cth  (10). 

 

APPENDIX C 

Incremental equilibrium equation 

By employing the constitutive relations for the cross-section level, one can rewrite the 

equation (B.6) into  
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αβ χδ ζ ηδ δ δ

= =Ω Ω

      = + − Ω+ + Ξ Ω     
       

∑ ∑∫ ∫  (C.1) 

where 
( , )n m

Hαβχδ  and 
(0,0)

3 3Ξζ η are the appropriate parts of the matrix 0 mech  H  (B.12). 

The strain increments are obtained ([12, 57]) from 

 
1
0

0
ij

ij S
S

E
E q

q
∂

= ∆
∂

, (C.2) 

whereas their variations come out ([12, 57]) from  

1 2 1
0 0

0( ) ij ij
ij S S T

S S T

E E
E q q q

q q q
∂ ∂

≅ + ∆
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δ δ δ , (C.3) 

where iq  are the nodal displacements of finite elements. 

Substitution of (C.2) and (C.3) into (C.1) leads to the following form of the internal virtual 

work 

( )
1

2 1 2 1 1 2 , 1 ( )
0 0 0 0 0 0
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δ δ  (C.4) 

where:  

1
0 SF  - represents the components of the balanced force vector 1
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∑∫ αβ ζαβ ζ  (C.5) 

2
0

th
SF  - symbolizes the components of the thermal load vector 2

0 thF , which depend on the actual 

(t=1) displacements and temperature in the unknown (t=2) configuration: 
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1
0

U
STK  - stands for the components of the constitutive matrix 1

0 UK  dependent on the actual 

(t=1) displacements: 
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STK  - denotes the components of the geometric stiffness matrix 1
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(t=1) stresses: 
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temperature in the unknown (t=2) configuration:  
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1 ( )
0

U II
STRK  - refers to the components of the additional three dimensional object, which is called a 

higher order matrix and depends on the actual (t=1) displacements [57]: 
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In the matrix notation, the internal virtual work (C.4) can be expressed as follows 

( ) ( )( )2 1 2 1 1 2 1
0 0 0 0 0 , ,T

i th U G G thWδ δ= − + + − ∆ + ∆q F F K K K q J q q  (C.11) 

what consequently leads to the incremental equilibrium equation:  

( ) { }1 1 2 2 1 1
0 0 0 , 0 0 ( , )U G G th th+ − ∆ = − − ∆K K K q F F J q q  (C.12) 

One has to notice, that the vector ( )1 ,∆J q q  present in (C.12), as being non-linear with respect 

to the displacement increment, is omitted in the linearized form of incremental equilibrium 

equation: 

( )1 1 2 2 1
0 0 0 , 0 0U G G th th+ − ∆ = −K K K q F F . (C.13) 


